八年級數(shù)學(xué)教案模板匯總九篇
在教學(xué)工作者開展教學(xué)活動前,很有必要精心設(shè)計一份教案,借助教案可以讓教學(xué)工作更科學(xué)化。如何把教案做到重點(diǎn)突出呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案9篇,希望能夠幫助到大家。
八年級數(shù)學(xué)教案 篇1
知識技能
1.了解兩個圖形成軸對稱性的性質(zhì),了解軸對稱圖形的性質(zhì)。
2.探究線段垂直平分線的性質(zhì)。
過程方法
1.經(jīng)歷探索軸對稱圖形性質(zhì)的過程,進(jìn)一步體驗軸對稱的特點(diǎn),發(fā)展空間觀察。
2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。
情感態(tài)度價值觀通過對軸對稱圖形性質(zhì)的探索,促使學(xué)生對軸對稱有了更進(jìn)一步的`認(rèn)識,活動與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動性和積極性,并使學(xué)生具有一些初步研究問題的能力。
教學(xué)重點(diǎn)
1.軸對稱的性質(zhì)。
2.線段垂直平分線的性質(zhì)。
教學(xué)難點(diǎn)體驗軸對稱的特征。
教學(xué)方法和手段多媒體教學(xué)
過程教學(xué)內(nèi)容
引入中垂線概念
引出圖形對稱的性質(zhì)第一張幻燈片
上節(jié)課我們共同探討了軸對稱圖形,知道現(xiàn)實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對稱的性質(zhì)。
幻燈片二
1、圖中的對稱點(diǎn)有哪些?
2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?
理由?:△ABC與△ABC關(guān)于直線MN對稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對稱點(diǎn),設(shè)AA交對稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。
我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
八年級數(shù)學(xué)教案 篇2
教材分析
1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:
、偻愴椀亩x。
、诤喜⑼愴椃▌t
③多項式乘以多項式法則。
2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。
2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計算。
(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理
數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。
(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡單的計算。
難點(diǎn):會推導(dǎo)完全平方公式
教學(xué)過程
教學(xué)過程設(shè)計如下:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的`關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特點(diǎn)。
。2)結(jié)果的項數(shù)特點(diǎn)。
(3)三項系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。
(4)三項與原多項式中兩個單項式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
、 (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠(yuǎn)為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、探險之旅
。1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
。3)(-0.5m+2n) 2=_______________________________
。4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
。6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
。8)(2n3-3m3) 2=________________________________
板書設(shè)計
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級數(shù)學(xué)教案 篇3
教學(xué)指導(dǎo)思想與理論依據(jù)
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。” 教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
教學(xué)內(nèi)容分析:
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的',在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
學(xué)生情況分析:
本班經(jīng)歷了一年多課改實踐,學(xué)生對運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。
教學(xué)方式與教學(xué)手段說明:
本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
知識與技能:
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
過程與方法:
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
情感與價值觀:
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;
3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計算機(jī)網(wǎng)絡(luò)教室
教學(xué)課型:
試驗探究式
教學(xué)重點(diǎn):
特殊四邊形性質(zhì)
教學(xué)難點(diǎn):
特殊四邊形性質(zhì)的發(fā)現(xiàn)
一、設(shè)置情景,提出問題
提出問題:
知識已生活,又服務(wù)于生活。我們經(jīng)過校門時,是否注意到電動門的機(jī)械工作原理(教師用幾何畫板演示)?
1、電動門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)
二、整體了解,形成系統(tǒng)
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒有,為什么?
解決問題:
學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形
2、從邊、角、對角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對角線三方面考慮;
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
。ㄒ鈭D: 學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)
三、個體研究、總結(jié)性質(zhì)
1、平行四邊形性質(zhì)
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導(dǎo)學(xué)生拖動B點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
。1)對邊相等;
(2)對角相等;
(3)通過AO=CO 、BO=DO,可得對角線互相平分;
(4)通過鄰角互補(bǔ),可得對邊平行;
。5)內(nèi)外角和都等于360度;
。6)鄰角互補(bǔ);
……
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)
菱形性質(zhì)
梯形性質(zhì)等腰梯形性質(zhì)
直角梯形性質(zhì)
。葘儆谄叫兴倪呅涡再|(zhì)又屬于矩形性質(zhì)可以畫箭頭)
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
。ㄒ鈭D: 學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)
教師總結(jié):
(意圖: 掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時間。)
四、聯(lián)系生活,解決問題
解決問題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。
學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點(diǎn)……
。ㄒ鈭D:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)
五、小結(jié)
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
學(xué)習(xí)效果評價
針對教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。
學(xué)生演示開(關(guān))門過程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識解釋實際問題,使自身價值得以實現(xiàn)并體會成功后的喜悅;
由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實現(xiàn)。
八年級數(shù)學(xué)教案 篇4
學(xué)習(xí)目標(biāo)
1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關(guān)系并能找出變化規(guī)律。
2、由坐標(biāo)的變化探索新舊圖形之間的變化。
重點(diǎn)
1、 作某一圖形關(guān)于對稱軸的對稱圖形,并能寫出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。
2、 根據(jù)軸對稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。
難點(diǎn)
體會極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡單的問題
學(xué)習(xí)過程(導(dǎo)入、探究新知、即時練習(xí)、小結(jié)、達(dá)標(biāo)檢測、作業(yè))
第一課時
學(xué)習(xí)過程:
一、舊知回顧:
1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。
2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。
3、各象限點(diǎn)的坐標(biāo)的特征:
二、新知檢索:
1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?
(2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?
例2、(1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓(xùn)練
1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來形成一個圖案。
(1)這四個點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個點(diǎn)用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標(biāo)變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關(guān)于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關(guān)于y軸對稱,那么左邊的魚各個頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的.魚是通過什么樣的變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。
3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系
四、題組練習(xí)
1、將坐標(biāo)作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點(diǎn)的坐標(biāo)。
3、 如圖,作字母M關(guān)于y軸的軸對稱圖形,并寫出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。
4、 描出下圖中楓葉圖案關(guān)于x軸的軸對稱圖形的簡圖。
學(xué)習(xí)筆記
八年級數(shù)學(xué)教案 篇5
一、學(xué)習(xí)目標(biāo)及重、難點(diǎn):
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
難點(diǎn):理解方差公式
二、自主學(xué)習(xí):
(一)知識我先懂:
方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習(xí):
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的.方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強(qiáng)兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強(qiáng) 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題
七、學(xué)習(xí)小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo)
知識與技能
1、了解立方根的概念,初步學(xué)會用根號表示一個數(shù)的立方根.
2、了解開立方與立方互為逆運(yùn)算,會用立方運(yùn)算求某些數(shù)的立方根.
過程與方法
1讓學(xué)生體會一個數(shù)的立方根的惟一性.
2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會立方與開立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價值觀
通過立方根符號的引入體會數(shù)學(xué)的簡潔美。
二、重點(diǎn)難點(diǎn)
重點(diǎn)
立方根的概念和求法。
難點(diǎn)
立方根與平方根的區(qū)別,立方根的`求法
三、學(xué)情分析
前面已經(jīng)學(xué)過了平方根的知識,由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進(jìn)行立方根知識的學(xué)習(xí),讓學(xué)生感覺到其實立方根知識并不難,可以與平方根知識對比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此迹诜此贾锌创c理解新知識和新問題,會更理性和全面,會有更大的進(jìn)步。
四、教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)問題設(shè)計師生活動備注
情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是多少?
設(shè)這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.
因為=27,所以x=3.即這種包裝箱的邊長應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?
因為(),所以0.125的立方根是()
因為(),所以-8的立方根是()
因為(),所以-0.125的立方根是()
因為(),所以0的立方根是()
一個正數(shù)有一個正的立方根
0有一個立方根,是它本身
一個負(fù)數(shù)有一個負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因為所以=
因為,所以=總結(jié):
利用開立方和立方互為逆運(yùn)算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負(fù)數(shù)的立方根,可以先求出這個負(fù)數(shù)的絕對值的立方根,再取其相反數(shù),即。
八年級數(shù)學(xué)教案 篇7
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
2、 教法建議
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人. 具體說明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程
學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)P,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié). 最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
(2)采用“類比”的學(xué)習(xí)方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的.難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.
(3) 通過問題的解決,讓學(xué)生學(xué)會從不同角度分析問題、解決問題;讓學(xué)生學(xué)會引申、變更問題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.
八年級數(shù)學(xué)教案 篇8
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對稱的性質(zhì)的活動過程 ,積累數(shù)學(xué)活動經(jīng)驗,進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對稱的基本性質(zhì)解決實際問題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對應(yīng)點(diǎn)所連的線段被 對稱軸垂直平分、對應(yīng)線段相等、對應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過程 :
一、探索活動
如右圖所示,在紙上任意畫一點(diǎn)A,把紙對折,用針在 點(diǎn)A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請同學(xué)們按要求畫點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點(diǎn)B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對稱有哪些性質(zhì)?
6.軸對稱的性質(zhì):
(1)成軸對稱的兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點(diǎn)連線的'垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點(diǎn)分別是 ,線段AC、AB的對應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點(diǎn)的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級數(shù)學(xué)教案 篇9
一、目標(biāo)要求
1.理解掌握分式的四則混合運(yùn)算的順序。
2.能正確熟練地進(jìn)行分式的加、減、乘、除混合運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):分式的加、減、乘、除混合運(yùn)算的順序。
難點(diǎn):分式的.加、減、乘、除混合運(yùn)算。
分式的加、減、乘、除混合運(yùn)算的順序是先進(jìn)行乘、除運(yùn)算,再進(jìn)行加、減運(yùn)算,遇有括號,先算括號內(nèi)的。
三、解題方法指導(dǎo)
【例1】計算:(1)[++(+)]·;
。2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四則混合運(yùn)算要注意運(yùn)算順序及括號的關(guān)系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】計算:(1)(-+)·(a3-b3);
。2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
。2)原式=[-]·=-=-====。
說明:分式的加、減、乘、除混合運(yùn)算注意以下幾點(diǎn):
。1)一般按分式的運(yùn)算順序法則進(jìn)行計算,但恰當(dāng)?shù)厥褂眠\(yùn)算律會使運(yùn)算簡便。
。2)要隨時注意分子、分母可進(jìn)行因式分解的式子,以備約分或通分時備用,可避免運(yùn)算煩瑣。
。3)注意括號的“添”或“去”、“變大”與“變小”。
。4)結(jié)果要化為最簡分式。
四、激活思維訓(xùn)練
▲知識點(diǎn):求分式的值
【例】已知x+=3,求下列各式的值:
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
【熱】八年級數(shù)學(xué)教案12-07
【薦】八年級數(shù)學(xué)教案12-03
八年級數(shù)學(xué)教案【薦】12-06
【精】八年級數(shù)學(xué)教案12-04