天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-08-23 04:08:40 八年級(jí)數(shù)學(xué)教案 我要投稿

有關(guān)八年級(jí)數(shù)學(xué)教案范文錦集九篇

  作為一名為他人授業(yè)解惑的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。來參考自己需要的教案吧!下面是小編幫大家整理的八年級(jí)數(shù)學(xué)教案9篇,歡迎大家分享。

有關(guān)八年級(jí)數(shù)學(xué)教案范文錦集九篇

八年級(jí)數(shù)學(xué)教案 篇1

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)技能

  一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.

  二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

  數(shù)學(xué)思考

  在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.

  解決問題

  一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.

  二、會(huì)解決與分式的加減有關(guān)的簡(jiǎn)單實(shí)際問題.

  三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.

  情感態(tài)度

  通過師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).

  重點(diǎn)

  分式的加減法.

  難點(diǎn)

  異分母分式的加減法及簡(jiǎn)單的分式混合運(yùn)算.

  教學(xué)流程安排

  活動(dòng)流程圖

  活動(dòng)內(nèi)容和目的

  活動(dòng)1:?jiǎn)栴}引入

  活動(dòng)2:學(xué)習(xí)同分母分式的加減

  活動(dòng)3:探究異分母分式的加減

  活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則

  活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)

  向?qū)W生提出兩個(gè)實(shí)際問題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.

  類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡(jiǎn)單運(yùn)算.

  回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.

  通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過分式在物理學(xué)的應(yīng)用及簡(jiǎn)單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.

  通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.

  課前準(zhǔn)備

  教具

  學(xué)具

  補(bǔ)充材料

  課件

  教學(xué)過程設(shè)計(jì)

  問題與情境

  師生行為

  設(shè)計(jì)意圖

 。刍顒(dòng)1]

  1.問題一:比較電腦與手抄的錄入時(shí)間.

  2.問題二;幫幫小明算算時(shí)間

  所需時(shí)間為,

  如何求出的值?

  3.這里用到了分式的加減,提出本節(jié)課的主題.

  教師通過課件展示問題.學(xué)生積極動(dòng)腦解決問題,提出困惑:

  分式如何進(jìn)行加減?

  通過實(shí)際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.

 。刍顒(dòng)2]

  1.提出小學(xué)數(shù)學(xué)中一道簡(jiǎn)單的分?jǐn)?shù)加法題目.

  2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.

  3.教師使用課件展示[例1]

  4.教師通過課件出兩個(gè)小練習(xí).

  教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.

  學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.

  通過例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).

  由兩個(gè)學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).

  運(yùn)用類比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).

  師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會(huì)新知識(shí),提高自信心.

  讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.

 。刍顒(dòng)3]

  1.教師以練習(xí)的形式通過“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.

  2.教師提出思考題:

  異分母的分式加減法要遵守什么法則呢?

  教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.

  教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的'加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.

  由學(xué)生主動(dòng)提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.

  通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會(huì)學(xué)習(xí)的樂趣.

 。刍顒(dòng)4]

 。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.

  2.教師使用課件展示[例2]

  3.教師通過課件出4個(gè)小練習(xí).

  4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;

  試用含有R1的式子表示總電阻R

 。担處熓褂谜n件展示[例4]

  教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.

  通過例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過程.

  教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡(jiǎn)公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.

  教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.

  分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).

  由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語言的精練.

  讓學(xué)生體會(huì)運(yùn)用的公式解決問題的過程.

  鍛煉學(xué)生運(yùn)用法則解決問題的能力,既準(zhǔn)確又有速度.

  提高學(xué)生的計(jì)算能力.

  通過分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.

  提高學(xué)生綜合應(yīng)用知識(shí)的能力.

 。刍顒(dòng)5]

  1.教師通過課件出2個(gè)分式混合運(yùn)算的小練習(xí).

  2.總結(jié):

  a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說一說嗎?

  b)⑴方法思路;

  c)⑵計(jì)算中的主意事項(xiàng);

  d)⑶結(jié)果要化簡(jiǎn).

  3.作業(yè):

  a)教科書習(xí)題16.2第4、5、6題.

  學(xué)生練習(xí)、鞏固.

  教師巡視指導(dǎo).

  學(xué)生完成、交流.,師生評(píng)價(jià).

  教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.

  教師布置作業(yè).

  鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.

  提高學(xué)生歸納總結(jié)的能力.

八年級(jí)數(shù)學(xué)教案 篇2

  教材分析

  本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。

  學(xué)情分析

  本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的`知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過程是一個(gè)由特殊到一般的認(rèn)識(shí)過程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。

  從學(xué)生做練習(xí)和作業(yè)來看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問題,那就是符號(hào)問題,這方面還有待加強(qiáng)。

  教學(xué)目標(biāo)

  1、知識(shí)與技能:

  掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。

  2、過程與方法:

 。1)通過同底數(shù)冪乘法性質(zhì)的推導(dǎo)過程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;

 。2)通過性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問題的經(jīng)驗(yàn)。

  3、情感態(tài)度與價(jià)值觀:

  (1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;

 。2)通過性質(zhì)的推導(dǎo)體會(huì)“特殊。

八年級(jí)數(shù)學(xué)教案 篇3

  一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

  1.平移

  2.平移的性質(zhì):⑴經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

  3.簡(jiǎn)單的平移作圖

 、俅_定個(gè)圖形平移后的位置的條件:

  ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。

 、谧髌揭坪蟮膱D形的方法:

 、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來方式順次連接,所得的;

  二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。

  1.旋轉(zhuǎn)

  2.旋轉(zhuǎn)的性質(zhì)

 、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的`大小,形狀都不改變(只改變圖形的位置)。

  ⑵旋轉(zhuǎn)過程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。

 、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

 、刃D(zhuǎn)前后的兩個(gè)圖形全等。

  3.簡(jiǎn)單的旋轉(zhuǎn)作圖

 、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。

  ⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

  ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

  三、分析組合圖案的形成

  ①確定組合圖案中的“基本圖案”

 、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

 、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

  ⑸旋轉(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。

八年級(jí)數(shù)學(xué)教案 篇4

  學(xué)習(xí)目標(biāo)

  1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

  2、由坐標(biāo)的變化探索新舊圖形之間的變化。

  重點(diǎn)

  1、 作某一圖形關(guān)于對(duì)稱軸的對(duì)稱圖形,并能寫出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

  2、 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

  難點(diǎn)

  體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問題

  學(xué)習(xí)過程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

  第一課時(shí)

  學(xué)習(xí)過程:

  一、舊知回顧:

  1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

  2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

  3、各象限點(diǎn)的坐標(biāo)的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

  例2、(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  四、題組訓(xùn)練

  1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來形成一個(gè)圖案。

  (1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來的2倍呢?

  歸納:圖形坐標(biāo)變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

  第二課時(shí)

  一、舊知回顧:

  1、軸對(duì)稱圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形。

  中心對(duì)稱圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形

  二、新知檢索:

  1、如圖,左邊的魚與右邊的魚關(guān)于y軸對(duì)稱。

  1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

  2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

  3、如果將圖中右邊的魚沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱,那么左邊的魚各個(gè)頂點(diǎn)的'坐標(biāo)將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

  2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。

  3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系

  四、題組練習(xí)

  1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

 、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

  3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱圖形,并寫出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

  4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱圖形的簡(jiǎn)圖。

  學(xué)習(xí)筆記

八年級(jí)數(shù)學(xué)教案 篇5

  教學(xué)目標(biāo):

  1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣;

  2。索并掌握平行四邊形的性質(zhì),并能簡(jiǎn)單應(yīng)用;

  3。在探索活動(dòng)過程中發(fā)展學(xué)生的探究意識(shí)。

  教學(xué)重點(diǎn):平行四邊形性質(zhì)的探索。

  教學(xué)難點(diǎn):平行四邊形性質(zhì)的理解。

  教學(xué)準(zhǔn)備:多媒體課件

  教學(xué)過程

  第一環(huán)節(jié):實(shí)踐探索,直觀感知(5分鐘,動(dòng)手實(shí)踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

  1。小組活動(dòng)一

  內(nèi)容:

  問題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對(duì)折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個(gè)四邊形。

 。1)你拼出了怎樣的四邊形?與同桌交流一下;

 。2)給出小明拼出的四邊形,它們的對(duì)邊有怎樣的位置關(guān)系?說說你的理由,請(qǐng)用簡(jiǎn)捷的語言刻畫這個(gè)圖形的特征。

  2。小組活動(dòng)二

  內(nèi)容:生活中常見到平行四邊形的實(shí)例有什么呢?你能舉例說明嗎?

  第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動(dòng)手、動(dòng)嘴,全班交流)

  小組活動(dòng)3:

  用 一張半透明的紙復(fù)制你剛才畫的.平行四邊形,并將復(fù)制 后的四邊形繞一個(gè)頂點(diǎn)旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對(duì)邊、對(duì)角分別有什么關(guān)系?能用別的方法驗(yàn)證你的結(jié)論嗎?

 。1)讓學(xué)生動(dòng)手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

 。2)學(xué)生交流、議論;

 。3)教師利用多媒體展示實(shí)踐的過程。

  第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

  實(shí)踐 探索內(nèi)容

 。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對(duì)角線把它分成的兩個(gè)三角形全等。

  (2)可以通過推理來證明這個(gè)結(jié)論,如圖連結(jié)AC。

  ∵ 四邊形ABCD是平行四邊形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡(jiǎn)單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時(shí)從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識(shí)平行四邊形的本質(zhì)特征。)

  1;顒(dòng)內(nèi)容:

  (1)議一議:如果已知平行四邊形的一個(gè)內(nèi)角度數(shù),能確定其它三個(gè)內(nèi)角的度數(shù)嗎?

  A(學(xué)生思考、議論)

  B總結(jié)歸納:可以確定其它三個(gè)內(nèi)角的度數(shù)。

  由平行四邊形對(duì) 邊分邊平行 得到鄰角互補(bǔ);又由于平行四邊形對(duì)角相等,由此已知平行四邊形的一個(gè)內(nèi)角的度數(shù),可以確定其它三個(gè)角度數(shù)。

 。2)練一練(P99隨堂練習(xí))

  練1 如圖:四邊形ABCD是平行四邊形。

  (1)求ADC、BCD度數(shù)

 。2)邊AB、BC的度數(shù)、長(zhǎng)度。

  練2 四邊形ABCD是平行四邊形

 。1)它的四條邊中哪些 線段可以通過平移相到得到?

 。2)設(shè)對(duì)角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

  歸 納:平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分。

  第五環(huán)節(jié) 評(píng)價(jià)反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

  活動(dòng)內(nèi)容

  師生相互交流、反思、總結(jié)。

 。1)經(jīng)歷了對(duì)平行四邊形的特征探索,你有什么感受和收獲?給自己一個(gè)評(píng)價(jià)。

 。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點(diǎn)?

  (3)本節(jié)學(xué)習(xí)到了什么?(知識(shí)上、方法上)

  考一考:

  1。 ABCD中,B=60,則A= ,C= ,D= 。

  2。 ABCD中,A比B大20,則C= 。

  3。 ABCD中,AB=3,BC=5,則AD= CD= 。

  4。 ABCD中,周長(zhǎng)為40cm,△ABC周長(zhǎng)為25,則對(duì)角線AC=( )cm。

  布置作業(yè)

  課本習(xí)題4。1

  A組(學(xué)優(yōu)生)1 、2

  B組(中等生)1、2

  C組(后三分之一生)1、2

  教學(xué)反思

八年級(jí)數(shù)學(xué)教案 篇6

  一、回顧交流,合作學(xué)習(xí)

  【活動(dòng)方略】

  活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.

  【問題探究1】(投影顯示)

  飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

  思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的'路程,也就是圖中的BC長(zhǎng),在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計(jì)算出BC的長(zhǎng).(3000千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).

  學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?

  思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.

  學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個(gè)零件符合要求.

  【問題探究3】

  甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.

  學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示

八年級(jí)數(shù)學(xué)教案 篇7

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1.經(jīng)歷探索菱形的識(shí)別方法的過程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

  2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

  補(bǔ)充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

  例2.如圖,平行四邊形ABCD的對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

  (1)試說明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的`關(guān)系時(shí),四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

  2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請(qǐng)說明理由。

  4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

 、徘笞C:ABF≌

 、迫魧⒄郫B的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級(jí)數(shù)學(xué)教案 篇8

  教學(xué)建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

  推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點(diǎn)分析

  本節(jié)的重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

  本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺,往往會(huì)有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:

 、購纳顚(shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;

 、诳捎脝栴}式引入,開始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

  教學(xué)設(shè)計(jì)示例

  一、教學(xué)目標(biāo)

  1、使學(xué)生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

  3、通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的能力。

  4、通過本節(jié)學(xué)習(xí),體會(huì)圖形語言和符號(hào)語言的和諧美

  二、教法設(shè)計(jì)

  學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

  三、重點(diǎn)、難點(diǎn)

  1、教學(xué)重點(diǎn):平行線等分線段定理

  2、教學(xué)難點(diǎn):平行線等分線段定理

  四、課時(shí)安排

  l課時(shí)

  五、教具學(xué)具

  計(jì)算機(jī)、投影儀、膠片、常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

  七、教學(xué)步驟

  【復(fù)習(xí)提問】

  1、什么叫平行線?平行線有什么性質(zhì)。

  2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

  【引入新課】

  由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的`),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。

  下面我們以三條平行線為例來證明這個(gè)定理(由學(xué)生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

 。ㄒ龑(dǎo)學(xué)生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 。

  證明:過 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。

  引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

  再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

  接下來講如何利用平行線等分線段定理來任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點(diǎn)。

  作法:①作射線 。

 、谠谏渚 上以任意長(zhǎng)順次截取 。

 、圻B結(jié) 。

  ④過點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。

  、 、 、 就是所求的五等分點(diǎn)。

 。ㄕf明略,由學(xué)生口述即可)

  【總結(jié)、擴(kuò)展】

  小結(jié):

 。╨)平行線等分線段定理及推論。

 。2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。

  (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

 。4)應(yīng)用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書設(shè)計(jì)

  十、隨堂練習(xí)

  教材P182中1、2

八年級(jí)數(shù)學(xué)教案 篇9

  教學(xué)目的

  1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

  2. 熟識(shí)等邊三角形的性質(zhì)及判定.

  2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。

  教學(xué)重點(diǎn)

  等腰三角形的性質(zhì)及其應(yīng)用。

  教學(xué)難點(diǎn)

  簡(jiǎn)潔的邏輯推理。

  教學(xué)過程

  一、復(fù)習(xí)鞏固

  1.敘述等腰三角形的性質(zhì),它是怎么得到的?

  等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。

  等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

  2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?

  二、新課

  在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的.三角形叫做等邊三角形。

  等邊三角形具有什么性質(zhì)呢?

  1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。

  2.你能否用已知的知識(shí),通過推理得到你的猜想是正確的?

  等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。

  3.上面的條件和結(jié)論如何敘述?

  等邊三角形的各角都相等,并且每一個(gè)角都等于60。

  等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?

  等邊三角形也稱為正三角形。

  例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。

  分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

  問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?

  問題2:求1是否還有其它方法?

  三、練習(xí)鞏固

  1.判斷下列命題,對(duì)的打,錯(cuò)的打。

  a.等腰三角形的角平分線,中線和高互相重合( )

  b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )

  2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。

  四、小結(jié)

  由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。

  五、作業(yè)

  1.課本P127─7,9

  2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

  EOD的度數(shù)。

  (一)課本P127─1、3、4、8題.

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

初中八年級(jí)數(shù)學(xué)教案11-03

八年級(jí)的數(shù)學(xué)教案15篇12-14

【熱門】八年級(jí)數(shù)學(xué)教案11-29

八年級(jí)數(shù)學(xué)教案【熱】11-29

八年級(jí)數(shù)學(xué)教案【薦】12-06

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

人教版八年級(jí)數(shù)學(xué)教案11-04