高三數(shù)學一輪復習教案(通用10篇)
作為一名教職工,可能需要進行教案編寫工作,借助教案可以讓教學工作更科學化。我們該怎么去寫教案呢?下面是小編整理的高三數(shù)學一輪復習教案,僅供參考,歡迎大家閱讀。
高三數(shù)學一輪復習教案 1
一、夯實基礎。
今年高考數(shù)學試題的一個顯著特點是注重基礎。扎實的數(shù)學基礎是成功解題的關鍵,從學生反饋來看,平時學習成績不錯但得分不高的主要原因不在于難題沒做好,而在于基本概念不清,基本運算不準,基本方法不熟,解題過程不規(guī)范,結(jié)果“難題做不了,基礎題又沒做好”,因此在第一輪復習中,我們將格外突出基本概念、基礎運算、基本方法,具體做法如下:
1、注重課本的基礎作用和考試說明的導向作用;
2、加強主干知識的生成,重視知識的交匯點;
3、培養(yǎng)邏輯思維能力、直覺思維、規(guī)范解題習慣;
4、加強反思,完善復習方法。
二、解決好課內(nèi)課外關系。
課內(nèi):
(1)例題講解前,留給學生思考時間;講解中,讓學生陳述不同解題思路,對于解題過程中的閃光之處或不足之處進行褒揚或糾正;講解后,對解法進行總結(jié)。對題目盡量做到一題多解,一題多用。一題多解的題目讓學生領會不同方法的優(yōu)劣,一題多用的題目讓學生領會知識間的聯(lián)系。
。2)學生作業(yè)和考試中出現(xiàn)的錯誤,不但指出錯誤之處,更要引導學生尋根問底,使學生找出錯誤的真正原因。
。3)每節(jié)課留5—10分鐘讓學生疏理本節(jié)知識,理解本節(jié)內(nèi)容。
課外:
。1)除了正常每天布置適量作業(yè)外,另外布置一兩道中檔偏上的題目,給學有余力的學生做到拔尖補差。
。2)加強重點生中的缺腿生的輔導工作:
、倥凶鳂I(yè)時對缺腿生面批面改;
②指出知識的疏漏,學法的'不正;
、勖恐5天集中輔導,對普遍問題講解。
三、強化學生“參與”“合作”。
1、多讓學生板演,對于有些章節(jié)知識,選擇六至八道,按難易程度分別讓不同程度的學生板演,下面的學生盡量獨自完成,無法獨立解決的可以相互討論。
2、讓學生自我小結(jié),每一章復習完后,讓學生自己建立知識網(wǎng)絡結(jié)構,包括典型題目、思想方法、解題技巧,易錯易做之題;
3、每次考試結(jié)束后,讓學生自己總結(jié):
、僭囶}考查了哪些知識點;
②怎樣審題,怎樣打開解題思路;
、墼囶}主要運用了哪些方法,技巧,關鍵步在哪里;
、艽痤}中有哪些典型錯誤,哪些是知識、邏輯心理因素造成,哪些是屬于思路上的。
四、精選習題。
1、把握好題目的難度,增強題目針對性,所選題目以小題、中檔題為主,且應突出知識重點,體現(xiàn)思想方法、兼顧學生易錯之處。
2、減少題目數(shù)量,加強質(zhì)量。題目數(shù)量過大,學生易疲憊生厭,沒有思考消化時間,刪減偏難怪,技巧過于單一、計算過于繁雜的題目。
五、復習內(nèi)容具體安排如下:
8月16日——8月底集合簡易邏輯、函數(shù)部分知識。
9月初——9中旬結(jié)束函數(shù)
9月中旬——9月底數(shù)列、不等式
10月初——10中旬三角
10月中旬——10月底平面向量解析第一章
11月解析第二章及立體幾何
12月初——12月中旬排列組合、概率
12月中旬——月底統(tǒng)計、極限、導數(shù)、復數(shù)
復習不僅是知識的再現(xiàn),而是從一個有機整體的角度對已學知識進行再認識,再認識過程是不斷提高數(shù)學思維水平的過程,是不斷積累解決數(shù)學問題的經(jīng)驗及提高能力的過程。
首先,扎實的基礎知識是提高數(shù)學思維水平的基礎。盡管高考強調(diào)考查能力和創(chuàng)新意識,但這些都離不開扎實的基礎知識和基本技能。對知識的理解、認識和運用的過程,就是數(shù)學思維水平和能力不斷提高的過程。
其次,在數(shù)學復習過程中,教師要引導學生領悟從問題的提出到問題的解決之間的途徑和方法,反思如何通過分析問題提供有關信息找到知識間的聯(lián)系,又如何利用數(shù)學知識和方法解決問題。只有這樣才能不斷提高分析問題和解決問題的能力,不斷提高學生的數(shù)學思維水平
高三數(shù)學一輪復習教案 2
一、教學內(nèi)容分析
本小節(jié)是普通高中課程標準實驗教科書數(shù)學5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數(shù)的最值與解問題;運用線性規(guī)劃知識解決一些簡單的實際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學知識解決實際問題的典例,它體現(xiàn)了數(shù)學源于生活而用于生活的特性。
二、學生學習情況分析
本小節(jié)內(nèi)容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉(zhuǎn)化為數(shù)學問題,數(shù)形結(jié)合思想有所了解,但從數(shù)學知識上看學生對于涉及多個已知數(shù)據(jù)、多個字母變量,多個不等關系的知識接觸尚少,從數(shù)學方法上看,學生對于圖解法還缺少認識,對數(shù)形結(jié)合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。
三、設計思想
以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數(shù)學問題”的數(shù)學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學生的分析問題、解決問題的能力。
四、教學目標
1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫二元一次不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法
求線性目標函數(shù)的最值與相應解;
2、過程與方法:從實際問題中抽象出簡單的線性規(guī)劃問題,提高學生的數(shù)學建模能力;
在探究的過程中讓學生體驗到數(shù)學活動中充滿著探索與創(chuàng)造,培養(yǎng)學生的數(shù)據(jù)分析能力、
化歸能力、探索能力、合情推理能力;
3、情態(tài)與價值:在應用圖解法解題的過程中,培養(yǎng)學生的化歸能力與運用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學生的數(shù)學應用意識;體驗數(shù)學來源于生活而服務于生活的特性.
五、教學重點和難點
重點:從實際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規(guī)劃問題;
難點:二元一次不等式所表示的平面區(qū)域的探究,從實際情境中抽象出數(shù)學問題的過程探究,簡單的二元線性規(guī)劃問題的圖解法的探究.
六、教學基本流程
第一課時,利用生動的情景激起學生求知的欲望,從中抽象出數(shù)學問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆.通過學生的自主探究,分類討論,大膽猜想,細心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個難點;通過例1、例2的討論與求解引導學生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點定域);最后通過練習加以鞏固。
第二課時,重現(xiàn)引例,在學生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結(jié)出從實際問題中抽象出數(shù)學問題的基本過程:理清數(shù)據(jù)關系(列表)→設立決策變量→建立數(shù)學關系式→畫出平面區(qū)域.讓學生對例3、例4進行分析與討論進一步完善這一過程,突破本小節(jié)的`第二個難點。
第三課時,設計情景,借助前兩個課時所學,設立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關概念,并讓學生思考探究,利用特殊值進行猜測,找到方案;再引導學生對目標函數(shù)進行變形轉(zhuǎn)化,利用直線的圖象對上述問題進行幾何探究,把最值問題轉(zhuǎn)化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學生在討論中達成共識,總結(jié)出簡單線性規(guī)劃問題的圖解法的基本步驟.通過例5的展示讓學生從動態(tài)的角度感受圖解法.最后再現(xiàn)情景1,并對之作出完美的解答。
第四課時,給出新的引例,讓學生體會到線性規(guī)劃問題的普遍性.讓學生討論分析,對引例給出解答,并綜合前三個課時的教學內(nèi)容,連綴成線,總結(jié)出簡單線性規(guī)劃的應用性問題的一般解答步驟,通過例6,例7的分析與展示進一步完善這一過程.總結(jié)線性規(guī)劃的應用性問題的幾種類型,讓學生更深入的體會到優(yōu)化理論,更好的認識到數(shù)學來源于生活而運用于生活的特點。
七、教學過程設計
高三數(shù)學一輪復習教案 3
教學準備
教學目標
數(shù)列求和的綜合應用
教學重難點
數(shù)列求和的綜合應用
教學過程
典例分析
3.數(shù)列{an}的前n項和Sn=n2-7n-8,
(1)求{an}的通項公式
(2)求{|an|}的前n項和Tn
4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項公式
(2)令bn=anxn,求數(shù)列{bn}前n項和公式
7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項和為Sn,且S10=S15,求當n為何值時,Sn有值,并求出它的值
.已知數(shù)列{an},an∈NXX,Sn=(an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn=an-30,求數(shù)列{bn}前n項的最小值
0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈NXX)
(1)設f(x)的圖象的頂點的橫坐標構成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設f(x)的'圖象的頂點到x軸的距離構成數(shù)列{dn},求數(shù)列{dn}的前n項和sn.
11.購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復利計算(上月利息要計入下月本金),那么每期應付款多少?(精確到1元)
12.某商品在最近100天內(nèi)的價格f(t)與時間t的
函數(shù)關系式是f(t)=
銷售量g(t)與時間t的函數(shù)關系是
g(t)=-t/3+109/3(0≤t≤100)
求這種商品的日銷售額的值
注:對于分段函數(shù)型的應用題,應注意對變量x的取值區(qū)間的討論;求函數(shù)的值,應分別求出函數(shù)在各段中的值,通過比較,確定值
高三數(shù)學一輪復習教案 4
教學準備
教學目標
解三角形及應用舉例
教學重難點
解三角形及應用舉例
教學過程
一、基礎知識精講
掌握三角形有關的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.
二、問題討論
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質(zhì).
例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺
風中心位于城市O(如圖)的東偏南方向
300km的海面P處,并以20km/h的速度向西偏北的`
方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,
并以10km/h的速度不斷增加,問幾小時后該城市開始受到
臺風的侵襲。
一、小結(jié):
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
二、利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三、作業(yè):
P80闖關訓練
高三數(shù)學一輪復習教案 5
(一)引入:
(1)情景1
王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是
2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現(xiàn)金,踏著可載重350千克的三輪車開始自己的發(fā)財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。
【問題情景使學生感受到數(shù)學是來自現(xiàn)實生活的,讓學生體會從實際問題中抽象出數(shù)學問題的過程;通過情景我們不僅能從中引出本堂課的內(nèi)容“二元一次不等式(組)的概念,及其所表示的平面區(qū)域”,也為后面的內(nèi)容“簡單的線性規(guī)劃問題”埋下了伏筆.】
(2)問題與探究
師:同學們,你們能用具體的數(shù)字體現(xiàn)出王老漢的兩個孫子的收購方案嗎?
生,討論并很快給出答案.(師,記錄數(shù)據(jù))
師:請你們各自為王老漢設計一種收購方案.
生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)
師:這些同學的方案都是對的嗎?
生,討論并找出其中不合理的方案.
師:為什么這些方案就不行呢?
生,討論后并回答
師:滿足什么條件的方案才是合理的呢?
生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)
師,讓幾個學生上黑板列出不等式組,并對之分析指正
(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)
師:同學們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的一組解嗎?
生,討論并回答(教師記錄幾組,并引導學生表示成有序?qū)崝?shù)對形式.)
師:同學們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的'一組解嗎?
生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數(shù)據(jù),對于這些數(shù)據(jù)要事先設計好并在課件的坐標系中標出備用)
(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)
師:我們知道每一組有序?qū)崝?shù)對都對應于平面直角坐標系上的一個點,你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解在平面直角坐標系上標記出來嗎?
生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)
師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結(jié)論)
師,引導學生在同一平面直角坐標系中畫出方程二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解所對應的圖形(一條直線,指導學生用與坐標軸的兩個交點作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解為坐標的點在平面直角坐標系中的位置有什么特點?
生,提出猜想:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計分得的左下半平面.
【教師通過幾個簡單的問題,讓學生產(chǎn)生了利用平面區(qū)域表示二元一次不等式的想法,而后再讓學生大膽的猜想,細心的論證,讓他們從中讓體會到對新知識進行科學探索的全過程.】
師:這個結(jié)論正確嗎?你能說出理由來嗎?
生,分組討論,并利用自己的數(shù)學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)
師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.
師:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的右上半平面應怎么表示?
生:表示為二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計,(很快回答)
師:從中你能得出什么結(jié)論?
生,討論并得到一般性結(jié)論(教師總結(jié)糾正)
(教師總結(jié)并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的某側(cè)所有點組成的平面區(qū)域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示的平面區(qū)域因包含邊界故直線畫成實線.)
師:點O(0,0)是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計一個解嗎?據(jù)此你能說出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計對應的平面區(qū)域相對與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的位置嗎?
生,作圖分析,討論并回答(師,對學生的回答進行分析)
師:結(jié)合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計對應的平面區(qū)域的過程.
生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結(jié)論)
師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計對應的平面區(qū)域的過程嗎?
生,討論并回答(教師總結(jié)并用多媒體展示:直線定界,特殊點定域)
師:若點P(3,-1),點Q(2,4)在直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的異側(cè),你能用數(shù)學語言表示嗎?
生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解)
師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的范圍嗎?
生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計并求解.
師:若把上面問題改為點在同側(cè)呢?請同學們課后完成.
【在教師的幫助下學生通過自己的分析得出了正確的結(jié)論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數(shù)學的學習興趣.同時也讓他們體會人們在認識新生事物時從特殊到一般,再從一般到特殊的認知過程.】
(二)實例展示:
例1、畫出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示的平面區(qū)域.
例2、用平面區(qū)域表示不等式組二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計的解集.
【通過利用多媒體對實例的展示讓學生體會到畫出不等式表示的平面區(qū)域的基本流程:直線定界,特殊點定域,而不等式(組)表示的平面區(qū)域是各個不等式表示的平面區(qū)域的公共部分.同時對具體作圖中的細節(jié)問題進行點拔.】
(三)練習:
學生練習P86第1-3題.
【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區(qū)域的基本流程】
(四)課后延伸:
師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區(qū)域來表示出來的問題.如果反過來給出了平面區(qū)域你能寫出相關的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點構成的三角形內(nèi)部區(qū)域?qū)牟坏仁浇M嗎?
你能寫出不等式形如二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計這種不等式表示的平面區(qū)域?
(五)小結(jié)與作業(yè):
二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計某側(cè)所有點組成的平面區(qū)域,畫出不等式(組)表示的平面區(qū)域的基本流程:直線定界,特殊點定域(一般找原點)
作業(yè):第93頁A組習題1、2,
補充作業(yè):若線段PQ的兩個端點坐標為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學設計與線段PQ
高三數(shù)學一輪復習教案 6
【高考要求】:
三角函數(shù)的有關概念(B).
【教學目標】:
理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
【教學重難點】:
終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
【知識復習與自學質(zhì)疑】
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關系式?
二、練習.
1.給出下列命題:
(1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負半軸上。其中正確的命題的序號是
2.設P 點是角終邊上一點,且滿足 則 的值是
3.一個扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=
4.若 則角 的終邊在 象限。
5.在直角坐標系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關系是
6.若 是第三象限的角,則- , 的終邊落在何處?
【交流展示、互動探究與精講點撥】
例1.如圖, 分別是角 的終邊.
。1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.(1)已知角的終邊在直線 上,求 的值;
。2)已知角的終邊上有一點A ,求 的值。
例3.若 ,則 在第 象限.
例4.若一扇形的周長為20 ,則當扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角 的終邊上一點的坐標為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的`弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點P 在第三象限,則 角終邊在第 象限.
5、設角 的終邊過點P ,則 的值為 .
6、已知角 的終邊上一點P 且 ,求 和 的值.
【遷移應用】
1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .
2、若點P 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點P從(1,0)出發(fā),沿單位圓 逆時針方向運動 弧長到達Q點,則Q點坐標為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.
高三數(shù)學一輪復習教案 7
教學目標
1、了解復數(shù)的實部,虛部;
2、掌握復數(shù)相等的意義;
3、了解并掌握共軛復數(shù),及在復平面內(nèi)表示復數(shù)。
教學重點
復數(shù)的概念,復數(shù)相等的充要條件。
教學難點
用復平面內(nèi)的點表示復數(shù)M。
教學用具:直尺
課時安排:1課時
教學過程:
一、復習提問:
1、復數(shù)的定義。
2、虛數(shù)單位。
二、講授新課
1、復數(shù)的實部和虛部:
復數(shù)中的a與b分別叫做復數(shù)的實部和虛部。
2、復數(shù)相等
如果兩個復數(shù)與的實部與虛部分別相等,就說這兩個復數(shù)相等。
即:的充要條件是且。
例如:的充要條件是且。
例1:已知其中,求x與y.
解:根據(jù)復數(shù)相等的意義,得方程組:
∴
例2:m是什么實數(shù)時,復數(shù),(1)是實數(shù),(2)是虛數(shù),(3)是純虛數(shù).
解:
(1)∵時,z是實數(shù),∴,或.
。2)∵時,z是虛數(shù),∴,且
。3)∵且時,z是純虛數(shù). ∴
3、用復平面(高斯平面)內(nèi)的點表示復數(shù)
復平面的定義
建立了直角坐標系表示復數(shù)的平面,叫做復平面。
復數(shù)可用點來表示。(如圖)其中x軸叫實軸,y軸除去原點的部分叫虛軸,表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上。原點只在實軸x上,不在虛軸上。
4、復數(shù)的幾何意義:
復數(shù)集c和復平面所有的點的集合是一一對應的。
5、共軛復數(shù)
(1)當兩個復數(shù)實部相等,虛部互為相反數(shù)時,這兩個復數(shù)叫做互為共軛復數(shù)。(虛部不為零也叫做互為共軛復數(shù))
。2)復數(shù)z的`共軛復數(shù)用表示。若,則:;
(3)實數(shù)a的共軛復數(shù)仍是a本身,純虛數(shù)的共軛復數(shù)是它的相反數(shù)。
(4)復平面內(nèi)表示兩個共軛復數(shù)的點z與關于實軸對稱。
三、練習1,2,3,4.
四、小結(jié):
1、在理解時應注意:
。1)明確什么是復數(shù)的實部與虛部;
(2)弄清實數(shù)、虛數(shù)、純虛數(shù)分別對實部與虛部的要求;
(3)弄清復平面與復數(shù)的幾何意義;
(4)兩個復數(shù)不全是實數(shù)就不能比較大小。
2、復數(shù)集與復平面上的點注意事項:
。1)復數(shù)中的z,書寫時小寫,復平面內(nèi)點Z(a,b)中的Z,書寫時大寫。
。2)復平面內(nèi)的點Z的坐標是(a,b),而不是(a,bi),也就是說,復平面內(nèi)的縱坐標軸上的單位長度是1,而不是i。
。3)表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上。
。4)復數(shù)集C和復平面內(nèi)所有的點組成的集合一一對應:
五、作業(yè)1,2,3,4
六、板書設計:
§8,2
1、定義:例1 3定義:4幾何意義:
2、定義:例2 5共軛復數(shù):
高三數(shù)學一輪復習教案 8
一、教學目標
1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系。
2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。
二、能力目標
1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學生的抽象思維能力。
2、通過由已知信息寫一次函數(shù)表達式的過程,發(fā)展學生的數(shù)學應用能力。
三、情感目標
1、通過函數(shù)與變量之間的關系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學生的數(shù)學思維。
2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學生的數(shù)學應用能力。
四、教學重難點
1、一次函數(shù)、正比例函數(shù)的`概念及關系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
五、教學過程
1、新課導入有關函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,
(2)你能寫出x與y之間的關系式嗎?分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100 x)接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。
3、一次函數(shù),正比例函數(shù)的概念若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。
4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
①y=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:這道題考查的是一次函數(shù)的概念,特別要強調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B
高三數(shù)學一輪復習教案 9
1.如圖,已知直線L: 的右焦點F,且交橢圓C于A、B兩點,點A、B在直線 上的射影依次為點D、E。
(1)若拋物線 的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。
(文)若 為x軸上一點,求證:
2.如圖所示,已知圓 定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足 ,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足 的取值范圍。
3.設橢圓C: 的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q, 且
、徘髾E圓C的離心率;
、迫暨^A、Q、F三點的圓恰好與直線
l: 相切,求橢圓C的方程.
4.設橢圓 的離心率為e=
(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.
(2)求b為何值時,過圓x2+y2=t2上一點M(2, )處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.
5.已知曲線 上任意一點P到兩個定點F1(- ,0)和F2( ,0)的距離之和為4.
(1)求曲線 的方程;
(2)設過(0,-2)的直線 與曲線 交于C、D兩點,且 為坐標原點),求直線 的方程.
6.已知橢圓 的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).
(Ⅰ)當m+n0時,求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.
7.有如下結(jié)論:圓 上一點 處的切線方程為 ,類比也有結(jié)論:橢圓 處的切線方程為 ,過橢圓C: 的右準線l上任意一點M引橢圓C的兩條切線,切點為 A、B.
(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積
8.已知點P(4,4),圓C: 與橢圓E: 有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設Q為橢圓E上的一個動點,求 的取值范圍.
9.橢圓的對稱中心在坐標原點,一個頂點為 ,右焦點 與點 的距離為 。
(1)求橢圓的方程;
(2)是否存在斜率 的直線 : ,使直線 與橢圓相交于不同的兩點 滿足 ,若存在,求直線 的傾斜角 ;若不存在,說明理由。
10.橢圓方程為 的一個頂點為 ,離心率 。
(1)求橢圓的方程;
(2)直線 : 與橢圓相交于不同的兩點 滿足 ,求 。
11.已知橢圓 的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作 ,其中圓心P的坐標為 .
(1) 若橢圓的離心率 ,求 的方程;
(2)若 的圓心在直線 上,求橢圓的方程.
12.已知直線 與曲線 交于不同的兩點 , 為坐標原點.
(Ⅰ)若 ,求證:曲線 是一個圓;
(Ⅱ)若 ,當 且 時,求曲線 的離心率 的取值范圍.
13.設橢圓 的左、右焦點分別為 、 ,A是橢圓C上的一點,且 ,坐標原點O到直線 的距離為 .
(1)求橢圓C的方程;
(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點 ,較y軸于點M,若 ,求直線l的方程.
14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點 的切線方程為 為常數(shù)).
(I)求拋物線方程;
(II)斜率為 的直線PA與拋物線的另一交點為A,斜率為 的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足 ,求證線段PM的中點在y軸上;
(III)在(II)的條件下,當 時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.
15.已知動點A、B分別在x軸、y軸上,且滿足|AB|=2,點P在線段AB上,且
設點P的軌跡方程為c。
(1)求點P的軌跡方程C;
(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q
坐標為 求△QMN的面積S的最大值。
16.設 上的兩點,
已知 , ,若 且橢圓的離心率 短軸長為2, 為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由
17.如圖,F(xiàn)是橢圓 (a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為 .點C在x軸上,BCBF,B,C,F(xiàn)三點確定的圓M恰好與直線l1: 相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且 ,求直線l2的方程.
18.如圖,橢圓長軸端點為 , 為橢圓中心, 為橢圓的右焦點,且 .
(1)求橢圓的標準方程;
(2)記橢圓的'上頂點為 ,直線 交橢圓于 兩點,問:是否存在直線 ,使點 恰為 的垂心?若存在,求出直線 的方程;若不存在,請說明理由.
19.如圖,已知橢圓的中心在原點,焦點在 軸上,離心率為 ,且經(jīng)過點 . 直線 交橢圓于 兩不同的點.
20.設 ,點 在 軸上,點 在 軸上,且
(1)當點 在 軸上運動時,求點 的軌跡 的方程;
(2)設 是曲線 上的點,且 成等差數(shù)列,當 的垂直平分線與 軸交于點 時,求 點坐標.
21.已知點 是平面上一動點,且滿足
(1)求點 的軌跡 對應的方程;
(2)已知點 在曲線 上,過點 作曲線 的兩條弦 和 ,且 ,判斷:直線 是否過定點?試證明你的結(jié)論.
22.已知橢圓 的中心在坐標原點,焦點在坐標軸上,且經(jīng)過 、 、 三點.
(1)求橢圓 的方程:
(2)若點D為橢圓 上不同于 、 的任意一點, ,當 內(nèi)切圓的面積最大時。求內(nèi)切圓圓心的坐標;
(3)若直線 與橢圓 交于 、 兩點,證明直線 與直線 的交點在直線 上.
23.過直角坐標平面 中的拋物線 的焦點 作一條傾斜角為 的直線與拋物線相交于A,B兩點。
(1)用 表示A,B之間的距離;
(2)證明: 的大小是與 無關的定值,
并求出這個值。
24.設 分別是橢圓C: 的左右焦點
(1)設橢圓C上的點 到 兩點距離之和等于4,寫出橢圓C的方程和焦點坐標
(2)設K是(1)中所得橢圓上的動點,求線段 的中點B的軌跡方程
(3)設點P是橢圓C 上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM ,PN的斜率都存在,并記為 試探究 的值是否與點P及直線L有關,并證明你的結(jié)論。
25.已知橢圓 的離心率為 ,直線 : 與以原點為圓心、以橢圓 的短半軸長為半徑的圓相切.
(I)求橢圓 的方程;
(II)設橢圓 的左焦點為 ,右焦點 ,直線 過點 且垂直于橢圓的長軸,動直線 垂直 于點 ,線段 垂直平分線交 于點 ,求點 的軌跡 的方程;
(III)設 與 軸交于點 ,不同的兩點 在 上,且滿足 求 的取值范圍.
26.如圖所示,已知橢圓 : , 、 為
其左、右焦點, 為右頂點, 為左準線,過 的直線 : 與橢圓相交于 、
兩點,且有: ( 為橢圓的半焦距)
(1)求橢圓 的離心率 的最小值;
(2)若 ,求實數(shù) 的取值范圍;
(3)若 , ,
求證: 、 兩點的縱坐標之積為定值;
27.已知橢圓 的左焦點為 ,左右頂點分別為 ,上頂點為 ,過 三點作圓 ,其中圓心 的坐標為
(1)當 時,橢圓的離心率的取值范圍
(2)直線 能否和圓 相切?證明你的結(jié)論
28.已知點A(-1,0),B(1,-1)和拋物線. ,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.
(I)證明: 為定值;
(II)若△POM的面積為 ,求向量 與 的夾角;
(Ⅲ) 證明直線PQ恒過一個定點.
29.已知橢圓C: 上動點 到定點 ,其中 的距離 的最小值為1.
(1)請確定M點的坐標
(2)試問是否存在經(jīng)過M點的直線 ,使 與橢圓C的兩個交點A、B滿足條件 (O為原點),若存在,求出 的方程,若不存在請說是理由。
30.已知橢圓 ,直線 與橢圓相交于 兩點.
(Ⅰ)若線段 中點的橫坐標是 ,求直線 的方程;
(Ⅱ)在 軸上是否存在點 ,使 的值與 無關?若存在,求出 的值;若不存在,請說明理由.
31.直線AB過拋物線 的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.
(I)求 的取值范圍;
(Ⅱ)過 A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證: ∥ ;
(Ⅲ) 若P是不為1的正整數(shù),當 ,△ABN的面積的取值范圍為 時,求該拋物線的方程.
32.如圖,設拋物線 ( )的準線與 軸交于 ,焦點為 ;以 、 為焦點,離心率 的橢圓 與拋物線 在 軸上方的一個交點為 .
(Ⅰ)當 時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點 ,與拋物線 交于 、 ,如果以線段 為直徑作圓,試判斷點 與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù) ;若不存在,請說明理由.
33.已知點 和動點 滿足: ,且存在正常數(shù) ,使得 。
(1)求動點P的軌跡C的方程。
(2)設直線 與曲線C相交于兩點E,F(xiàn),且與y軸的交點為D。若 求 的值。
34.已知橢圓 的右準線 與 軸相交于點 ,右焦點 到上頂點的距離為 ,點 是線段 上的一個動點.
(I)求橢圓的方程;
(Ⅱ)是否存在過點 且與 軸不垂直的直線 與橢圓交于 、 兩點,使得 ,并說明理由.
35.已知橢圓C: ( .
(1)若橢圓的長軸長為4,離心率為 ,求橢圓的標準方程;
(2)在(1)的條件下,設過定點 的直線 與橢圓C交于不同的兩點 ,且 為銳角(其中 為坐標原點),求直線 的斜率k的取值范圍;
(3)如圖,過原點 任意作兩條互相垂直的直線與橢圓 ( )相交于 四點,設原點 到四邊形 一邊的距離為 ,試求 時 滿足的條件.
36.已知 若過定點 、以 ( )為法向量的直線 與過點 以 為法向量的直線 相交于動點 .
(1)求直線 和 的方程;
(2)求直線 和 的斜率之積 的值,并證明必存在兩個定點 使得 恒為定值;
(3)在(2)的條件下,若 是 上的兩個動點,且 ,試問當 取最小值時,向量 與 是否平行,并說明理由。
37.已知點 ,點 (其中 ),直線 、 都是圓 的切線.
(Ⅰ)若 面積等于6,求過點 的拋物線 的方程;
(Ⅱ)若點 在 軸右邊,求 面積的最小值.
38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。
(1)設F1、F2是橢圓 的兩個焦點,點F1、F2到直線 的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。
(2)設F1、F2是橢圓 的兩個焦點,點F1、F2到直線
(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。
(4)將(3)中得出的結(jié)論類比到其它曲線,請同學們給出自己研究的有關結(jié)論(不必證明)。
39.已知點 為拋物線 的焦點,點 是準線 上的動點,直線 交拋物線 于 兩點,若點 的縱坐標為 ,點 為準線 與 軸的交點.
(Ⅰ)求直線 的方程;(Ⅱ)求 的面積 范圍;
(Ⅲ)設 , ,求證 為定值.
40.已知橢圓 的離心率為 ,直線 : 與以原點為圓心、以橢圓 的短半軸長為半徑的圓相切.
(I)求橢圓 的方程;
(II)設橢圓 的左焦點為 ,右焦點 ,直線 過點 且垂直于橢圓的長軸,動直線 垂直 于點 ,線段 垂直平分線交 于點 ,求點 的軌跡 的方程;
(III)設 與 軸交于點 ,不同的兩點 在 上,且滿足 求 的取值范圍.
41.已知以向量 為方向向量的直線 過點 ,拋物線 : 的頂點關于直線 的對稱點在該拋物線的準線上.
(1)求拋物線 的方程;
(2)設 、 是拋物線 上的兩個動點,過 作平行于 軸的直線 ,直線 與直線 交于點 ,若 ( 為坐標原點, 、 異于點 ),試求點 的軌跡方程。
42.如圖,設拋物線 ( )的準線與 軸交于 ,焦點為 ;以 、 為焦點,離心率 的橢圓 與拋物線 在 軸上方的一個交點為 .
(Ⅰ)當 時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點 ,
與拋物線 交于 、 ,如果以線段 為直徑作圓,
試判斷點 與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù) ;若不存在,請說明理由.
43.設橢圓 的一個頂點與拋物線 的焦點重合, 分別是橢圓的左、右焦點,且離心率 且過橢圓右焦點 的直線 與橢圓C交于 兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線 ,使得 .若存在,求出直線 的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經(jīng)過原點O的弦, MN AB,求證: 為定值.
44.設 是拋物線 的焦點,過點M(-1,0)且以 為方向向量的直線順次交拋物線于 兩點。
(Ⅰ)當 時,若 與 的夾角為 ,求拋物線的方程;
(Ⅱ)若點 滿足 ,證明 為定值,并求此時△ 的面積
45.已知點 ,點 在 軸上,點 在 軸的正半軸上,點 在直線 上,且滿足 .
(Ⅰ)當點 在 軸上移動時,求點 的軌跡 的方程;
(Ⅱ)設 、 為軌跡 上兩點,且 0, ,求實數(shù) ,
使 ,且 .
46.已知橢圓 的右焦點為F,上頂點為A,P為C 上任一點,MN是圓 的一條直徑,若與AF平行且在y軸上的截距為 的直線 恰好與圓 相切。
(1)已知橢圓 的離心率;
(2)若 的最大值為49,求橢圓C 的方程.
高三數(shù)學一輪復習教案 10
【學習目標】
1.了解復合函數(shù)的概念,理解復合函數(shù)的求導法則,能求簡單的復合函數(shù)(僅限于形如f(ax+b))的導數(shù).
2.會用復合函數(shù)的導數(shù)研究函數(shù)圖像或曲線的特征.
3.會用復合函數(shù)的導數(shù)研究函數(shù)的單調(diào)性、極值、最值.
【知識復習與自學質(zhì)疑】
1.復合函數(shù)的求導法則是什么?
2.(1)若,則________.(2)若,則_____.(3)若,則___________.(4)若,則___________.
3.函數(shù)在區(qū)間_____________________________上是增函數(shù),在區(qū)間__________________________上是減函數(shù).
4.函數(shù)的單調(diào)性是_________________________________________.
5.函數(shù)的極大值是___________.
6.函數(shù)的值,最小值分別是______,_________.
【例題精講】
1.求下列函數(shù)的導數(shù)(1);(2).
2.已知曲線在點處的切線與曲線在點處的切線相同,求的值.
【矯正反饋】
1.與曲線在點處的切線垂直的一條直線是___________________.
2.函數(shù)的極大值點是_______,極小值點是__________.
(不好解)3.設曲線在點處的切線斜率為,若,則函數(shù)的周期是____________.
4.已知曲線在點處的切線與曲線在點處的切線互相垂直,為原點,且,則的面積為______________.
5.曲線上的點到直線的最短距離是___________.
【遷移應用】
1.設,,若存在,使得,求的取值范圍.
2.已知,,若對任意都有,試求的取值范圍.
【概率統(tǒng)計復習】
一、知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別共同點不同點相互聯(lián)系適用范圍
簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少
系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多
分層抽樣將總體分成若干層,按個體個數(shù)的比例抽取在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的'概率為
(2)系統(tǒng)抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4)要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是矩形的中點的橫坐標③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設一組樣本數(shù)據(jù),其平均數(shù)為則方差,標準差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有個,而且所有結(jié)果都是等可能的,如果事件包含個結(jié)果,那么事件的概率P=
特別提醒:古典概型的兩個共同特點:
○1,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2,即每個基本事件出現(xiàn)的可能性相等。
4.幾何概型的概率公式:P(A)=
特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業(yè)務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務人員、管理人員、后勤人員的人數(shù)應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數(shù)分別為()
A.19、13B.13、19C.20、18D.18、20
(3)統(tǒng)計某校1000名學生的數(shù)學會考成績,
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是;
優(yōu)秀率為。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:
9.48.49.49.99.69.49.7
去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值
和方差分別為()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()
【高三數(shù)學一輪復習教案】相關文章:
高三數(shù)學一輪復習教案11-04
高三數(shù)學一輪復習教案5篇11-05
高三數(shù)學一輪復習教案4篇01-29
怎樣進行高三數(shù)學第一輪復習06-08
高三數(shù)學一輪復習教學計劃06-14
高三歷史第一輪復習方案04-06
“走近國際社會”高三一輪復習教學設計04-01
數(shù)學復習教案01-27
高三語文的復習教案08-20