有關(guān)八年級數(shù)學(xué)教案三篇
作為一名教學(xué)工作者,就有可能用到教案,借助教案可以有效提升自己的教學(xué)能力。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編收集整理的八年級數(shù)學(xué)教案3篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學(xué)教案 篇1
分式方程
教學(xué)目標(biāo)
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.
教學(xué)重點:
將實際問題中的等量 關(guān)系用分式方程表示
教學(xué)難點:
找實際問題中的等量關(guān)系
教學(xué)過程:
情境導(dǎo)入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的`高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習(xí)
(1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
六、學(xué) 習(xí)小結(jié)
本節(jié)課你學(xué)到了哪些知識?有什么感想?
七.作業(yè)布置
八年級數(shù)學(xué)教案 篇2
單元(章)主題第三章 直棱柱任課教師與班級
本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時
教學(xué)目標(biāo)(含重點、難點)及
設(shè)置依據(jù)教學(xué)目標(biāo)
1、了解多面體、直棱柱的有關(guān)概念.
2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.
教學(xué)重點與難點
教學(xué)重點:直棱柱的有關(guān)概念.
教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.
教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型
教 學(xué) 過 程
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)
一、創(chuàng)設(shè)情景,引入新課
師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點概念:
師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?
析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點
2.合作交流
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描
述其特征。)
師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動:分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請大家找出與長方體,立方體類似的'物體或模型。
析:舉出實例。(找出區(qū)別)
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用
出示例題。(先請學(xué)生單獨考慮,再作講解)
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高
師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點比較難。
板書設(shè)計
作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)
八年級數(shù)學(xué)教案 篇3
課時目標(biāo)
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學(xué)重點
正確理解分式的意義,分式是否有意義的條件及分式的.值為零的條件。
教學(xué)難點:
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)時間:一課時。
教學(xué)用具:投影儀等。
教學(xué)過程:
一.復(fù)習(xí)提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
、 ⑥ ⑦
二.新課講解:
設(shè)問:不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習(xí):下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。
2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習(xí):課后練習(xí)P6練習(xí)1、2題
設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
。ò鍟忸}過程。)
3.小結(jié):分式是否有意義的識別方法:當(dāng)分式的分母為零時,分式無意義;當(dāng)分式的分母不等于零時,分式有意義。
增加例題:當(dāng)x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當(dāng)x≠±2時,分式有意義。
設(shè)問:什么時候分式的值為零呢?
例:
解:當(dāng) ① 分式的值為零
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級下冊數(shù)學(xué)教案01-01
【薦】八年級數(shù)學(xué)教案12-03
【熱】八年級數(shù)學(xué)教案12-07
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04