關(guān)于八年級(jí)數(shù)學(xué)教案匯編9篇
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,可能需要進(jìn)行教案編寫(xiě)工作,借助教案可以更好地組織教學(xué)活動(dòng)。那要怎么寫(xiě)好教案呢?以下是小編收集整理的八年級(jí)數(shù)學(xué)教案9篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)教案 篇1
單元(章)主題第三章 直棱柱任課教師與班級(jí)
本課(節(jié))課題3.1 認(rèn)識(shí)直棱柱第 1 課時(shí) / 共 課時(shí)
教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及
設(shè)置依據(jù)教學(xué)目標(biāo)
1、了解多面體、直棱柱的有關(guān)概念.
2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):直棱柱的有關(guān)概念.
教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.
教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長(zhǎng)方體、立方體模型
教 學(xué) 過(guò) 程
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)
一、創(chuàng)設(shè)情景,引入新課
師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒(méi)有這樣類(lèi)似的立體圖形呢?
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國(guó)的迪思尼樂(lè)園、德國(guó)的古堡風(fēng)光,中國(guó)北京的`西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點(diǎn)概念:
師:(出示長(zhǎng)方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)?
析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn)
2.合作交流
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語(yǔ)言描
述其特征。)
師:同學(xué)們?cè)儆懻撘幌拢芊癜炎约旱恼Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言。
學(xué)生活動(dòng):分小組討論。
說(shuō)明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請(qǐng)大家找出與長(zhǎng)方體,立方體類(lèi)似的物體或模型。
析:舉出實(shí)例。(找出區(qū)別)
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
長(zhǎng)方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用
出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的創(chuàng)造性思維習(xí)慣)
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高
師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
板書(shū)設(shè)計(jì)
作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)
八年級(jí)數(shù)學(xué)教案 篇2
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會(huì)根據(jù)簡(jiǎn)單的條件畫(huà)出平行四邊形,并說(shuō)明畫(huà)圖的.依據(jù)是哪幾個(gè)定理.
(二)能力訓(xùn)練點(diǎn)
1.通過(guò)“探索式試明法”開(kāi)拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過(guò)教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問(wèn)題,解決問(wèn)題的能力.
(三)德育滲透點(diǎn)
通過(guò)一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點(diǎn)
通過(guò)學(xué)習(xí),體會(huì)幾何證明的方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理).
八年級(jí)數(shù)學(xué)教案 篇3
教材分析
因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的.逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見(jiàn)、解決問(wèn)題的能力。
學(xué)情分析
通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
教學(xué)目標(biāo)
1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。
2、通過(guò)公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。
難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
一、類(lèi)比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.
二、類(lèi)比異分母分?jǐn)?shù)的加減及通分過(guò)程,熟練掌握異分母分式的加減及通分過(guò)程與方法.
數(shù)學(xué)思考
在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問(wèn)題能力.
解決問(wèn)題
一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.
二、會(huì)解決與分式的加減有關(guān)的簡(jiǎn)單實(shí)際問(wèn)題.
三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.
情感態(tài)度
通過(guò)師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使學(xué)生在整體思考中開(kāi)闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).
重點(diǎn)
分式的加減法.
難點(diǎn)
異分母分式的加減法及簡(jiǎn)單的分式混合運(yùn)算.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的.
活動(dòng)1:?jiǎn)栴}引入
活動(dòng)2:學(xué)習(xí)同分母分式的加減
活動(dòng)3:探究異分母分式的加減
活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則
活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)
向?qū)W生提出兩個(gè)實(shí)際問(wèn)題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問(wèn)題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.
類(lèi)比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡(jiǎn)單運(yùn)算.
回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.
通過(guò)以上探究過(guò)程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過(guò)分式在物理學(xué)的應(yīng)用及簡(jiǎn)單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.
通過(guò)練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情境
師生行為
設(shè)計(jì)意圖
。刍顒(dòng)1]
1.問(wèn)題一:比較電腦與手抄的錄入時(shí)間.
2.問(wèn)題二;幫幫小明算算時(shí)間
所需時(shí)間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過(guò)課件展示問(wèn)題.學(xué)生積極動(dòng)腦解決問(wèn)題,提出困惑:
分式如何進(jìn)行加減?
通過(guò)實(shí)際問(wèn)題中要用到分式的加減,從而提出問(wèn)題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.
[活動(dòng)2]
1.提出小學(xué)數(shù)學(xué)中一道簡(jiǎn)單的分?jǐn)?shù)加法題目.
2.用課件引導(dǎo)學(xué)生用類(lèi)比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過(guò)課件出兩個(gè)小練習(xí).
教師提出問(wèn)題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.
學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.
通過(guò)例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).
由兩個(gè)學(xué)生板書(shū)自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).
運(yùn)用類(lèi)比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).
師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過(guò)思考學(xué)會(huì)新知識(shí),提高自信心.
讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.
。刍顒(dòng)3]
1.教師以練習(xí)的形式通過(guò)“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.
教師通過(guò)課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.
由學(xué)生主動(dòng)提出解決問(wèn)題的方法,從而激發(fā)了學(xué)生探究問(wèn)題的興趣.
通過(guò)學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),體會(huì)學(xué)習(xí)的樂(lè)趣.
。刍顒(dòng)4]
。保谡Z(yǔ)言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過(guò)課件出4個(gè)小練習(xí).
4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
。担處熓褂谜n件展示[例4]
教師提出要求,由學(xué)生說(shuō)出分式加減法則的字母表示形式.
通過(guò)例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過(guò)程.
教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡(jiǎn)公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問(wèn)題,由學(xué)生自己完成.
教師引導(dǎo)學(xué)生尋找解決問(wèn)題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.
分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).
由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語(yǔ)言的精練.
讓學(xué)生體會(huì)運(yùn)用的公式解決問(wèn)題的過(guò)程.
鍛煉學(xué)生運(yùn)用法則解決問(wèn)題的能力,既準(zhǔn)確又有速度.
提高學(xué)生的計(jì)算能力.
通過(guò)分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開(kāi)闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.
提高學(xué)生綜合應(yīng)用知識(shí)的能力.
。刍顒(dòng)5]
1.教師通過(guò)課件出2個(gè)分式混合運(yùn)算的小練習(xí).
2.總結(jié):
a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說(shuō)一說(shuō)嗎?
b)⑴方法思路;
c)⑵計(jì)算中的主意事項(xiàng);
d)⑶結(jié)果要化簡(jiǎn).
3.作業(yè):
a)教科書(shū)習(xí)題16.2第4、5、6題.
學(xué)生練習(xí)、鞏固.
教師巡視指導(dǎo).
學(xué)生完成、交流.,師生評(píng)價(jià).
教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.
教師布置作業(yè).
鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.
提高學(xué)生歸納總結(jié)的能力.
八年級(jí)數(shù)學(xué)教案 篇5
課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯(cuò)答: B
正解: C
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯(cuò)解 :B
正解:D
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。
錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。
錯(cuò)解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。
錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的.整數(shù)根。
錯(cuò)解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。
。1)求k的取值范圍;
。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
。2)存在。
如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。
∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫(xiě)出正確答案。
解:上面解法錯(cuò)在如下兩個(gè)方面:
(1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?
解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=
。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。
又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。
【小結(jié)】
以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。
3、條件多面時(shí)(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。
求證:關(guān)于x的方程
。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個(gè)根為1,求m的值。
。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級(jí)數(shù)學(xué)教案 篇6
教材分析
1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
、偻(lèi)項(xiàng)的定義。
、诤喜⑼(lèi)項(xiàng)法則
、鄱囗(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):會(huì)推導(dǎo)完全平方公式
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類(lèi)項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
。4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的`平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
、 (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、探險(xiǎn)之旅
(1)(-3a+2b)2=________________________________
。2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
。4)(3/5a-1/2b) 2=________________________________
。5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
。7)(2xy2-3x2y) 2=_______________________________
。8)(2n3-3m3) 2=________________________________
板書(shū)設(shè)計(jì)
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級(jí)數(shù)學(xué)教案 篇7
學(xué)習(xí)目標(biāo)
1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。
2、由坐標(biāo)的變化探索新舊圖形之間的變化。
重點(diǎn)
1、 作某一圖形關(guān)于對(duì)稱軸的對(duì)稱圖形,并能寫(xiě)出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。
2、 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。
難點(diǎn)
體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問(wèn)題
學(xué)習(xí)過(guò)程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))
第一課時(shí)
學(xué)習(xí)過(guò)程:
一、舊知回顧:
1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。
2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。
3、各象限點(diǎn)的坐標(biāo)的特征:
二、新知檢索:
1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?
(2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?
例2、(1)將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉?lái)的2倍畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?
(2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1/2畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?
四、題組訓(xùn)練
1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來(lái)形成一個(gè)圖案。
(1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來(lái)的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來(lái),所得圖案與原來(lái)圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來(lái)的2倍呢?
歸納:圖形坐標(biāo)變化規(guī)律
1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:
第二課時(shí)
一、舊知回顧:
1、軸對(duì)稱圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形。
中心對(duì)稱圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形
二、新知檢索:
1、如圖,左邊的魚(yú)與右邊的魚(yú)關(guān)于y軸對(duì)稱。
1、左邊的魚(yú)能由右邊的魚(yú)通過(guò)平移、壓縮或拉伸而得到嗎?
2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?
3、如果將圖中右邊的魚(yú)沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱,那么左邊的魚(yú)各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚(yú)是通過(guò)什么樣的變換得到 左圖的魚(yú)的。
2、如果將右邊的魚(yú)的`橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1倍,畫(huà)出圖形,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系。
3、如果將右邊的魚(yú)的縱、橫坐標(biāo)都分別變?yōu)樵瓉?lái)的1倍,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系
四、題組練習(xí)
1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫(xiě)出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。
3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱圖形,并寫(xiě)出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。
4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱圖形的簡(jiǎn)圖。
學(xué)習(xí)筆記
八年級(jí)數(shù)學(xué)教案 篇8
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過(guò)本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過(guò)學(xué)習(xí)乘方和開(kāi)方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過(guò)程
。ㄒ唬┨釂(wèn)
1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?
這些問(wèn)題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問(wèn)題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語(yǔ)言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=—4
學(xué)生思考后,得到結(jié)論此題無(wú)答案。反問(wèn)學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒(méi)有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒(méi)有平方根。
。ㄋ模╅_(kāi)平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見(jiàn)平方運(yùn)算與開(kāi)平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
。ㄎ澹┢椒礁谋硎痉椒
一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開(kāi)方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來(lái)記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫(xiě),所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。
練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的`平方根是
、247的平方根是
、0。2的平方根是
④3的平方根是
、 的平方根是
由學(xué)生說(shuō)出上式的讀法。
例1。下列各數(shù)的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書(shū),鞏固所學(xué)知識(shí)。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書(shū)設(shè)計(jì)
平方根
。ㄒ唬└拍 (四)表示方法 例1
(二)性質(zhì)
。ㄈ╅_(kāi)平方
探究活動(dòng)
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級(jí)數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過(guò)程,在活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣;
2。索并掌握平行四邊形的性質(zhì),并能簡(jiǎn)單應(yīng)用;
3。在探索活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):平行四邊形性質(zhì)的探索。
教學(xué)難點(diǎn):平行四邊形性質(zhì)的理解。
教學(xué)準(zhǔn)備:多媒體課件
教學(xué)過(guò)程
第一環(huán)節(jié):實(shí)踐探索,直觀感知(5分鐘,動(dòng)手實(shí)踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)
1。小組活動(dòng)一
內(nèi)容:
問(wèn)題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對(duì)折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個(gè)四邊形。
。1)你拼出了怎樣的四邊形?與同桌交流一下;
(2)給出小明拼出的四邊形,它們的對(duì)邊有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由,請(qǐng)用簡(jiǎn)捷的'語(yǔ)言刻畫(huà)這個(gè)圖形的特征。
2。小組活動(dòng)二
內(nèi)容:生活中常見(jiàn)到平行四邊形的實(shí)例有什么呢?你能舉例說(shuō)明嗎?
第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動(dòng)手、動(dòng)嘴,全班交流)
小組活動(dòng)3:
用 一張半透明的紙復(fù)制你剛才畫(huà)的平行四邊形,并將復(fù)制 后的四邊形繞一個(gè)頂點(diǎn)旋轉(zhuǎn)180,你能平移該紙片,使它與你畫(huà)的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對(duì)邊、對(duì)角分別有什么關(guān)系?能用別的方法驗(yàn)證你的結(jié)論嗎?
。1)讓學(xué)生動(dòng)手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;
。2)學(xué)生交流、議論;
(3)教師利用多媒體展示實(shí)踐的過(guò)程。
第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過(guò)說(shuō)理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)
實(shí)踐 探索內(nèi)容
。1)通過(guò)剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對(duì)角線把它分成的兩個(gè)三角形全等。
。2)可以通過(guò)推理來(lái)證明這個(gè)結(jié)論,如圖連結(jié)AC。
∵ 四邊形ABCD是平行四邊形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過(guò)議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡(jiǎn)單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時(shí)從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識(shí)平行四邊形的本質(zhì)特征。)
1;顒(dòng)內(nèi)容:
。1)議一議:如果已知平行四邊形的一個(gè)內(nèi)角度數(shù),能確定其它三個(gè)內(nèi)角的度數(shù)嗎?
A(學(xué)生思考、議論)
B總結(jié)歸納:可以確定其它三個(gè)內(nèi)角的度數(shù)。
由平行四邊形對(duì) 邊分邊平行 得到鄰角互補(bǔ);又由于平行四邊形對(duì)角相等,由此已知平行四邊形的一個(gè)內(nèi)角的度數(shù),可以確定其它三個(gè)角度數(shù)。
。2)練一練(P99隨堂練習(xí))
練1 如圖:四邊形ABCD是平行四邊形。
(1)求ADC、BCD度數(shù)
。2)邊AB、BC的度數(shù)、長(zhǎng)度。
練2 四邊形ABCD是平行四邊形
。1)它的四條邊中哪些 線段可以通過(guò)平移相到得到?
。2)設(shè)對(duì)角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說(shuō)說(shuō)理由。
歸 納:平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分。
第五環(huán)節(jié) 評(píng)價(jià)反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)
活動(dòng)內(nèi)容
師生相互交流、反思、總結(jié)。
。1)經(jīng)歷了對(duì)平行四邊形的特征探索,你有什么感受和收獲?給自己一個(gè)評(píng)價(jià)。
。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點(diǎn)?
。3)本節(jié)學(xué)習(xí)到了什么?(知識(shí)上、方法上)
考一考:
1。 ABCD中,B=60,則A= ,C= ,D= 。
2。 ABCD中,A比B大20,則C= 。
3。 ABCD中,AB=3,BC=5,則AD= CD= 。
4。 ABCD中,周長(zhǎng)為40cm,△ABC周長(zhǎng)為25,則對(duì)角線AC=( )cm。
布置作業(yè)
課本習(xí)題4。1
A組(學(xué)優(yōu)生)1 、2
B組(中等生)1、2
C組(后三分之一生)1、2
教學(xué)反思
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)數(shù)學(xué)教案【熱門(mén)】12-03
【推薦】八年級(jí)數(shù)學(xué)教案12-05