- 相關(guān)推薦
數(shù)學(xué)教案-勾股定理的逆定理
知識結(jié)構(gòu):
重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是勾股定理的逆定理及其應(yīng)用.它可用邊的關(guān)系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是勾股定理的逆定理的應(yīng)用.在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時而出錯;另外,在解決有關(guān)綜合問題時,要將給的邊的數(shù)量關(guān)系經(jīng)過代數(shù)變化,最后達(dá)到一個目標(biāo)式,這種“轉(zhuǎn)化”對學(xué)生來講也是一個困難的地方.
教法建議:
本節(jié)課教學(xué)模式主要采用“互動式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學(xué)生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
。1)讓學(xué)生主動提出問題
利用類比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書寫出來.這里分別找學(xué)生口述文字;用符號、圖形的形式板書逆命題的內(nèi)容.所有這些都由學(xué)生自己完成,估計(jì)學(xué)生不會感到困難.這樣設(shè)計(jì)主要是培養(yǎng)學(xué)生善于提出問題的習(xí)慣及能力.
。2)讓學(xué)生自己解決問題
判斷上述逆命題是否為真命題?對這一問題的解決,學(xué)生會感到有些困難,這里教師可做適當(dāng)?shù)狞c(diǎn)撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和探索,找到解決問題的思路.
。3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識.
教學(xué)目標(biāo):
1、知識目標(biāo):
。1)理解并會證明勾股定理的逆定理;
。2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
。3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、能力目標(biāo):
。1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
。2)通過勾股定理及以前的知識聯(lián)合起來綜合運(yùn)用,提高綜合運(yùn)用知識的能力.
3、情感目標(biāo):
。1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識的感受;
(2)通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.
教學(xué)重點(diǎn):勾股定理的逆定理及其應(yīng)用
教學(xué)難點(diǎn):勾股定理的逆定理及其應(yīng)用
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程(m.gymyzhishaji.com):
1、新課背景知識復(fù)習(xí)(投影)
勾股定理的內(nèi)容
文字?jǐn)⑹觯ㄍ队帮@示)
符號表述
圖形(畫在黑板上)
2、逆定理的獲得
。1)讓學(xué)生用文字語言將上述定理的逆命題表述出來
。2)學(xué)生自己證明
逆定理:如果三角形的三邊長 有下面關(guān)系:
那么這個三角形是直角三角形
強(qiáng)調(diào)說明:(1)勾股定理及其逆定理的區(qū)別
勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理.
。2)判定直角三角形的方法:
、俳菫 、②垂直、③勾股定理的逆定理
2、 定理的應(yīng)用(投影顯示題目上)
例1 如果一個三角形的三邊長分別為
則這三角形是直角三角形
證明:∵
∴
∵∠C=
例2 已知:如圖,四邊形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四邊形ABCD的面積
解:連結(jié)AC
∵∠B= ,AB=3,BC=4
∴
∴AC=5
∵
∴
∴∠ACD=
例3 如圖,已知:CD⊥AB于D,且有
求證:△ACB為直角三角形
證明:∵CD⊥AB
∴
又∵
∴
∴△ABC為直角三角形
以上例題,分別由學(xué)生先思考,然后回答.師生共同補(bǔ)充完善.(教師做總結(jié))
4、課堂小結(jié):
。1)逆定理應(yīng)用時易出現(xiàn)的錯誤:分不清哪一條邊作斜邊(最大邊)
。2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運(yùn)用.
5、布置作業(yè):
a、書面作業(yè)P131#9
b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8
求證:△DEF是等腰三角形
板書設(shè)計(jì):
探究活動
分別以直角三角形三邊為直徑作三個半圓,這三個半圓的面積之間有什么關(guān)系?為什么?
提示:設(shè)直角三角形邊長分別為
則三個半圓面積分別為
【數(shù)學(xué)教案-勾股定理的逆定理】相關(guān)文章:
《勾股定理的逆定理》的教學(xué)反思08-18
勾股定理的逆定理應(yīng)用探究08-20
勾股定理說課稿04-18
《勾股定理》的說課稿01-18
數(shù)學(xué)勾股定理教案04-28
勾股定理的教學(xué)反思04-22
精選勾股定理說課稿三篇09-12
《勾股定理》教學(xué)反思范文04-27