有關(guān)八年級(jí)數(shù)學(xué)教案模板匯總九篇
作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。如何把教案做到重點(diǎn)突出呢?以下是小編收集整理的八年級(jí)數(shù)學(xué)教案9篇,僅供參考,大家一起來(lái)看看吧。
八年級(jí)數(shù)學(xué)教案 篇1
課時(shí)目標(biāo)
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識(shí)別方法。
教學(xué)重點(diǎn)
正確理解分式的意義,分式是否有意義的.條件及分式的值為零的條件。
教學(xué)難點(diǎn):
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)時(shí)間:一課時(shí)。
教學(xué)用具:投影儀等。
教學(xué)過(guò)程:
一.復(fù)習(xí)提問(wèn)
1.什么是整式?什么是單項(xiàng)式?什么是多項(xiàng)式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
①+m2 ②1+x+y2- ③ ④
、 ⑥ ⑦
二.新課講解:
設(shè)問(wèn):不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習(xí):下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
強(qiáng)調(diào):(6)+4帶有是無(wú)理式,不是整式,故不是分式。
2.小結(jié):對(duì)整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習(xí):課后練習(xí)P6練習(xí)1、2題
設(shè)問(wèn):(讓學(xué)生看課本上P5“思考”部分,然后回答問(wèn)題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
(板書解題過(guò)程。)
3.小結(jié):分式是否有意義的識(shí)別方法:當(dāng)分式的分母為零時(shí),分式無(wú)意義;當(dāng)分式的分母不等于零時(shí),分式有意義。
增加例題:當(dāng)x取什么值時(shí),分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當(dāng)x≠±2時(shí),分式有意義。
設(shè)問(wèn):什么時(shí)候分式的值為零呢?
例:
解:當(dāng) ① 分式的值為零
八年級(jí)數(shù)學(xué)教案 篇2
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識(shí)與技能
1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過(guò)找點(diǎn)、連線、觀察,確定圖形的大致形狀的問(wèn)題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過(guò)程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過(guò)程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過(guò)由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過(guò)程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。
情感態(tài)度與價(jià)值觀
通過(guò)生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過(guò)程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的`坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過(guò)來(lái),已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來(lái)。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來(lái)。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對(duì)的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來(lái)。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過(guò)找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級(jí)數(shù)學(xué)教案 篇3
知識(shí)技能
1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。
2.探究線段垂直平分線的性質(zhì)。
過(guò)程方法
1.經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過(guò)程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。
2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。
情感態(tài)度價(jià)值觀通過(guò)對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的過(guò)程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的'主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問(wèn)題的能力。
教學(xué)重點(diǎn)
1.軸對(duì)稱的性質(zhì)。
2.線段垂直平分線的性質(zhì)。
教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。
教學(xué)方法和手段多媒體教學(xué)
過(guò)程教學(xué)內(nèi)容
引入中垂線概念
引出圖形對(duì)稱的性質(zhì)第一張幻燈片
上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來(lái)研究軸對(duì)稱的性質(zhì)。
幻燈片二
1、圖中的對(duì)稱點(diǎn)有哪些?
2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?
理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過(guò)線段AA、BB和CC的中點(diǎn)。
我們把經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經(jīng)過(guò)線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
八年級(jí)數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過(guò)本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過(guò)學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過(guò)程
。ㄒ唬┨釂(wèn)
1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?
這些問(wèn)題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的'值,如何解決這些問(wèn)題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語(yǔ)言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無(wú)答案。反問(wèn)學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒(méi)有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒(méi)有平方根。
。ㄋ模╅_平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運(yùn)算與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
。ㄎ澹┢椒礁谋硎痉椒
一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來(lái)記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。
練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
③0。2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說(shuō)出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識(shí)。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計(jì)
平方根
(一)概念 (四)表示方法 例1
。ǘ┬再|(zhì)
(三)開平方
探究活動(dòng)
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級(jí)數(shù)學(xué)教案 篇5
一、教學(xué)目的
1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.
難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?
3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:
新課
1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).
(2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的.幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖.
練習(xí)
①選用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習(xí)題.
四、教學(xué)注意問(wèn)題
1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性.
3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.
八年級(jí)數(shù)學(xué)教案 篇6
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問(wèn)題能力和計(jì)算能力.
解決問(wèn)題
通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過(guò)程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
等腰梯形的性質(zhì)及其應(yīng)用.
難點(diǎn)
解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)的內(nèi)容和目的
活動(dòng)1想一想
活動(dòng)2說(shuō)一說(shuō)
活動(dòng)3畫一畫
活動(dòng)4做—做
活動(dòng)5練一練
活動(dòng)6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過(guò)畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過(guò)解決具體問(wèn)題,尋找解決梯形問(wèn)題的方法.
通過(guò)整理回顧,鞏固知識(shí)、提高能力、滲透思想.
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.
由現(xiàn)實(shí)中實(shí)際問(wèn)題入手,設(shè)置問(wèn)題情境,引出本課主題.通過(guò)學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.
[活動(dòng)2]
梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過(guò)類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
一些基本概念
。1)(如圖):底、腰、高.
(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
。3)直角梯形:有一個(gè)角是直角的`梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;
②上、下底的概念是由底的長(zhǎng)短來(lái)定義的,而并不是指位置來(lái)說(shuō)的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動(dòng)3]
畫一畫
在下列所給圖中的每個(gè)三角形中畫一條線段,
。1)怎樣畫才能得到一個(gè)梯形?
。2)在哪些三角形中,能夠得到一個(gè)等腰梯形?
在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動(dòng),指導(dǎo)、傾聽學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:
(1)學(xué)生在活動(dòng)過(guò)程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
(3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見解,傾聽他人的意見,對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來(lái)研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開展探究奠定了基礎(chǔ).
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問(wèn)題的思想).
在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.
。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過(guò)觀察猜想;
(2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過(guò)程,觀察圖形,思考教師提出的問(wèn)題,猜想、驗(yàn)證、歸納結(jié)論.
針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).
師生共同歸納:
、俚妊菪问禽S對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.
、诘妊菪蝺裳嗟龋
、鄣妊菪瓮坏咨系膬蓚(gè)角相等.
、艿妊菪蔚膬蓷l對(duì)角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.
[活動(dòng)5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長(zhǎng).
師生共同分析,尋找解決問(wèn)題的方法和策略.
例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽,同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).
分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問(wèn)題.
其方法是:平移一腰,過(guò)點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過(guò)題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問(wèn)題的基本思想和方法就是通過(guò)添加適當(dāng)?shù)妮o助線,把梯形問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問(wèn)題來(lái)解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過(guò)點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見識(shí).
[活動(dòng)6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.
。2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
。3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問(wèn)題常用的方法:
。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);
(2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);
(3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);
。4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);
。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過(guò)程.
梳理本節(jié)課應(yīng)用過(guò)的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過(guò)獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問(wèn)題,及時(shí)查漏補(bǔ)缺.
八年級(jí)數(shù)學(xué)教案 篇7
一、教學(xué)目標(biāo)
。ㄒ唬、知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
。ǘ、過(guò)程與方法:
。1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
。2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
。1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的'平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2. 看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
。3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
。1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級(jí)數(shù)學(xué)教案 篇8
教學(xué)目標(biāo)
一、教學(xué)知識(shí)點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過(guò)具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價(jià)值觀要求
1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫圖等過(guò)程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).
2.通過(guò)學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問(wèn)題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過(guò)程:
一.巧設(shè)情景問(wèn)題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車方向盤的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動(dòng)呢?
1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.
2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).
3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,它的形狀、大小沒(méi)有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動(dòng)過(guò)程中,同樣它的形狀、大小沒(méi)有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來(lái)探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁(yè))答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長(zhǎng)短、形狀沒(méi)有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過(guò)程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長(zhǎng)度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過(guò)旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的.角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
[例1](課本68頁(yè)例1)
。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過(guò)的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁(yè))
書上68頁(yè)做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時(shí)小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動(dòng)與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過(guò)程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過(guò)剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的?
過(guò)程:同樣讓學(xué)生在畫圖過(guò)程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的.
整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計(jì):略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級(jí)數(shù)學(xué)教案 篇9
1、教材分析
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
2、 教法建議
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問(wèn)題讓學(xué)生想,設(shè)計(jì)問(wèn)題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說(shuō),方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人. 具體說(shuō)明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程
學(xué)生前面,學(xué)習(xí)過(guò)線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問(wèn)題:在垂直平分線上任取一點(diǎn)P,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過(guò)程,進(jìn)行投影總結(jié). 最后,由學(xué)生將上述問(wèn)題,用文字的.形式進(jìn)行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì).
(2)采用“類比”的學(xué)習(xí)方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,學(xué)生學(xué)習(xí)一般沒(méi)有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系.
(3) 通過(guò)問(wèn)題的解決,讓學(xué)生學(xué)會(huì)從不同角度分析問(wèn)題、解決問(wèn)題;讓學(xué)生學(xué)會(huì)引申、變更問(wèn)題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的創(chuàng)造性能力.
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)的數(shù)學(xué)教案15篇12-14
【熱門】八年級(jí)數(shù)學(xué)教案11-29