高二數(shù)學優(yōu)秀教案9篇
作為一位優(yōu)秀的人民教師,可能需要進行教案編寫工作,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。我們應該怎么寫教案呢?下面是小編為大家收集的高二數(shù)學優(yōu)秀教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高二數(shù)學優(yōu)秀教案1
一、教學過程
1、復習。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。
求出函數(shù)y=x3的反函數(shù)。
2、新課。
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):
教師在畫出上述圖象的學生中選定生1,將他的屏幕內(nèi)容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
(學生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
(生1將他的制作過程重新重復了一次。)
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
(學生再次陷入思考,一會兒有學生舉手。)
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系?
(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)
師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?
(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)
生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。
師:能說說是關于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)
學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。
師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的'圖象,也有這種對稱關系嗎?請同學們用其他函數(shù)來試一試。
(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)
還是有部分學生舉手,因為他們畫出了如下圖象(圖3):
教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學生一起總結(jié):
點(x,y)與點(y,x)關于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。
二、反思與點評
1、在開學初,我就教學幾何畫板4.0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4.04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學中,我有意選擇了幾何畫板4.0進行教學。
2、荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。
3、在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
高二數(shù)學優(yōu)秀教案2
[核心必知]
1.預習教材,問題導入
根據(jù)以下提綱,預習教材P2~P5,回答下列問題.
(1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數(shù)學中算法通常指什么?
提示:在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.
2.歸納總結(jié),核心必記
(1)算法的概念
12世紀的算法指的是用阿拉伯數(shù)字進行算術運算的過程續(xù)表
數(shù)學中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟
現(xiàn)代算法通?梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題
(2)設計算法的目的
計算機解決任何問題都要依賴于算法.只有將解決問題的'過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題.
[問題思考]
(1)求解某一個問題的算法是否是的?
提示:不是.
(2)任何問題都可以設計算法解決嗎?
提示:不一定.
高二數(shù)學優(yōu)秀教案3
教學目標
一、知識與技能
(1)理解并掌握弧度制的定義;(2)領會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應關系.(6)使學生通過弧度制的學習,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關系.
二、過程與方法
創(chuàng)設情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領會定義的合理性.根據(jù)弧度制的定義推導并運用弧長公式和扇形面積公式.以具體的實例學習角度制與弧度制的互化,能正確使用計算器.
三、情態(tài)與價值
通過本節(jié)的學習,使同學們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應關系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應,為下一節(jié)學習三角函數(shù)做好準備
教學重難點
重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的.運用.
難點:理解弧度制定義,弧度制的運用.
教學工具
投影儀等
教學過程
一、創(chuàng)設情境,引入新課
師:有人問:?诘饺齺営卸噙h時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.
二、講解新課
1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.
2.弧度制的定義
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).
(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.
我們知道,角有正負零角之分,它的弧度數(shù)也應該有正負零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉(zhuǎn)方向來決定.
角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應關系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應.
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關系。
五、作業(yè)布置
作業(yè):習題1.1A組第7,8,9題.
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關系。
課后習題
作業(yè):習題1.1A組第7,8,9題.
板書
高二數(shù)學優(yōu)秀教案4
一、學情分析
本節(jié)課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。
二、考綱要求
1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.
2.理解用坐標表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.
4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.
三、教學過程
(一)知識梳理:
1.向量坐標的求法
(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.
(2)設A(x1,y1),B(x2,y2),則
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐標運算
1.向量加法、減法、數(shù)乘向量
設=(x1,y1),=(x2,y2),則
+=-=λ=.
2.向量平行的坐標表示
設=(x1,y1),=(x2,y2),則∥?xxxxxxxxxxxxxxxx.
(三)核心考點·習題演練
考點1.平面向量的坐標運算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設(1)求3+-3;
(2)求滿足=m+n的實數(shù)m,n;
練:(20xx江蘇,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),則m-n的值為
考點2平面向量共線的坐標表示
例2:平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求實數(shù)k的值;
練:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ為實數(shù),(+λ)∥,則λ=( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結(jié):
1.向量共線的兩種表示形式
設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.
考點3平面向量數(shù)量積的坐標運算
例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,
則的`值為;的值為.
【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
練:(20xx,安徽,13)設=(1,2),=(1,1),=+k.若⊥,則實數(shù)k的值等于( )
【思考】兩非零向量⊥的充要條件:·=0? .
解題心得:
(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點4:平面向量模的坐標表示
例4:(20xx湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則的值為( )
A.6B.7C.8D.9
練:(20xx,上海,12)
在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉(zhuǎn)化為數(shù)量積運算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
五、課后作業(yè)(課后習題1、2題)
高二數(shù)學優(yōu)秀教案5
教學要求:理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。
教學重點:熟練地求交點。
教學過程:
一、復習準備:
1.直線A x+B +C =0與直線A x+B +C =0,
平行的充要條件是 ,相交的充要條件是 ;
重合的充要條件是 ,垂直的充要條件是 。
2.知識回顧:充分條件、必要條件、充要條件。
二、講授新課:
1.教學例題:
①出示例:求直線=x+1截曲線= x 所得線段的中點坐標。
、谟蓪W生分析求解的`思路→學生練→老師評講
(聯(lián)立方程組→消用韋達定理求x坐標→用直線方程求坐標)
、墼嚽蟆喺〗Y(jié)思路。→變題:求弦長
、艹鍪纠寒攂為何值時,直線=x+b與曲線x + =4 分別 相交?相切? 相離?
、莘治觯喝N位置關系與兩曲線的交點情況有何關系?
、迣W生試求→訂正→小結(jié)思路。
⑦討論其它解法?
解二:用圓心到直線的距離求解;
解三:用數(shù)形結(jié)合法進行分析。
、嘤懻摚簝蓷l曲線F (x,)=0與F (x,)=0相交的充要條件是什么?
如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?
。 聯(lián)立方程組后,一解時:相切或相交; 二解時:相交; 無解時:相離)
2.練習:
求過點(-2,- )且與拋物線= x 相切的直線方程。
三、鞏固練習:
1.若兩直線x+=3a,x-=a的交點在圓x + =5上,求a的值。
。ù鸢福篴=±1)
2.求直線=2x+3被曲線=x 截得的線段長。
3.課堂作業(yè):書P72 3、4、10題。
高二數(shù)學優(yōu)秀教案6
1.預習教材,問題導入
根據(jù)以下提綱,預習教材P54~P57,回答下列問題。
(1)在教材P55的“探究”中,怎樣獲得樣本?
提示:將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸取。
(2)最常用的簡單隨機抽樣方法有哪些?
提示:抽簽法和隨機數(shù)法。
(3)你認為抽簽法有什么優(yōu)點和缺點?
提示:抽簽法的優(yōu)點是簡單易行,當總體中個體數(shù)不多時較為方便,缺點是當總體中個體數(shù)較多時不宜采用。
(4)用隨機數(shù)法讀數(shù)時可沿哪個方向讀?
提示:可以沿向左、向右、向上、向下等方向讀數(shù)。
2.歸納總結(jié),核心必記
(1)簡單隨機抽樣:一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
(2)最常用的簡單隨機抽樣方法有兩種——抽簽法和隨機數(shù)法。
(3)一般地,抽簽法就是把總體中的N個個體分段,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
(4)隨機數(shù)法就是利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣。
(5)簡單隨機抽樣有操作簡便易行的.優(yōu)點,在總體個數(shù)不多的情況下是行之有效的。
[問題思考]
(1)在簡單隨機抽樣中,某一個個體被抽到的可能性與第幾次被抽到有關嗎?
提示:在簡單隨機抽樣中,總體中的每個個體在每次抽取時被抽到的可能性相同,與第幾次被抽到無關。
(2)抽簽法與隨機數(shù)法有什么異同點?
提示:
相同點
、俣紝儆诤唵坞S機抽樣,并且要求被抽取樣本的總體的個體數(shù)有限;
、诙际菑目傮w中逐個不放回地進行抽取
不同點
①抽簽法比隨機數(shù)法操作簡單;
②隨機數(shù)法更適用于總體中個體數(shù)較多的時候,而抽簽法適用于總體中個體數(shù)較少的情況,所以當總體中的個體數(shù)較多時,應當選用隨機數(shù)法,可以節(jié)約大量的人力和制作號簽的成本
高二數(shù)學優(yōu)秀教案7
教學目的:掌握圓的標準方程,并能解決與之有關的問題
教學重點:圓的標準方程及有關運用
教學難點:標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:⒈說出下列圓的'方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
⑴(x-2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結(jié)練習P771,2,3,4
五、作業(yè)P811,2,3,4
高二數(shù)學優(yōu)秀教案8
【教材分析】
1.知識內(nèi)容與結(jié)構(gòu)分析
集合論是現(xiàn)代數(shù)學的一個重要的基礎。在高中數(shù)學中,集合的初步知識與其他內(nèi)容有著密切的聯(lián)系,是學習、掌握和使用數(shù)學語言的基礎,集合論以及它所反映的數(shù)學思想在越來越廣泛的領域中得到應用。課本從學生熟悉的集合(自然數(shù)集合、有理數(shù)的集合等)出發(fā),結(jié)合實例給出了元素、集合的含義,學生通過對具體實例的抽象、概括發(fā)展了邏輯思維能力。
2.知識學習意義分析
通過自主探究的學習過程,了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。
3.教學建議與學法指導
由于本節(jié)新概念、新符號較多,雖然內(nèi)容較為淺顯,但不應講得過快,應在講解概念的同時,讓學生多閱讀課本,互相交流,在此基礎上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結(jié)等形式,調(diào)動學生的積極性。
【學情分析】
在初中,學生學習過一些點的集合或軌跡,如:平面內(nèi)到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學生學習本節(jié)課的知識有一定的幫助,只不過現(xiàn)在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現(xiàn)代數(shù)學的基本語言,使用這種語言,不僅有助于簡潔、準確地表達數(shù)學內(nèi)容,還可以用來刻畫和解決生活中的許多問題。學習集合,可以發(fā)展同學們用數(shù)學語言進行交流的能力。
【教學目標】
1.知識與技能
(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的確定性、互異性,無序性,知道常用數(shù)集及其記法;
(2)掌握集合的常用表示法——列舉法和描述法。
2.過程與方法
通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的.語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉(zhuǎn)換和抽象概括能力,樹立用集合語言表示數(shù)學內(nèi)容的意識。
3.情態(tài)與價值
在掌握基本概念的基礎上,能夠解決相關問題,獲得數(shù)學學習的成就感,提高學生分析問題和解決問題的能力,培養(yǎng)學生的應用意識。
【重點難點】
1.教學重點:集合的基本概念與表示方法。
2.教學難點:選擇合適的方法正確表示集合。
【教學思路】
通過實例以及學生熟悉的數(shù)集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結(jié)達到掌握本節(jié)課內(nèi)容的目的。教學過程按照“提出問題——學生討論——歸納總結(jié)——獲得新知——自我檢測”環(huán)節(jié)安排。
【教學過程】
課前準備:
提前留給學生預習方案:a.預習初中數(shù)學中有關集合的章節(jié);b.預習本節(jié)內(nèi)容,試著找出與以往的聯(lián)系;c.搜集生活中的集合的使用實例。
導入新課:同學們,我們今天要學習的是集合的知識,在小學和初中,我們已經(jīng)接觸過了一些集合,例如,自然數(shù)的集合,有理數(shù)的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等,F(xiàn)在呢,我要說的是:我們大家通過對初中知識的預習和對本節(jié)課的預習我相信你們能夠很大一部分已經(jīng)掌握了本節(jié)知識的主要問題,對不對?(同學們會高興地說:對!)
下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優(yōu)點與不足,好不好?(同學們在被調(diào)動起情緒的時候應該說:好!)
教與學的過程:
預設問題設計意圖師生活動教師活動
一組二組三組活動同學們,通過看課本2頁的(1)至(8)個例子,同學們有什么啟發(fā)嗎?提出一個模糊一點的問題,留給三組學生更寬的思考空間。啟發(fā)思考,激發(fā)興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學過很多集合的知識了。我們會舉出一些集合的例子。)
學生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養(yǎng)學生的總結(jié)概括能力。引導學生共同得出正確的結(jié)論。最后給出準確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學生討論,分組輪流回答。你們能說出元素與集合是什么關系嗎?怎么表示呀?用什么額符號表示。客ㄟ^學生自己總結(jié),對元素與集合的關系記憶更深刻。教師指導學生得出準確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學生討論,分組輪流回答。
可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導學生認識集合的兩種常見表示方法。教師引導指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內(nèi)線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點啊?拓展知識,讓學生對元素的特征有極愛哦理性的認識,并開發(fā)其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。
即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。
(2)互異性:同一個集合中的元素是互不相同的。
(3)無序性:任意改變集合中元素的排列次序,它們?nèi)匀槐硎就粋集合。)學生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構(gòu)成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學生探討回答。
高二數(shù)學優(yōu)秀教案9
教學目的:
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對值的不等式的性質(zhì);
3.會解簡單的高次不等式、分式不等式、含絕對值的不等式、簡單的無理不等式、指數(shù)不等式和對數(shù)不等式.學會運用數(shù)形結(jié)合、分類討論、等價轉(zhuǎn)換的思想方法分析和解決有關
教學過程:
一、復習引入:本章知識點
二、講解范例:幾類常見的問題
(一) 含參數(shù)的不等式的解法
例1解關于x的.不等式 .
例2解關于x的不等式 .
例3解關于x的不等式 .
例4解關于x的不等式
例5 滿足 的x的集合為A;滿足 的x
的集合為B 1 若AB 求a的取值范圍 2 若AB 求a的取值范圍 3 若AB為僅含一個元素的集合,求a的值.
(二)函數(shù)的最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當 即 時,
例7 若 ,求 的最值。
例8 已知x , y為正實數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
三、作業(yè):
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當a在什么范圍內(nèi)方程: 有兩個不同的負根
6.若方程 的兩根都對于2,求實數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時求 的最小值, 的最小值
2設 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
高各取多少時,用料最省?(不計加工時的損耗及接縫用料)
【高二數(shù)學優(yōu)秀教案】相關文章:
高二數(shù)學優(yōu)秀教案09-25
高二數(shù)學優(yōu)秀教案11-09
高二優(yōu)秀數(shù)學教案11-14