八年級(jí)數(shù)學(xué)教案集合9篇
作為一名教學(xué)工作者,編寫(xiě)教案是必不可少的,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案應(yīng)該怎么寫(xiě)才好呢?下面是小編收集整理的八年級(jí)數(shù)學(xué)教案9篇,歡迎大家分享。
八年級(jí)數(shù)學(xué)教案 篇1
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來(lái)反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的'極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說(shuō),兩個(gè)時(shí)段的氣溫情況沒(méi)有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說(shuō)說(shuō)你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來(lái)反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱(chēng)為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒(méi)有相應(yīng)的例題,教材P152習(xí)題分析
問(wèn)題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說(shuō)明該村貧富差距較大.問(wèn)題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問(wèn)題3答案并不唯一,合理即可。
八年級(jí)數(shù)學(xué)教案 篇2
菱形
學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):
1.經(jīng)歷探索菱形的識(shí)別方法的過(guò)程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;
2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.
補(bǔ)充例題:
例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說(shuō)明你的理由.
例2.如圖,平行四邊形ABCD的對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.
四邊形AFCE是菱形嗎?說(shuō)明理由.
例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)
(1)試說(shuō)明四邊形AECG是平行四邊形;
(2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);
(3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.
課后續(xù)助:
一、填空題
1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形
2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),
且DE∥BA,DF∥ CA
(1)要使四邊形AFDE是菱形,則要增加條件______________________
(2)要使四邊形AFDE是矩形,則要增加條件______________________
二、解答題
1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說(shuō)明理由。
2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直嗎?為什么?
(2) 四邊形ABCD是菱形 嗎?
3.如圖,在□ABCD中,已知ADAB,ABC的'平分線交AD于E,EF∥AB交BC于F,試問(wèn): 四 邊形ABFE是菱形嗎?請(qǐng)說(shuō)明理由。
4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ABF≌
、迫魧⒄郫B的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.
八年級(jí)數(shù)學(xué)教案 篇3
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點(diǎn)及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律
教學(xué)重點(diǎn):
1、 一次函數(shù)解析式特點(diǎn)
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點(diǎn):
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。
教學(xué)過(guò)程:
、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境
問(wèn)題1 小明暑假第一次去北京.汽車(chē)駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車(chē)的平均車(chē)速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車(chē)從A地駛出后,距北京的路程和汽車(chē)在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.
分析 我們知道汽車(chē)距北京的路程隨著行車(chē)時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車(chē)在高速公路上行駛時(shí)間為t小時(shí),汽車(chē)距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.
問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢(qián)節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫(xiě)出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.
分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?
、颍畬(dǎo)入新課
上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱(chēng)y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱(chēng)
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);
(2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車(chē)每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).
。5)汽車(chē)以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;
(6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
。7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫(xiě)出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
(6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
(7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時(shí),y的值.
解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).
又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車(chē)以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的.8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫(xiě)出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
、螅S堂練習(xí)
根據(jù)上表寫(xiě)出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫(xiě)出每月用水量不
超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時(shí)小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡(jiǎn)單信息,寫(xiě)出一次函數(shù)的表達(dá)式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時(shí),y=7
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計(jì)算y=-4時(shí)x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.
3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.
5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫(xiě)出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
八年級(jí)數(shù)學(xué)教案 篇4
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
、俅_定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的'方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn),這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類(lèi)型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱(chēng)變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對(duì)稱(chēng)變換的組合;⑹軸對(duì)稱(chēng)變換與平移變換的組合。
八年級(jí)數(shù)學(xué)教案 篇5
一、教學(xué)目標(biāo)
。ㄒ唬、知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
。ǘ⑦^(guò)程與方法:
。1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類(lèi)比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類(lèi)比思想。
。2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
。1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類(lèi)比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2. 看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類(lèi)比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
。3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的.算式填空:
。1)a+b+c= ;
(2)3x2-3x= ;
。3)2-16= ;
。4)a3-a= ;
。5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類(lèi)似的例子嗎?除此之外,你還能找到類(lèi)似的例子嗎?
八年級(jí)數(shù)學(xué)教案 篇6
1、教材分析
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
2、 教法建議
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問(wèn)題讓學(xué)生想,設(shè)計(jì)問(wèn)題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說(shuō),方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人. 具體說(shuō)明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程
學(xué)生前面,學(xué)習(xí)過(guò)線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問(wèn)題:在垂直平分線上任取一點(diǎn)P,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過(guò)程,進(jìn)行投影總結(jié). 最后,由學(xué)生將上述問(wèn)題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的.認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì).
(2)采用“類(lèi)比”的學(xué)習(xí)方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,學(xué)生學(xué)習(xí)一般沒(méi)有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類(lèi)比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系.
(3) 通過(guò)問(wèn)題的解決,讓學(xué)生學(xué)會(huì)從不同角度分析問(wèn)題、解決問(wèn)題;讓學(xué)生學(xué)會(huì)引申、變更問(wèn)題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的創(chuàng)造性能力.
八年級(jí)數(shù)學(xué)教案 篇7
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門(mén)從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
。1)請(qǐng)你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來(lái)探索這個(gè)問(wèn)題。
探索活動(dòng)
通過(guò)計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來(lái)做下列的數(shù)學(xué)活動(dòng)
算一算
把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
方差的簡(jiǎn)便公式:
推導(dǎo):以3個(gè)數(shù)為例
。ǘ(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來(lái)衡量一組數(shù)據(jù)的波動(dòng)大小的重要的.量.
注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
八年級(jí)數(shù)學(xué)教案 篇8
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的.知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過(guò)程是一個(gè)由特殊到一般的認(rèn)識(shí)過(guò)程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來(lái)看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問(wèn)題,那就是符號(hào)問(wèn)題,這方面還有待加強(qiáng)。
教學(xué)目標(biāo)
1、知識(shí)與技能:
掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。
2、過(guò)程與方法:
(1)通過(guò)同底數(shù)冪乘法性質(zhì)的推導(dǎo)過(guò)程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;
。2)通過(guò)性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問(wèn)題的經(jīng)驗(yàn)。
3、情感態(tài)度與價(jià)值觀:
。1)通過(guò)引例問(wèn)題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過(guò)性質(zhì)的推導(dǎo)體會(huì)“特殊。
八年級(jí)數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
教學(xué)重點(diǎn):
算術(shù)平方根的概念。
教學(xué)難點(diǎn):
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過(guò)程
一、情境導(dǎo)入
請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問(wèn)題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫(huà)布,畫(huà)上自己的得意之作參加比賽,這塊正方形畫(huà)布的邊長(zhǎng)應(yīng)取多少 ?如果這塊畫(huà)布的面積是 ?這個(gè)問(wèn)題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問(wèn)題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
二、導(dǎo)入新課:
1、提出問(wèn)題:(書(shū)P68頁(yè)的問(wèn)題)
你是怎樣算出畫(huà)框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開(kāi)方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式 =a (x0)中,規(guī)定x = .
2、 試一試:你能根據(jù)等式: =144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫(xiě)出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫(xiě)出對(duì)應(yīng)的值.例如 表示25的算術(shù)平方根。
4、例1 求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習(xí)
P69練習(xí) 1、2
四、探究:(課本第69頁(yè))
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問(wèn)題:這個(gè)大正方形的`邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習(xí)題13.1活動(dòng)第1、2、3題
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01