天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-08-22 13:00:56 八年級(jí)數(shù)學(xué)教案 我要投稿

關(guān)于八年級(jí)數(shù)學(xué)教案8篇

  作為一名為他人授業(yè)解惑的教育工作者,就不得不需要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。寫教案需要注意哪些格式呢?以下是小編整理的八年級(jí)數(shù)學(xué)教案8篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

關(guān)于八年級(jí)數(shù)學(xué)教案8篇

八年級(jí)數(shù)學(xué)教案 篇1

  一、回顧交流,合作學(xué)習(xí)

  【活動(dòng)方略】

  活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.

  【問題探究1】(投影顯示)

  飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

  思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計(jì)算出BC的長(zhǎng).(3000千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).

  學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?

  思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的'逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.

  學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個(gè)零件符合要求.

  【問題探究3】

  甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.

  學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示

八年級(jí)數(shù)學(xué)教案 篇2

  一、教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

  2、能力目標(biāo):

  ①,在實(shí)踐操作過程中,逐步探索圖形之間的平移關(guān)系;

 、,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過對(duì)“基本圖案”的平移,復(fù)制所求的圖形;

  3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。

  二、重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形連續(xù)變化的特點(diǎn);

  難點(diǎn):圖形的劃分。

  三、教學(xué)方法:

  講練結(jié)合。使用多媒體課件輔助教學(xué)。

  四、教具準(zhǔn)備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學(xué)設(shè)計(jì):

  創(chuàng)設(shè)情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個(gè)圖案有什么特點(diǎn)?

  (2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)?指導(dǎo),并對(duì)每種答案都要肯定。

  看磁性黑板,展示教材64頁(yè)圖3-9,提問:左圖是一個(gè)正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰(shuí)到黑板做做看?

  小組討論,派代表到臺(tái)上給大家講解。

  氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補(bǔ)充。

  課堂小結(jié):

  在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。

  課堂練習(xí):

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。

  六、教學(xué)反思:

  本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

八年級(jí)數(shù)學(xué)教案 篇3

  一、知識(shí)與技能

  1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).

  三、情感態(tài)度與價(jià)值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

  2、通過分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.

  教學(xué)重點(diǎn):理解和領(lǐng)會(huì)反比例函數(shù)的概念.

  教學(xué)難點(diǎn):領(lǐng)悟反比例的概念.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  活動(dòng)1

  問題:下列問題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個(gè)面積為1000m2的'矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語(yǔ)言說明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.

  教師組織學(xué)生討論,提問學(xué)生,師生互動(dòng).

  在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

 、倌芊穹e極主動(dòng)地合作交流.

 、谀芊裼谜Z(yǔ)言說明兩個(gè)變量間的關(guān)系.

 、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

 ;(2)

 。唬3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動(dòng)2

  下列問題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

 。1)一個(gè)游泳池的容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

 。3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.

  教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

  (1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;

  (2)能否積極主動(dòng)地參與小組活動(dòng);

  (3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

  ;(2)

 ;(3)

  概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動(dòng)3

  做一做:

  一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否順利抽象反比例函數(shù)的模型;

  ③學(xué)生能否積極主動(dòng)地合作、交流;

  活動(dòng)4

  問題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

  (1)寫出y與x的函數(shù)關(guān)系式:

  (2)求當(dāng)x=4時(shí),y的值.

  師生行為:

  學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

 、賹W(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

  ②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因?yàn)閥是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設(shè)

  ,因?yàn)閤=2時(shí),y=6,所以有

  解得k=12

  因此

 。2)把x=4代入

  ,得

  三、鞏固提高

  活動(dòng)5

  1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8.

 。1)寫出y與x之間的函數(shù)關(guān)系式.

 。2)求y=2時(shí)x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

 。2)根據(jù)函數(shù)表達(dá)式完成上表.

  學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.

  四、課時(shí)小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.

八年級(jí)數(shù)學(xué)教案 篇4

  教學(xué)目的

  1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

  2. 熟識(shí)等邊三角形的性質(zhì)及判定.

  2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。

  教學(xué)重點(diǎn)

  等腰三角形的性質(zhì)及其應(yīng)用。

  教學(xué)難點(diǎn)

  簡(jiǎn)潔的邏輯推理。

  教學(xué)過程

  一、復(fù)習(xí)鞏固

  1.敘述等腰三角形的性質(zhì),它是怎么得到的?

  等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。

  等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

  2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?

  二、新課

  在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

  等邊三角形具有什么性質(zhì)呢?

  1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。

  2.你能否用已知的知識(shí),通過推理得到你的猜想是正確的?

  等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。

  3.上面的條件和結(jié)論如何敘述?

  等邊三角形的各角都相等,并且每一個(gè)角都等于60。

  等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?

  等邊三角形也稱為正三角形。

  例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。

  分析:由AB=AC,D為BC的'中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

  問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?

  問題2:求1是否還有其它方法?

  三、練習(xí)鞏固

  1.判斷下列命題,對(duì)的打,錯(cuò)的打。

  a.等腰三角形的角平分線,中線和高互相重合( )

  b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )

  2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。

  四、小結(jié)

  由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。

  五、作業(yè)

  1.課本P127─7,9

  2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

  EOD的度數(shù)。

  (一)課本P127─1、3、4、8題.

八年級(jí)數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  3.難點(diǎn)的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

  ⑵依題意畫出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

 、纫?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).

  例2(補(bǔ)充)一根30米長(zhǎng)的'細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);

 、圃O(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;

 、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí).

八年級(jí)數(shù)學(xué)教案 篇6

  第一步:情景創(chuàng)設(shè)

  乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):

  A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?

 。1)請(qǐng)你算一算它們的平均數(shù)和極差。

  (2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?

  今天我們一起來探索這個(gè)問題。

  探索活動(dòng)

  通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的'大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動(dòng)

  算一算

  把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。

  想一想

  你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?

  第二步:講授新知:

 。ㄒ唬┓讲

  定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

  來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定

  歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小

  (3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)

 。4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的

  方差的簡(jiǎn)便公式:

  推導(dǎo):以3個(gè)數(shù)為例

 。ǘ(biāo)準(zhǔn)差:

  方差的算術(shù)平方根,即④

  并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來衡量一組數(shù)據(jù)的波動(dòng)大小的重要的量.

  注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

八年級(jí)數(shù)學(xué)教案 篇7

  學(xué)習(xí)目標(biāo)

  1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

  2、由坐標(biāo)的變化探索新舊圖形之間的變化。

  重點(diǎn)

  1、 作某一圖形關(guān)于對(duì)稱軸的對(duì)稱圖形,并能寫出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

  2、 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

  難點(diǎn)

  體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問題

  學(xué)習(xí)過程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

  第一課時(shí)

  學(xué)習(xí)過程:

  一、舊知回顧:

  1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

  2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

  3、各象限點(diǎn)的.坐標(biāo)的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

  例2、(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  四、題組訓(xùn)練

  1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來形成一個(gè)圖案。

  (1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來的2倍呢?

  歸納:圖形坐標(biāo)變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

  第二課時(shí)

  一、舊知回顧:

  1、軸對(duì)稱圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形。

  中心對(duì)稱圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形

  二、新知檢索:

  1、如圖,左邊的魚與右邊的魚關(guān)于y軸對(duì)稱。

  1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

  2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

  3、如果將圖中右邊的魚沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱,那么左邊的魚各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

  2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。

  3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系

  四、題組練習(xí)

  1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

 、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

  3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱圖形,并寫出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

  4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱圖形的簡(jiǎn)圖。

  學(xué)習(xí)筆記

八年級(jí)數(shù)學(xué)教案 篇8

  1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過程如圖)

  3.再次演示平行四邊形的移動(dòng)過程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長(zhǎng)方形)引出本課題及矩形定義.

  矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).

  矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

  【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.

 、匐S著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?

 、诋(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個(gè)角都是直角.

  矩形性質(zhì)2 矩形的對(duì)角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).

  分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有?duì)角線相等且互相平分的`特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對(duì)角線長(zhǎng)AC=BD=2OA=2×4=8(cm).

  例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).

  分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

八年級(jí)數(shù)學(xué)教案【熱門】12-03

【精】八年級(jí)數(shù)學(xué)教案12-04

八年級(jí)數(shù)學(xué)教案【精】12-04

八年級(jí)數(shù)學(xué)教案【薦】12-06

【推薦】八年級(jí)數(shù)學(xué)教案12-05

八年級(jí)數(shù)學(xué)教案【推薦】12-04

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01