初二數(shù)學(xué)教案
作為一位杰出的教職工,時常會需要準(zhǔn)備好教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的初二數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
初二數(shù)學(xué)教案1
教學(xué)建議
知識結(jié)構(gòu):
重點(diǎn)難點(diǎn)分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.
教學(xué)難點(diǎn)是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.
教法建議:
1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.
2. 本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.
3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;
2.會進(jìn)行簡單的二次根式的除法運(yùn)算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4. 培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計算的能力;
5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的.歸納總結(jié)能力;
6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a0,b0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因?yàn)閎=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.
例1 化簡:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).
例2 化簡:
(1) ; (2) ;
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
(四)練習(xí)
1.化簡:
(1) ; (2) ; (3) .
2.化簡:
(1) ; (2) ; (3)
六、作業(yè)
教材P.183習(xí)題11.3;A組1.
七、板書設(shè)計
初二數(shù)學(xué)教案2
一、教學(xué)目標(biāo)
1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.
2.掌握矩形的性質(zhì)定理.
3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識,解決簡單的證明題和計算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.
4.通過性質(zhì)的學(xué)習(xí),體會矩形的應(yīng)用美.
二、教法設(shè)計
觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.
三、重點(diǎn)、難點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.
2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動活動設(shè)計
教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證
七、教學(xué)步驟
【復(fù)習(xí)提問】
什么叫平行四邊形?它和四邊形有什么區(qū)別?
【引入新課】
我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個活動的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個角是直角時,指出這時平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).
矩形的性質(zhì):
既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的`條件,因而它就增加了一些特殊性質(zhì).
繼續(xù)演示教具,當(dāng)它變成矩形時,學(xué)生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.
矩形性質(zhì)定理1:矩形的四個角都是直角.
矩形性質(zhì)定理2:矩形對角線相等.
由矩形性質(zhì)定理2我們可以得到
推論:直角三角形斜邊上的中線等于斜邊的一半.
(這實(shí)際上是 △的一個重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長或線段部分關(guān)系時經(jīng)常用到)
例1 已知如圖1 矩形 的兩條對角線相交于點(diǎn), , ,求矩形對角線的長.(按教材的格式)
(強(qiáng)調(diào)這種計算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計算)
【總結(jié)、擴(kuò)展】
1.小結(jié):(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.
(2)矩形性質(zhì).
1.具有平行四邊形的所有性質(zhì).
2.特有性質(zhì):四個角都是直角,對角線相等.
3.思考題:已知如圖, 是矩形 對角線交點(diǎn), 平分 , ,求 的度數(shù)
八、布置作業(yè)
教材P158中2、5,P195中7.
九、板書設(shè)計
十、隨堂練習(xí)
教材P146中1、2、3、4
初二數(shù)學(xué)教案3
新課指南
1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.
2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會列簡單的代數(shù)式.在具體情境中體會同類項(xiàng)的意義及合并同類項(xiàng)、去括號法則的必要性,總結(jié)合并同類項(xiàng)及去括號的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡單的實(shí)際問題.
3.情感態(tài)度與價值觀:通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面.
4.重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的`意義,合并同類項(xiàng)的法則和去括號的法則.難點(diǎn)是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識別整式的項(xiàng)、系數(shù)等知識.
教材解讀精華要義
數(shù)學(xué)與生活
如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當(dāng)n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?
知識詳解
知識點(diǎn)1代數(shù)式
用基本的運(yùn)算符號(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨(dú)的一個數(shù)或一個字母也是代數(shù)式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點(diǎn)2列代數(shù)式時應(yīng)該注意的問題
(1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數(shù)字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分?jǐn)?shù)與字母相乘時要化成假分?jǐn)?shù).
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分?jǐn)?shù)的形式.
如:S÷x=.
初二數(shù)學(xué)教案4
一、班級情況分析:
本學(xué)期一(1)班有學(xué)生40人,新轉(zhuǎn)學(xué)來一名女生。上學(xué)期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學(xué)生成績在年級排名第一,能過鎮(zhèn)中線,但是學(xué)生未能發(fā)揮出真實(shí)水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。
一(7)班有學(xué)生38人,上學(xué)期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學(xué)生不多不夠拔尖,成績中層的學(xué)生占據(jù)大部分。學(xué)生好動,對數(shù)學(xué)學(xué)習(xí)的積極性普遍不夠高,學(xué)生好動,課堂氣氛較活躍。學(xué)生數(shù)學(xué)基礎(chǔ)不扎實(shí)。提升空間較大。
兩班的整體成績均不夠理想。
二、教材分析:
本套教材切合《標(biāo)準(zhǔn)》的課程目標(biāo),有以下特點(diǎn):
1.為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn),提供大量數(shù)學(xué)活動的線索,成為供所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。
2.向?qū)W生提供現(xiàn)實(shí)、有趣、富有挑戰(zhàn)性的學(xué)習(xí)素材。所有數(shù)學(xué)知識的學(xué)習(xí),都力求從學(xué)生實(shí)際出發(fā),以他們熟悉或感興趣的問題情境引入學(xué)習(xí)主題,并展開數(shù)學(xué)探究。
3.為學(xué)生提供探索、交流的時間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學(xué)生通過自主探索與合作交流,形成新的知識。
4.展現(xiàn)數(shù)學(xué)知識的形成與應(yīng)用過程,讓學(xué)生經(jīng)歷真正的“做數(shù)學(xué)”、“用數(shù)學(xué)”的過程。
5.滿足不同學(xué)生發(fā)展的需求。
三、教學(xué)目標(biāo)及要求:
第一章:
1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實(shí)情境中進(jìn)一步理解字母表示數(shù)的意義,發(fā)展符號感。
2.經(jīng)歷探索整式運(yùn)算法則的過程,理解整式運(yùn)算的算理,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力。
3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),會進(jìn)行簡單的整式加、減、乘、除運(yùn)算。
4.會推導(dǎo)乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。
2.在具體情境中了解補(bǔ)角、余角、對頂角,知道等角的余角相等、等角的補(bǔ)角相等、對頂角相等。會用三角尺過已知直線外一點(diǎn)畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。
3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。
4.進(jìn)一步激發(fā)學(xué)生對數(shù)學(xué)方面的興趣,體驗(yàn)從數(shù)學(xué)的角度認(rèn)識現(xiàn)實(shí)。
第三章:
1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學(xué)記數(shù)法表示它們,進(jìn)一步發(fā)展數(shù)感;能借助計算器進(jìn)行有關(guān)科學(xué)記數(shù)法的計算。
2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會近似數(shù)的意義及在生活中的'作用。
3.通過實(shí)例,體驗(yàn)收集、整理、描述和分析數(shù)據(jù)的過程。
4.能讀懂統(tǒng)計圖并從中獲取信息,能形象、有效地運(yùn)用統(tǒng)計圖描述數(shù)據(jù)。
第四章:
1.經(jīng)歷從實(shí)際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。
2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計算概率,解決實(shí)際、作出合理決策的過程,體會概率是描述不確定現(xiàn)象的數(shù)學(xué)模型。
3.能設(shè)計符合要求的簡單概率模型。
第五章:
1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數(shù)學(xué)活動經(jīng)驗(yàn)。
2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達(dá)能力。
3.進(jìn)一步認(rèn)識三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。
4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應(yīng)用三角形的全等解決一些實(shí)際問題。
5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。
第六章:
1.經(jīng)歷探索具體情境中兩個變量之間的關(guān)系的過程,進(jìn)一步發(fā)展符號感和抽象思維。
2.能發(fā)現(xiàn)實(shí)際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。
3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進(jìn)行表達(dá),發(fā)展有條理地進(jìn)行思考和表達(dá)的能力。
4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對變量之間關(guān)系的分析,嘗試對變化趨勢進(jìn)行初步的預(yù)測。
第七章:
1.在豐富的現(xiàn)實(shí)情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計等數(shù)學(xué)活動過程,進(jìn)一步發(fā)展空間觀念。
2.通過豐富的生活實(shí)例認(rèn)識軸對稱,探索它的基本性質(zhì),理解對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分的性質(zhì)。
3.探索并了解基本圖形的軸對稱性及其相關(guān)性質(zhì)。
4.能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形,探索簡單圖形之間的軸對稱關(guān)系,并能指出對稱軸。
5.欣賞現(xiàn)實(shí)生活中的軸對稱圖形,能利用軸對稱進(jìn)行一些圖案設(shè)計,體驗(yàn)軸對稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價值。
四、教學(xué)改革的設(shè)想(教學(xué)具體措施)
充分體現(xiàn)培優(yōu)扶困的實(shí)施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實(shí)做到:
1、根據(jù)學(xué)生的個別差異。因材施教,熱情關(guān)懷,循循善誘,加強(qiáng)個別輔導(dǎo)。幫助他們增強(qiáng)學(xué)習(xí)的信心,逐步達(dá)到教學(xué)的基本要求,盡量做好培優(yōu)輔差工作。
2、精心設(shè)計練習(xí),講究練習(xí)方式提高練習(xí)效率,對作業(yè)嚴(yán)格要求,及時檢查,認(rèn)真批改,對作業(yè)中的錯誤及時找出原因,要求學(xué)生認(rèn)真改正,培養(yǎng)學(xué)生獨(dú)立完成作業(yè)的良好習(xí)慣。
3、認(rèn)真?zhèn)湔n,深入鉆研教材,堅持自主學(xué)習(xí),充分發(fā)揮學(xué)生的主動學(xué)習(xí)有積極性,了解學(xué)生裝學(xué)習(xí)數(shù)學(xué)的特點(diǎn),研究教學(xué)規(guī)律,不斷改進(jìn)教學(xué)方法。
4、堅持學(xué)習(xí),多聽課,多模仿,虛心向有經(jīng)驗(yàn)的老師請教教育教學(xué)方法。努力提升自身的教學(xué)技能。
5、在教學(xué)中,加強(qiáng)學(xué)生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學(xué)活動課,擴(kuò)大學(xué)生的視野,拓寬知識面,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展數(shù)學(xué)才能,發(fā)揮學(xué)生的主動性,獨(dú)立性和創(chuàng)造性。
6、開展“一幫一”活動,實(shí)行以優(yōu)帶差點(diǎn)的幫助方法,多利用課余時間加強(qiáng)輔導(dǎo),從基礎(chǔ)知識補(bǔ)起,力求使學(xué)生一課一得,力求提高優(yōu)秀率和及格率。
7.課前充分備好課,在課堂教學(xué)中特別要體現(xiàn)出培扶,分層次教育。
8.重視學(xué)生學(xué)習(xí)興趣的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的內(nèi)驅(qū)力。
9.大膽地深度嘗試新的教學(xué)方法,要因地制宜,因材施教。
10.重視基礎(chǔ)知識過關(guān)和單元測試過關(guān)工作,及時進(jìn)行單元總結(jié),做好平時的查漏補(bǔ)缺工作,不遺漏知識盲點(diǎn)。
11.注重對作業(yè)、練習(xí)紙、練習(xí)冊、測驗(yàn)卷的及時批改,并盡量做到全批全改,及時反饋信息。
12.多用多媒體教學(xué),使數(shù)學(xué)生動化。
13.多用實(shí)物教學(xué),使數(shù)學(xué)形象化。
14.實(shí)行課課清,日日清,周周清。
15.加強(qiáng)課堂管理,嚴(yán)把課堂質(zhì)量關(guān),提高課堂效率。
16.抓好學(xué)生的作業(yè)上交完成情況。
17.加強(qiáng)與學(xué)生的交流,做好學(xué)生的思想教育與培優(yōu)輔差工作。
五、擬定本學(xué)期教學(xué)目標(biāo)
六、擬定本學(xué)期培優(yōu)扶養(yǎng)計劃。
培扶措施
對臨界優(yōu)秀生
在理解題、思維訓(xùn)練題給予方法指導(dǎo),并要加強(qiáng)書面的表達(dá)能力。做到思路清晰,格式標(biāo)準(zhǔn)。基礎(chǔ)訓(xùn)練題的過關(guān)檢測,對每次測試的成績給予個別指導(dǎo),多用激勵教育。
對臨界及格生:
首先加強(qiáng)基礎(chǔ)知識的培訓(xùn),尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關(guān)測試工作,抓好時機(jī),多表揚(yáng),樹立信心。
七、教學(xué)內(nèi)容及課時安排(略)
八、作業(yè)格式及批改要求:
作業(yè)格式:
1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。
2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。
3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。
批改要求:
1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。
2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分?jǐn)?shù)+等級(等級分A、B、C三等,代表學(xué)生的書寫成績。)
3、每次的作業(yè)要及時更正,更正時統(tǒng)一在每次的作業(yè)后面用紅筆更正。
初二數(shù)學(xué)教案5
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折(即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價的80%(即售價)-成本=15
若設(shè)這種服裝每件的.成本是x元,那么
每件服裝的標(biāo)價為:(1+40%)x
每件服裝的實(shí)際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
。1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時,首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
初二數(shù)學(xué)教案6
一、學(xué)習(xí)目標(biāo):
1.使學(xué)生會用完全平方公式分解因式.
2.使學(xué)生學(xué)習(xí)多步驟,多方法的分解因式
二、重點(diǎn)難點(diǎn):
重點(diǎn):讓學(xué)生掌握多步驟、多方法分解因式方法
難點(diǎn):讓學(xué)生學(xué)會觀察多項(xiàng)式特點(diǎn),恰當(dāng)安排步驟,恰當(dāng)?shù)剡x用不同方法分解因式
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
完全平方公式(a±b)2=a2±2ab+b2
講授新課
1.推導(dǎo)用完全平方公式分解因式的公式以及公式的特點(diǎn).
將完全平方公式倒寫:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具備這些特點(diǎn)的三項(xiàng)式,就是一個二項(xiàng)式的完全平方,將它寫成平方形式,便實(shí)現(xiàn)了因式分解
用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法.
練一練.下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精講精練
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
課堂練習(xí):教科書練習(xí)
補(bǔ)充練習(xí):把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小結(jié):
兩個數(shù)的平方和,加上(或減去)這兩數(shù)的'積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
六、作業(yè):
1、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
初二數(shù)學(xué)教案7
教學(xué)目標(biāo):
知識與技能
1、掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;
2、進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、
3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識、
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
教學(xué)難點(diǎn)
會辨析哪些問題應(yīng)用哪個結(jié)論、
課前準(zhǔn)備
標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法、
這樣做得到的'是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
1、如何來判斷?(用直角三角板檢驗(yàn))
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時)
2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13; 6, 8, 10; 8,15,17、
。1)這三組數(shù)都滿足a2 +b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、
4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習(xí):
1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、
⑴9,12,15; ⑵15,36,39;
、12,35,36; ⑷12,18,22、
2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、
3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、
4、習(xí)題1、3
課堂小結(jié):
1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、
初二數(shù)學(xué)教案8
教學(xué)目標(biāo)
知識與技能目標(biāo)
1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標(biāo)
1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
2.鼓勵學(xué)生用多種方法進(jìn)行說理。
情感與態(tài)度目標(biāo)
1.培養(yǎng)學(xué)生探索創(chuàng)新的'能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評價意識。
教材分析
教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。
教學(xué)重點(diǎn):平行四邊形的判別方法。
教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說理。
學(xué)情分析
初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
教學(xué)流程
一、創(chuàng)設(shè)情境,引入新課
師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學(xué)生活動:學(xué)生按小組進(jìn)行探索。
初二數(shù)學(xué)教案9
1、教材分析
。1)知識結(jié)構(gòu):
。2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因?yàn)槿切蔚娜齻頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。
2、教法建議
。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。
。ǘ┠芰τ(xùn)練點(diǎn)
1、通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2、通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。
3、會根據(jù)比較簡單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。
。ㄈ┑掠凉B透點(diǎn)
使學(xué)生認(rèn)識到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。
。ㄋ模┟烙凉B透點(diǎn)
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。
2、教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的`定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:
。1)要結(jié)合圖形。
(2)要與三角形類比。
。3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點(diǎn)一定在同一平面內(nèi),而四個點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
。4)強(qiáng)調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。
。5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。
。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問:
。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?
。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?
。3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個頂點(diǎn)作連線,把四邊形分成幾個三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
①2180=360如圖4
、4180—360=360如圖4—7。
例1已知:如圖48,直線于B、于C。
求證:(1)(2)。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個角相等或互補(bǔ)的關(guān)系,何時用相等,何時用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴(kuò)展】
1、四邊形的有關(guān)概念。
2、四邊形對角線的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計
初二數(shù)學(xué)教案10
一、利用勾股定理進(jìn)行計算
1.求面積
例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。
析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點(diǎn)評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的'轉(zhuǎn)化思想,請同學(xué)們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點(diǎn)評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。
三、利用勾股定理說明線段平方和、差之間的關(guān)系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點(diǎn)評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。
初二數(shù)學(xué)教案11
通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項(xiàng)式 的次數(shù);
(4)必須分解到每個多項(xiàng)式不能再分解為止。
活動5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
活動6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準(zhǔn)
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進(jìn)行查缺補(bǔ)漏。
活動7:課堂小結(jié)
從今天的.課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
活動8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
板書設(shè)計(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法
初二數(shù)學(xué)教案12
一、學(xué)生情況分析及改進(jìn)提高措施:
學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨(dú)立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實(shí),對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實(shí)踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進(jìn)行獨(dú)立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗(yàn)。
在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認(rèn)八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實(shí)際長度和簡單的換算以及實(shí)際測量,并能用以上這些相應(yīng)的知識解決實(shí)際生活中的問題?傊,這些技能和知識點(diǎn)都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅實(shí)的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚(yáng)光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學(xué)生的年齡特點(diǎn)出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。
2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實(shí)際,便于對問題的理解。結(jié)合學(xué)生的生活實(shí)際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。
3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實(shí)踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實(shí)踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。
二、本冊教材分析
本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實(shí)踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實(shí)問題的過程中獲得對數(shù)學(xué)知識的理解和體驗(yàn)。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實(shí)踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點(diǎn)是:
1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗(yàn)乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。
2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗(yàn)出發(fā),注重通過操作活動發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。
三、總體教學(xué)目標(biāo):
(一)、知識與技能
1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的.意義。
2.學(xué)平面圖形的周長,會進(jìn)行周長的計算。
(二)、實(shí)踐能力培養(yǎng)
1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗(yàn)從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。
3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度
1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。
2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
教研專題:
創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。
個人專題:
在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。
初二數(shù)學(xué)教案13
教學(xué)目標(biāo)
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.
教學(xué)重點(diǎn):
等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn):
正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.
教學(xué)過程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設(shè)情境
出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度.
學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的.內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.
2、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強(qiáng)調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.
4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).
III例題與練習(xí)
1.如圖2
其中△ABC是等腰三角形的是[ ]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).
、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).
、廴粢阎螦=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
、苋粢阎狝D=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.
練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁習(xí)題12.3第5、6題
初二數(shù)學(xué)教案14
一、教學(xué)目標(biāo)
1.了解分式、有理式的概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件,分式的值為零的條件。
2.難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件。
3。認(rèn)知難點(diǎn)與突破方法
難點(diǎn)是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點(diǎn)的方法是利用分式與分?jǐn)?shù)有許多類似之處,從分?jǐn)?shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。
三、例、習(xí)題的意圖分析
本章從實(shí)際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點(diǎn),也不要求解這個方程。
1.本節(jié)進(jìn)一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是(即A÷B)的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。
P5[歸納]順理成章地給出了分式的`定義。分式與分?jǐn)?shù)有許多類似之處,研究分式往往要類比分?jǐn)?shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。
希望老師注意:分式比分?jǐn)?shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分?jǐn)?shù)。
2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當(dāng)B≠0時,分式才有意義。
3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。
4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補(bǔ)充的例2為了學(xué)生更全面地體驗(yàn)分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。
四、課堂引入
1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:
2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。
設(shè)江水的流速為x千米/時。
初二數(shù)學(xué)教案15
知識與技能
1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。
2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實(shí)際問題。
3.體驗(yàn)勾股定理的探索過程,會運(yùn)用勾股定理解決簡單問題。會運(yùn)用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識進(jìn)行有關(guān)的證明和計算。
5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義,會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的'波動情況。
過程與方法
進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達(dá)能力;解決一些實(shí)際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實(shí)事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動探索的習(xí)慣。
情感、態(tài)度與價值觀
豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗(yàn)和體驗(yàn),通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。
【初二數(shù)學(xué)教案】相關(guān)文章:
【推薦】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【熱】12-24
初二數(shù)學(xué)教案【薦】12-22
【熱】初二數(shù)學(xué)教案12-23
【薦】初二數(shù)學(xué)教案12-19
【精】初二數(shù)學(xué)教案12-19
初二數(shù)學(xué)教案【推薦】12-18
初二數(shù)學(xué)教案【精】12-20