精選八年級(jí)數(shù)學(xué)教案合集10篇
作為一名教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么什么樣的教案才是好的呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案10篇,僅供參考,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)教案 篇1
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理.
(二)能力訓(xùn)練點(diǎn)
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力.
(三)德育滲透點(diǎn)
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點(diǎn)
通過學(xué)習(xí),體會(huì)幾何證明的.方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理).
八年級(jí)數(shù)學(xué)教案 篇2
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
(1)請(qǐng)你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來探索這個(gè)問題。
探索活動(dòng)
通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動(dòng)
算一算
把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
。4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
方差的簡(jiǎn)便公式:
推導(dǎo):以3個(gè)數(shù)為例
。ǘ(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來衡量一組數(shù)據(jù)的波動(dòng)大小的`重要的量.
注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
八年級(jí)數(shù)學(xué)教案 篇3
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.
問題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?
二、探究歸納
問題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的'存款方式規(guī)定的年利率:
觀察上表,說說隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說.
(2)波長(zhǎng)l越大,頻率f就 越小 .
問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)教案 篇4
知識(shí)要點(diǎn)
1、函數(shù)的概念:一般地,在某個(gè)變化過程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,
相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過
原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;
(2)、當(dāng)k0時(shí),圖象都經(jīng)過一、三象限;
當(dāng)k0時(shí),圖象都經(jīng)過二、四象限
(3)、當(dāng)k0時(shí),y隨x的增大而增大;
當(dāng)k0時(shí),y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,
與y軸的交點(diǎn)坐標(biāo)是 .
(2)、當(dāng)k0時(shí),y隨x的增大而增大
當(dāng)k0時(shí),y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(diǎn)(0,b)
(5)、影響圖象的兩個(gè)因素是k和b
、賙的正負(fù)決定直線的方向
、赽的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過點(diǎn)(2,-6),求函數(shù)的解析式。
解:把點(diǎn)(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點(diǎn)B(2,7),
求函數(shù)的表達(dá)式。
解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x
(小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x
(小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次
函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .
解:直線 經(jīng)過點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位
后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點(diǎn),則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過點(diǎn)A(-3,5),寫出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3時(shí),求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .
2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).
12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.
13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )
15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的`是( )
18、直線 經(jīng)過點(diǎn) , ,則必有( )
A.
19、如果 , ,則直線 不通過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對(duì)
21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
24、已知 ,那么 的圖象一定不經(jīng)過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.
27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過不同的取值得出結(jié)論?
28、某油庫(kù)有一大型儲(chǔ)油罐,在開始的8分鐘內(nèi),只開進(jìn)油管,不開出油管,油罐的油進(jìn)至24噸(原油罐沒儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.
(1)試分別寫出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,畫出這三個(gè)函數(shù)的圖象.
29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過部分按每度0.50元計(jì)費(fèi).
(1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費(fèi)情況如下:
月份 一月份 二月份 三月份 合計(jì)
交費(fèi)金額 76元 63元 45元6角 184元6角
問小王家第一季度共用電多少度?
30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]
31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)
路程/千米 運(yùn)費(fèi)(元/噸、千米)
甲庫(kù) 乙?guī)?甲庫(kù) 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫(kù)運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
八年級(jí)數(shù)學(xué)教案 篇5
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的.垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點(diǎn)B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級(jí)數(shù)學(xué)教案 篇6
5 14.3.2.2 等邊三角形(二)
教學(xué)目標(biāo)
掌握等邊三角形的性質(zhì)和判定方法.
培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn)
等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn)
等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的.判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
、谧鳌螦DE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大。
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
III課堂小結(jié)
1、等腰三角形和性質(zhì)
2、等腰三角形的條件
V布置作業(yè)
1.教科書第147頁(yè)練習(xí)1、2
2.選做題:
(1)教科書第150頁(yè)習(xí)題14.3第ll題.
(2)已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
(3)《課堂感悟與探究》
5
八年級(jí)數(shù)學(xué)教案 篇7
教學(xué)目標(biāo):
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
教學(xué)重點(diǎn):
算術(shù)平方根的概念。
教學(xué)難點(diǎn):
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過程
一、情境導(dǎo)入
請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長(zhǎng)應(yīng)取多少 ?如果這塊畫布的面積是 ?這個(gè)問題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
二、導(dǎo)入新課:
1、提出問題:(書P68頁(yè)的問題)
你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式 =a (x0)中,規(guī)定x = .
2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如 表示25的'算術(shù)平方根。
4、例1 求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習(xí)
P69練習(xí) 1、2
四、探究:(課本第69頁(yè))
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習(xí)題13.1活動(dòng)第1、2、3題
八年級(jí)數(shù)學(xué)教案 篇8
一、教學(xué)目標(biāo):
1、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題
2、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值
3、會(huì)運(yùn)用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí)
二、重點(diǎn)、難點(diǎn):
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
三、教學(xué)過程:
1、復(fù)習(xí)
組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡(jiǎn)單平均,即組中值=(上限+上限)/2.
因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡(jiǎn)化了計(jì)算量.
為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義.
2、教材P140探究欄目的意圖
①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法.
、凇⒓由盍藢(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).
這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.
3、教材P140的思考的意圖.
、佟⑹箤W(xué)生通過思考這兩個(gè)問題過程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問題.
、、幫助學(xué)生理解表中所表達(dá)出來的`信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.
4、利用計(jì)算器計(jì)算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比.一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢(shì)仍是不允許使用計(jì)算器.所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單.統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了.
5、運(yùn)用樣本估計(jì)總體
要使學(xué)生掌握在哪些情況下需要通過用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí);一是所要考察的對(duì)象很多,二是考察本身帶有破壞性;教材P142例3,這個(gè)例子就屬于考察本身帶有破壞性的情況.
八年級(jí)數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點(diǎn)及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律
教學(xué)重點(diǎn):
1、 一次函數(shù)解析式特點(diǎn)
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點(diǎn):
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
教學(xué)過程:
、瘢岢鰡栴},創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來.他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.
分析 我們?cè)O(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?
、颍畬(dǎo)入新課
上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);
(2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).
。5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;
(6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
。7)一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的`一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
(6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
(7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時(shí),y的值.
解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).
又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫(kù)有一沒儲(chǔ)油的儲(chǔ)油罐,在開始的8分鐘時(shí)間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因?yàn)樵谥淮蜷_進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
、螅S堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時(shí),超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不
超過6米3和超過6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時(shí)小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時(shí),y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計(jì)算y=-4時(shí)x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.
3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.
5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過800元,免交個(gè)人所得稅.超過800元不超過1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
八年級(jí)數(shù)學(xué)教案 篇10
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn)
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn)
簡(jiǎn)潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的'對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識(shí),通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問題2:求1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的打,錯(cuò)的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題.
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
【熱門】八年級(jí)數(shù)學(xué)教案11-29