關(guān)于八年級(jí)數(shù)學(xué)教案范文集合6篇
作為一位不辭辛勞的人民教師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。寫教案需要注意哪些格式呢?下面是小編收集整理的八年級(jí)數(shù)學(xué)教案6篇,歡迎閱讀與收藏。
八年級(jí)數(shù)學(xué)教案 篇1
活動(dòng)一、創(chuàng)設(shè)情境
引入:首先我們來(lái)看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線及三角形全等的知識(shí))
下面我們一起來(lái)欣賞一組圖片(幻燈片)
[學(xué)生活動(dòng)]觀看后答問(wèn)題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請(qǐng)你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)
[學(xué)生活動(dòng)]小組合作交流,拼出圖案的類型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過(guò)的三角形,還有很多四邊形,今天,我們一起來(lái)研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動(dòng)二、合作交流,探求新知
問(wèn)題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動(dòng)]認(rèn)真觀察、討論、思考、推理。
鼓勵(lì)學(xué)生交流,并是試著用自己的語(yǔ)言概括出平行四邊形的定義。
學(xué)生交流,歸納:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
并說(shuō)明:平行四邊形不相鄰的`兩個(gè)頂點(diǎn)連成的線段叫它的對(duì)角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問(wèn)題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對(duì)邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動(dòng)]動(dòng)手操作,小組演示交流。鼓勵(lì)學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對(duì)邊相等
平行四邊形的對(duì)角相等(這里要弄清對(duì)角、對(duì)邊兩個(gè)名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動(dòng)]先分析思路尤其是輔助線,請(qǐng)學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動(dòng)三、運(yùn)用新知
性質(zhì)掌握了嗎?一起來(lái)看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動(dòng)]作嘗試性解答。
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)指導(dǎo)思想與理論依據(jù)
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過(guò)程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。” 教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來(lái),可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺(jué)化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過(guò)程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過(guò)程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
教學(xué)內(nèi)容分析:
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過(guò)《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
學(xué)生情況分析:
本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂(lè)于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過(guò)程。
教學(xué)方式與教學(xué)手段說(shuō)明:
本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過(guò)程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過(guò)人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來(lái)。在此過(guò)程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺(jué)主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。
知識(shí)與技能:
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
過(guò)程與方法:
1、了解特殊四邊形性質(zhì)的形成過(guò)程;
2、初步了解探究新知識(shí)的一些方法;
情感與價(jià)值觀:
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;
3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室
教學(xué)課型:
試驗(yàn)探究式
教學(xué)重點(diǎn):
特殊四邊形性質(zhì)
教學(xué)難點(diǎn):
特殊四邊形性質(zhì)的發(fā)現(xiàn)
一、設(shè)置情景,提出問(wèn)題
提出問(wèn)題:
知識(shí)已生活,又服務(wù)于生活。我們經(jīng)過(guò)校門時(shí),是否注意到電動(dòng)門的機(jī)械工作原理(教師用幾何畫板演示)?
1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
2、在開(關(guān))門過(guò)程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問(wèn)題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問(wèn)題就容易解決了。
。ㄒ鈭D:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問(wèn)題的求知欲望。)
二、整體了解,形成系統(tǒng)
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問(wèn)題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒(méi)有,為什么?
解決問(wèn)題:
學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形
2、從邊、角、對(duì)角線、面積、周長(zhǎng)、……等方面研究。本節(jié)課主要從邊、角、對(duì)角線三方面考慮;
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒(méi)有圖形。
。ㄒ鈭D: 學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過(guò)假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))
三、個(gè)體研究、總結(jié)性質(zhì)
1、平行四邊形性質(zhì)
提出問(wèn)題:
在平行四邊形的形狀、位置、大小變化過(guò)程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。
解決問(wèn)題:
教師引導(dǎo)學(xué)生拖動(dòng)B點(diǎn)(學(xué)生操作電腦),改變平行四邊形的.形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。
在圖形變化過(guò)程中,
。1)對(duì)邊相等;
(2)對(duì)角相等;
。3)通過(guò)AO=CO 、BO=DO,可得對(duì)角線互相平分;
。4)通過(guò)鄰角互補(bǔ),可得對(duì)邊平行;
。5)內(nèi)外角和都等于360度;
。6)鄰角互補(bǔ);
……
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)
菱形性質(zhì)
梯形性質(zhì)等腰梯形性質(zhì)
直角梯形性質(zhì)
。葘儆谄叫兴倪呅涡再|(zhì)又屬于矩形性質(zhì)可以畫箭頭)
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖: 學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂(lè)趣。)
教師總結(jié):
。ㄒ鈭D: 掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)
四、聯(lián)系生活,解決問(wèn)題
解決問(wèn)題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。
學(xué)生在分別演示開(關(guān))門過(guò)程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒(méi)有這個(gè)特點(diǎn)……
。ㄒ鈭D:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力,體會(huì)成功后的喜悅。)
五、小結(jié)
1.研究問(wèn)題從整體到局部的方法;
2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)
1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實(shí)際生活中的電動(dòng)門,在開(關(guān))門過(guò)程中特殊四邊形的變化。
學(xué)習(xí)效果評(píng)價(jià)
針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過(guò)學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問(wèn)題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過(guò)程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
學(xué)生演示開(關(guān))門過(guò)程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識(shí)解釋實(shí)際問(wèn)題,使自身價(jià)值得以實(shí)現(xiàn)并體會(huì)成功后的喜悅;
由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過(guò)師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。
八年級(jí)數(shù)學(xué)教案 篇3
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過(guò)程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問(wèn)題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的`性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過(guò)程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點(diǎn)B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說(shuō)明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過(guò)程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說(shuō)出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的.兩個(gè)內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問(wèn)題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線的添加方法。
八年級(jí)數(shù)學(xué)教案 篇5
教學(xué)內(nèi)容和地位:
眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢(shì)的兩個(gè)統(tǒng)計(jì)特征量,是幫助學(xué)生學(xué)會(huì)用數(shù)據(jù)說(shuō)話的基本概念。本節(jié)課的教學(xué)內(nèi)容和現(xiàn)實(shí)生活密切相關(guān),是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識(shí)和創(chuàng)新能力的最好素材。
教學(xué)重點(diǎn)和難點(diǎn):
本節(jié)課的重點(diǎn)是眾數(shù)和中位數(shù)兩概念的形成過(guò)程及兩概念的運(yùn)用。本節(jié)課的難點(diǎn)是對(duì)統(tǒng)計(jì)數(shù)據(jù)從多角度進(jìn)行全面地分析。因?yàn)槔脭?shù)據(jù)進(jìn)行分析,對(duì)剛剛接觸統(tǒng)計(jì)的學(xué)生來(lái)說(shuō),他們?cè)械恼J(rèn)知結(jié)構(gòu)中缺乏這方面的知識(shí)經(jīng)驗(yàn),所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學(xué)生突破這一知識(shí)難點(diǎn)。
教學(xué)目標(biāo)分析:
認(rèn)知目標(biāo):
。1)使學(xué)生認(rèn)知眾數(shù)、中位數(shù)的意義;
。2)會(huì)求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。
能力目標(biāo):
(1)讓學(xué)生接觸并解決一些社會(huì)生活中的問(wèn)題,為學(xué)生創(chuàng)新學(xué)數(shù)學(xué)、用數(shù)學(xué)的情境,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí)。
。2)在問(wèn)題解決的過(guò)程中,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力;
。3)在問(wèn)題分析的過(guò)程中,培養(yǎng)學(xué)生的`團(tuán)結(jié)協(xié)作精神。
情感目標(biāo):
。1)通過(guò)多媒體網(wǎng)絡(luò)課件,提供適當(dāng)?shù)膯?wèn)題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;
。2)在合作學(xué)習(xí)中,學(xué)會(huì)交流,相互評(píng)價(jià),提高學(xué)生的合作意識(shí)與能力。
教學(xué)輔助:網(wǎng)絡(luò)教室、多媒體輔助網(wǎng)絡(luò)教學(xué)課件、BBS電子公告欄、學(xué)習(xí)資源庫(kù)
教法與學(xué)法:
根據(jù)本節(jié)課的教學(xué)內(nèi)容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或?qū)W生)提出適當(dāng)?shù)膯?wèn)題,通過(guò)學(xué)生與學(xué)生(或教師)之間相互交流,相互學(xué)習(xí),相互討論,在問(wèn)題解決的過(guò)程中發(fā)現(xiàn)概念的產(chǎn)生過(guò)程,體現(xiàn)“數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的過(guò)程的教學(xué)”。在教學(xué)活動(dòng)中,通過(guò)學(xué)生的自主學(xué)習(xí)來(lái)體現(xiàn)他們的主體地位,而教師是通過(guò)對(duì)學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵(lì)來(lái)體現(xiàn)自己的主導(dǎo)作用。另外,在學(xué)生合作學(xué)習(xí)的同時(shí),始終堅(jiān)持對(duì)學(xué)生進(jìn)行“學(xué)疑結(jié)合”、“學(xué)思結(jié)合”、“學(xué)用結(jié)合”的學(xué)法指導(dǎo),這對(duì)學(xué)生的主體意識(shí)的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。
八年級(jí)數(shù)學(xué)教案 篇6
教學(xué)建議
知識(shí)結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點(diǎn)是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.
教法建議
1. 對(duì)于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用
2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來(lái)進(jìn)行演示知識(shí)的形成及證明過(guò)程,效果可能會(huì)更直接更易于理解
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過(guò)三角形一邊中點(diǎn)且平行另一邊的直線平分第三邊”
3.能夠應(yīng)用三角形中位線概念及定理進(jìn)行有關(guān)的論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力
4.通過(guò)定理證明及一題多解,逐步培養(yǎng)學(xué)生的.分析問(wèn)題和解決問(wèn)題的能力
5. 通過(guò)一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣
二、教學(xué)設(shè)計(jì)
畫圖測(cè)量,猜想討論,啟發(fā)引導(dǎo).
三、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):三角形中位線的概論與三角形中位線性質(zhì).
2.教學(xué)難點(diǎn):三角形中位線定理的證明.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、常用畫圖工具
六、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說(shuō)明).
2.說(shuō)明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明 ?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)
【引入新課】
1.三角形中位線:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形中位線.
(結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)
2.三角形中位線性質(zhì)
了解了三角形中位線的定義后,我們來(lái)研究一下,三角形中位線有什么性質(zhì).
如圖所示,DE是 的一條中位線,如果過(guò)D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點(diǎn),可見(jiàn) 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過(guò)D作 ,且DE FC,所以DE .因此,又得出一個(gè)結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應(yīng)注意的兩個(gè)問(wèn)題:①為便于同學(xué)對(duì)定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個(gè)題設(shè)下有兩個(gè)結(jié)論,第一個(gè)結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個(gè)結(jié)論是說(shuō)明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時(shí)可根據(jù)需要來(lái)選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個(gè)定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來(lái)證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問(wèn)題和解決問(wèn)題的能力.但也應(yīng)指出,當(dāng)一個(gè)命題有多種證明方法時(shí),要選用比較簡(jiǎn)捷的方法證明.
由學(xué)生討論,說(shuō)出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).
(l)延長(zhǎng)DE到F,使 ,連結(jié)CF,由 可得AD FC.
(2)延長(zhǎng)DE到F,使 ,利用對(duì)角線互相平分的四邊形是平行四邊形,可得AD FC.
(3)過(guò)點(diǎn)C作 ,與DE延長(zhǎng)線交于F,通過(guò)證 可得AD FC.
上面通過(guò)三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .
(證明過(guò)程略)
例 求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.
(由學(xué)生根據(jù)命題,說(shuō)出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.‘
分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對(duì)角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來(lái)證明出四邊形EFGH對(duì)邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.
證明:連結(jié)AC.
∴ (三角形中位線定理).
同理,
∴GH EF
∴四邊形EFGH是平行四邊形.
【小結(jié)】
1.三角形中位線及三角形中位線與三角形中線的區(qū)別.
2.三角形中位線定理及證明思路.
七、布置作業(yè)
教材P188中1(2)、4、7
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01