天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>初二數(shù)學(xué)上冊(cè)教案

初二數(shù)學(xué)上冊(cè)教案

時(shí)間:2022-11-16 18:35:58 八年級(jí)數(shù)學(xué)教案 我要投稿

初二數(shù)學(xué)上冊(cè)教案(15篇)

  作為一名為他人授業(yè)解惑的教育工作者,時(shí)常要開展教案準(zhǔn)備工作,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。我們?cè)撛趺慈懡贪改兀恳韵率切【幷淼某醵䲠?shù)學(xué)上冊(cè)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

初二數(shù)學(xué)上冊(cè)教案(15篇)

初二數(shù)學(xué)上冊(cè)教案1

  教學(xué)目的

  通過分析儲(chǔ)蓄中的數(shù)量關(guān)系、商品利潤(rùn)等有關(guān)知識(shí),經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。

  重點(diǎn)、難點(diǎn)

  1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。

  2.難點(diǎn):找出能表示整個(gè)題意的等量關(guān)系。

  教學(xué)過程

  一、復(fù)習(xí)

  1.儲(chǔ)蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

  本利和=本金×利息×年數(shù)+本金

  2.商品利潤(rùn)等有關(guān)知識(shí)。

  利潤(rùn)=售價(jià)—成本; =商品利潤(rùn)率

  二、新授

  問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲(chǔ)蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?

  利息—利息稅=48.6

  可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

  2.43%×X×2,利息稅為2.43%X×2×20%

  根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

  問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得2.43%x·2.80%=48.6

  解方程,得x=1250

  例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

  大家想一想這15元的利潤(rùn)是怎么來的?

  標(biāo)價(jià)的80%(即售價(jià))-成本=15

  若設(shè)這種服裝每件的'成本是x元,那么

  每件服裝的標(biāo)價(jià)為:(1+40%)x

  每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%

  每件服裝的利潤(rùn)為:(1+40%)x·80%—x

  由等量關(guān)系,列出方程:

  (1+40%)x·80%—x=15

  解方程,得x=125

  答:每件服裝的成本是125元。

  三、鞏固練習(xí)

  教科書第15頁,練習(xí)1、2。

  四、小結(jié)

  當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

  五、作業(yè)

  教科書第16頁,習(xí)題6.3.1,第4、5題。

初二數(shù)學(xué)上冊(cè)教案2

  一、教學(xué)目的:

  1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.

  2.理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積.

  3.通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力.

  4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

  二、重點(diǎn)、難點(diǎn)

  1.教學(xué)重點(diǎn):菱形的性質(zhì)1、2.

  2.教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的.綜合應(yīng)用.

  三、課堂引入

  1.(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?

  2.(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,請(qǐng)看演示:(可將事先按如圖做成的一組對(duì)邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.

  菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.

  【強(qiáng)調(diào)】 菱形(1)是平行四邊形;(2)一組鄰邊相等.

  讓學(xué)生舉一些日常生活中所見到過的菱形的例子.

  四、例習(xí)題分析

  例1(補(bǔ)充)已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E.

  求證:∠AFD=∠CBE.

  證明:∵四邊形ABCD是菱形,

  ∴ CB=CD,CA平分∠BCD.

  ∴∠BCE=∠DCE.又CE=CE,

  ∴△BCE≌△COB(SAS).

  ∴∠CBE=∠CDE.

  ∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

  ∴ ∠AFD=∠CBE.

  例2(教材P108例2)略

  五、隨堂練習(xí)

  1.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為.

  2.已知菱形的兩條對(duì)角線分別是6cm和8cm,求菱形的周長(zhǎng)和面積.

  3.已知菱形ABCD的周長(zhǎng)為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對(duì)角線的長(zhǎng)和面積.

  4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點(diǎn),且BE=DF.求證:∠AEF=∠AFE.

  六、課后練習(xí)

  1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長(zhǎng)為8cm,求菱形的高.

  2.如圖,四邊形ABCD是邊長(zhǎng)為13cm的菱形,其中對(duì)角線BD長(zhǎng)10cm,求(1)對(duì)角線AC的長(zhǎng)度;(2)菱形ABCD的面積.

初二數(shù)學(xué)上冊(cè)教案3

  教學(xué)目標(biāo):

  知識(shí)與技能

  1、掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;

  2、進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、

  3、會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、

  情感態(tài)度與價(jià)值觀

  敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)、

  教學(xué)重點(diǎn)

  運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、

  教學(xué)難點(diǎn)

  會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、

  課前準(zhǔn)備

  標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇

  教學(xué)過程:

  復(fù)習(xí)引入:

  請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

  已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?

  創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法、

  這樣做得到的是一個(gè)直角三角形嗎?

  提出課題:能得到直角三角形嗎

  講授新課:

  1、如何來判斷?(用直角三角板檢驗(yàn))

  這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

  就是說,如果三角形的三邊為,,,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))

  2、繼續(xù)嘗試:下面的`三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:

  5,12,13; 6,8,10; 8,15,17、

  (1)這三組數(shù)都滿足a2 +b2=c2嗎?

  (2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?

  3、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2,那么這個(gè)三角形是直角三角形、

  滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、

  4、例1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角、工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?

  隨堂練習(xí):

  1、下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說說你的理由、

 、9,12,15; ⑵15,36,39;

  ⑶12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41,AC=40,AB=9,則此三角形為xxxxxxx三角形,xxxxxx是角、

  3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積、

  4、習(xí)題1、3

  課堂小結(jié):

  1、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2,那么這個(gè)三角形是直角三角形、

  2、滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、

初二數(shù)學(xué)上冊(cè)教案4

  教學(xué)目標(biāo):

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

  3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

  5. 通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

  教學(xué)重點(diǎn):三角形內(nèi)角和定理及其推論。

  教學(xué)難點(diǎn):三角形內(nèi)角和定理的證明

  教學(xué)用具:直尺、微機(jī)

  教學(xué)方法:互動(dòng)式,談話法

  教學(xué)過程:

  1、創(chuàng)設(shè)情境,自然引入

  把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

  問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

  問題2 你能用幾何推理來論證得到的關(guān)系嗎?

  對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

  2、設(shè)問質(zhì)疑,探究嘗試

  (1)求證:三角形三個(gè)內(nèi)角的和等于

  讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

  問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè) 什么角?

  問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

  (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

  問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學(xué)生回答后,電腦顯示圖表。

  (3)三角形中三個(gè)內(nèi)角之和為定值 ,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?

  問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

  問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

  問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

  其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

  這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

  3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

  通過上面四個(gè)例題的.分析與討論,有利于學(xué)生基礎(chǔ)知識(shí)與基本能力的掌握與提高,同時(shí)更有利于學(xué)生創(chuàng)新意識(shí)與創(chuàng)造性思維能力的培養(yǎng),在練習(xí)、講評(píng)等教學(xué)環(huán)節(jié)中,形成師生之間的、學(xué)生之間的“雙向反饋”是很重要的。

  4、變式訓(xùn)練,鞏固提高

  根據(jù)例4 的度數(shù)的求法,思考如下問題:

  (3)如圖5,過D點(diǎn)畫AB的平行線MN,與AC、BC交于點(diǎn)M、N,則 的度數(shù)多少?

  (4)當(dāng)MN繞著點(diǎn)D旋轉(zhuǎn)過程中, 會(huì)有怎樣的變化?

  提示:變化1 當(dāng)直線MN與AC、BC的交點(diǎn)仍在線段AC、BC上時(shí), =

  變化2 當(dāng)直線MN與AC的交點(diǎn)在線段AC上,與BC的交點(diǎn)在BC的延長(zhǎng)線上時(shí),

  變化3 當(dāng)直線MN與AC的交點(diǎn)在線段AC的延長(zhǎng)線上,與BC的交點(diǎn)在線段BC上時(shí), =

  變化4當(dāng)直線MN與AC、BC的交點(diǎn)在C點(diǎn)時(shí), =

  經(jīng)過這樣的變式、發(fā)展、學(xué)習(xí),不僅使學(xué)生鞏固了所學(xué)的數(shù)學(xué)知識(shí),也使學(xué)生體驗(yàn)了數(shù)學(xué)的運(yùn)動(dòng)變化觀,使學(xué)生的思維得到了培養(yǎng)。

  5、小結(jié)

  通過設(shè)置問題:“本節(jié)在知識(shí)方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進(jìn)行小結(jié)。強(qiáng)調(diào)學(xué)生注意:輔助線的作用及運(yùn)用定理及推論解決問題時(shí),要善于抓住條件與結(jié)論的關(guān)系。

  6、布置作業(yè)

  a、書面作業(yè)P43#3

  b、上交作業(yè)P42#16、17

初二數(shù)學(xué)上冊(cè)教案5

  教學(xué)目標(biāo)

  1知識(shí)與技能目標(biāo)

  (1)通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性.

 。2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由.

  2過程與方法目標(biāo)

 。1)學(xué)生親自動(dòng)手做拼圖活動(dòng),感受無理數(shù)存在的必要性和合理性,培養(yǎng)學(xué)生的動(dòng)手能力和合作精神.

 。2)通過回顧有理數(shù)的有關(guān)知識(shí),能正確地進(jìn)行推理和判斷識(shí)別某些數(shù)是否為有理數(shù)、無理數(shù),訓(xùn)練他們的思維判斷力.

 。3)借助計(jì)算器進(jìn)行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動(dòng)中進(jìn)一步發(fā)展學(xué)生獨(dú)立思考、合作交流的意識(shí)和能力.

  3情感與態(tài)度目標(biāo)

  (1)激勵(lì)學(xué)生積極參與教學(xué)活動(dòng),提高大家學(xué)習(xí)數(shù)學(xué)的熱情.

 。2)引導(dǎo)學(xué)生充分進(jìn)行交流,討論與探索等教學(xué)活動(dòng),培養(yǎng)他們的合作精神與鉆研精神,借助計(jì)算器進(jìn)行估算.

 。3)了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻(xiàn)身精神.

  教學(xué)重點(diǎn)

  1讓學(xué)生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實(shí)存在著不同于有理數(shù)的數(shù).

  2會(huì)判斷一個(gè)數(shù)是否為有理數(shù),是否不是有理數(shù).

  3用計(jì)算器進(jìn)行無理數(shù)的估算.

  教學(xué)難點(diǎn)

  1把兩個(gè)邊長(zhǎng)為1的正方形拼成一個(gè)大正方形的動(dòng)手操作過程.

  2無理數(shù)概念的建立及估算.

  3判斷一個(gè)數(shù)是否為有理數(shù).

  教學(xué)準(zhǔn)備:多媒體,兩個(gè)邊長(zhǎng)為1的正方形,剪刀,短繩.

  教學(xué)過程:

  第一環(huán)節(jié):章節(jié)引入(2分鐘,學(xué)生閱讀感受)

  內(nèi)容:.小紅是剛升入八年級(jí)的新生,一個(gè)周末的上午,當(dāng)工程師的爸爸給小紅出了兩個(gè)數(shù)學(xué)題:

 。1)兩個(gè)數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?

  (2)一個(gè)邊長(zhǎng)為6cm的正方形木板,按如圖的痕跡鋸掉四個(gè)一樣的直角三角形.請(qǐng)計(jì)算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長(zhǎng)又是多少厘米呢?你能幫小紅解決這個(gè)問題嗎?

  b.你能求出面積為2的正方形的邊長(zhǎng)嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分?jǐn)?shù)(即有理數(shù))來表示嗎?

  第二環(huán)節(jié):復(fù)習(xí)引入(3分鐘,學(xué)生口答)

  內(nèi)容:閱讀下面的資料,在數(shù)學(xué)中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當(dāng)p=1,q為任意整數(shù)時(shí),有理數(shù)就是指所有的整數(shù),如:=-2等,當(dāng)p≠1時(shí),由p、q互質(zhì)可知,有理數(shù)就是指所有的分?jǐn)?shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分?jǐn)?shù)的統(tǒng)稱.

  請(qǐng)用上述材料中所涉及的知識(shí)證明下面的問題:

  a.直角邊長(zhǎng)分別為3和1的直角三角形的斜邊長(zhǎng)是不是有理數(shù)?

  b.復(fù)習(xí)前面學(xué)過的數(shù),有理數(shù)包括整數(shù)和分?jǐn)?shù),有理數(shù)范圍是否滿足實(shí)際生活的需要呢?

  第三環(huán)節(jié):活動(dòng)探究(15分鐘,學(xué)生動(dòng)手操作,小組合作探究)

 。ㄒ唬┌l(fā)現(xiàn)新數(shù)

  內(nèi)容:將課前已準(zhǔn)備好的兩個(gè)邊長(zhǎng)為1的小正方形剪一剪,拼一拼,設(shè)法得到一個(gè)大正方形.

  在學(xué)生活動(dòng)的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:

  (1)設(shè)大正方形的'邊長(zhǎng)為,應(yīng)滿足什么條件?

 。2)滿足:2=2的數(shù)是一個(gè)什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?

 。3)可能是分?jǐn)?shù)嗎?說說你的理由?

  引出課題《數(shù)怎么又不夠用了》

  (二)感受新數(shù)的廣泛性

  內(nèi)容:面積為5的正方形,它的邊長(zhǎng)b可能是有理數(shù)嗎?說說你的理由。

 。ㄈ╈柟舔(yàn)證,應(yīng)用拓展

  內(nèi)容:aB,C是一個(gè)生活小區(qū)的兩個(gè)路口,BC長(zhǎng)為2千米,A處是一個(gè)花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長(zhǎng)可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說明理由.

  b如圖(1)是由16個(gè)邊長(zhǎng)為1的小正方形拼成的,試從連接這些

  小正方形的兩個(gè)頂點(diǎn)所得的線段中,分別找出兩條長(zhǎng)度是有理數(shù)的線段,兩條長(zhǎng)度不是有理數(shù)的線段

  第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學(xué)生閱讀)

  內(nèi)容:早在公元前,古希臘數(shù)學(xué)家畢達(dá)哥拉斯認(rèn)為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來,這個(gè)學(xué)派中的一個(gè)叫希伯索斯的成員發(fā)現(xiàn)邊長(zhǎng)為1的正方形的對(duì)角線的長(zhǎng)不能用整數(shù)或整數(shù)之比來表示,這個(gè)發(fā)現(xiàn)動(dòng)搖了畢達(dá)哥拉斯學(xué)派的信條,據(jù)說,為此希伯斯被投進(jìn)了大海,他為真理而獻(xiàn)出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn).

  第五環(huán)節(jié):課時(shí)小結(jié)(2分鐘,全班交流)

  內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會(huì)?有哪些困難需要?jiǎng)e人幫你解決?

  b感受數(shù)不夠用了,會(huì)確定一個(gè)數(shù)是有理數(shù)或不是有理數(shù).

  c本節(jié)課用到基本方法:動(dòng)手、操作、觀察、思考,猜想驗(yàn)證,推理,歸納等過程,獲取數(shù)學(xué)知識(shí).

  第六環(huán)節(jié):布置作業(yè)

初二數(shù)學(xué)上冊(cè)教案6

  教學(xué)目標(biāo):

  知識(shí)與技能:會(huì)解含有分母的一元一次不等式;能夠用不等式表達(dá)數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。

  過程與方法:經(jīng)歷解方程和解不等式兩種過程的比較,體會(huì)類比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。

  情感態(tài)度、價(jià)值觀:通過一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認(rèn)真、堅(jiān)持等良好學(xué)習(xí)習(xí)慣。.

  教材分析:

  本節(jié)教材首先讓學(xué)生動(dòng)手做一做解兩個(gè)不等式;之后讓大家談?wù)劷庖辉淮尾坏仁脚c解一元一次方程的異同點(diǎn);最后是關(guān)于通過列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯(cuò),可以采用通過學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問題,學(xué)生確實(shí)會(huì)有一定困難,主要是思考不夠認(rèn)真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。

  教學(xué)重點(diǎn):

  1、含有分母的一元一次不等式的解法

  2、用不等式表達(dá)數(shù)量之間的不等關(guān)系

  3、確定不等式的整數(shù)解

  教學(xué)難點(diǎn):

  1、解含有分母的一元一次不等式時(shí),去分母這一部的.準(zhǔn)確性。

  2、不等式的整數(shù)解的確定

  教學(xué)流程:

  一、直接引入

  我們學(xué)習(xí)了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯(lián)系呢今天我們來探究一下。

  二、探究新知

  (一)解一元一次方程和解一元一次不等式的異同點(diǎn)

  1、出示問題,讓學(xué)生板演

  找兩名同學(xué),分別解下面兩個(gè)問題:

  (1)解方程:﹦

  (2)解不等式:

  2、小組討論解一元一次方程和解一元一次不等式的過程的異同點(diǎn)。

  3、師生交流。

  相同點(diǎn):解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號(hào)移項(xiàng),合并同類項(xiàng)化系數(shù)為1。

  不同點(diǎn):在解一元一次不等式的化系數(shù)為1時(shí),要注意不等式兩邊乘或除以同一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向。

  4、運(yùn)用新知。

  將下列不等式中的分母化去:

初二數(shù)學(xué)上冊(cè)教案7

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;

  2、會(huì)求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式

  教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計(jì)算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的'式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計(jì)算

  問:計(jì)算思路是什么?

  答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

  二、求代數(shù)式的值。 注意兩點(diǎn):

  (1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。

  例3 已知,求的值。

  分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母。可使計(jì)算簡(jiǎn)便。

  例4 已知,求的值。

  觀察代數(shù)式的特點(diǎn),請(qǐng)說出求這個(gè)代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。

  三、小結(jié)

  1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

初二數(shù)學(xué)上冊(cè)教案8

  教學(xué)目標(biāo)

  1.掌握正方形的定義、性質(zhì)和判定及它們初步應(yīng)用.

  2.理解正方形與平行四邊形、矩形、菱形的內(nèi)在聯(lián)系.

  3.通過正方形與平行四邊形、矩形、菱形的聯(lián)系的教學(xué)來提高學(xué)生的邏輯思維能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn)是正方形的定義及正方形與矩形、菱形的聯(lián)系;

  難點(diǎn)是正方形與矩形、菱形的關(guān)系及正方形的性質(zhì)、判定的靈活運(yùn)用.

  教學(xué)過程設(shè)計(jì)

  一、通過知識(shí)結(jié)構(gòu)的教學(xué),學(xué)習(xí)正方形的知識(shí).

  1.復(fù)習(xí)平行四邊形、矩形、菱形的定義.

  學(xué)生邊回答,教師邊用活動(dòng)教具演示平行四邊形演變成矩形、菱形的過程,并畫出它們之間的內(nèi)在聯(lián)系圖.(畫出圖4-50(a)中的四邊形,平行四邊形、矩形、菱形及箭頭)

  2.類比聯(lián)想,用運(yùn)動(dòng)方式得出正方形的定義.

  問:既然矩形、菱形都能由平行四邊形運(yùn)動(dòng)變化得到,那么正方形呢?

  啟發(fā)學(xué)生將小學(xué)熟悉的正方形與平行四邊形作比較,用教具演示出平行四邊形形成正方形的過程,同時(shí)歸納出正方形的定義.教師板書定義并畫出圖4-50中的正方形及箭頭①.

  3.完善特殊的平行四邊形的知識(shí)結(jié)構(gòu).

  (1)師生共同分析正方形定義的三個(gè)要點(diǎn):①是平行四邊形;②有一個(gè)角是直角;③有一組鄰邊相等.

  (2)對(duì)比正方形與矩形、菱形的定義,得出它們的聯(lián)系:

  ①由正方形定義①,②條件可知正方形是特殊的矩形.(畫出圖中的箭頭②及正方形集合A5和矩形集合A1)

 、谟烧叫味x的①,③條件可知正方形是特殊的菱形.(畫出圖4-50中的箭頭③及菱形集合A2)

  ③由正方形的定義的.所有條件可知,正方形又是特殊的平行四邊形.(畫出圖4-50中的集合A3)

  ④平行四邊形、矩形、菱形、正方形都是特殊的四邊形.(畫出圖4-50(b)中四邊形集合A4)

  而且從以上過程可知,正方形既是矩形又是菱形.(集合A2與A1的公共部分)

  4.從整體知識(shí)結(jié)構(gòu)出發(fā),研究正方形的性質(zhì)和判定.

  (1)正方形的性質(zhì).

  引導(dǎo)學(xué)生由正方形與矩形、菱形的關(guān)系得知:正方形具有矩形和菱形的一切性質(zhì).讓學(xué)生復(fù)習(xí)矩形和菱形的性質(zhì),從而得到正方形的性質(zhì).

 、龠叄核倪叾枷嗟.(性質(zhì)定理1)

 、诮牵核膫(gè)角都是直角.

 、蹖(duì)角線:相等、互相垂直平分,每條對(duì)角線平分一組對(duì)角.(性質(zhì)定理2)

  (2)正方形的判定.

  引導(dǎo)學(xué)生根據(jù)正方形與平行四邊形、矩形、菱形之間的關(guān)系,總結(jié)出正方形的三類判定方法:

  ①先判定四邊形是平行四邊形,再判定它是正方形;(圖4-50(a)中箭頭①)

 、谙扰卸ㄋ倪呅问蔷匦危倥卸ㄟ@個(gè)矩形又是菱形;(圖4-50(a)中箭頭②)

 、巯扰卸ㄋ倪呅问橇庑,再判定這個(gè)菱形又是矩形.(圖4-50(a)中箭頭③)

  (3)鞏固練習(xí):判斷下列命題是否正確,不是正方形的補(bǔ)充什么條件能讓它成為正方形?

 、偎膫(gè)角都相等的四邊形是正方形;(×)

 、谒臈l邊都相等的四邊形是正方形;(×)

 、蹖(duì)角線相等的菱形是正方形;(√)

  ④對(duì)角線互相垂直的矩形是正方形;(√)

 、輰(duì)角

初二數(shù)學(xué)上冊(cè)教案9

  一、班級(jí)情況分析:

  本學(xué)期一(1)班有學(xué)生40人,新轉(zhuǎn)學(xué)來一名女生。上學(xué)期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學(xué)生成績(jī)?cè)谀昙?jí)排名第一,能過鎮(zhèn)中線,但是學(xué)生未能發(fā)揮出真實(shí)水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。

  一(7)班有學(xué)生38人,上學(xué)期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學(xué)生不多不夠拔尖,成績(jī)中層的學(xué)生占據(jù)大部分。學(xué)生好動(dòng),對(duì)數(shù)學(xué)學(xué)習(xí)的積極性普遍不夠高,學(xué)生好動(dòng),課堂氣氛較活躍。學(xué)生數(shù)學(xué)基礎(chǔ)不扎實(shí)。提升空間較大。

  兩班的整體成績(jī)均不夠理想。

  二、教材分析:

  本套教材切合《標(biāo)準(zhǔn)》的課程目標(biāo),有以下特點(diǎn):

  1.為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn),提供大量數(shù)學(xué)活動(dòng)的線索,成為供所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。

  2.向?qū)W生提供現(xiàn)實(shí)、有趣、富有挑戰(zhàn)性的學(xué)習(xí)素材。所有數(shù)學(xué)知識(shí)的學(xué)習(xí),都力求從學(xué)生實(shí)際出發(fā),以他們熟悉或感興趣的問題情境引入學(xué)習(xí)主題,并展開數(shù)學(xué)探究。

  3.為學(xué)生提供探索、交流的時(shí)間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學(xué)生通過自主探索與合作交流,形成新的知識(shí)。

  4.展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,讓學(xué)生經(jīng)歷真正的“做數(shù)學(xué)”、“用數(shù)學(xué)”的過程。

  5.滿足不同學(xué)生發(fā)展的需求。

  三、教學(xué)目標(biāo)及要求:

  第一章:

  1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實(shí)情境中進(jìn)一步理解字母表示數(shù)的意義,發(fā)展符號(hào)感。

  2.經(jīng)歷探索整式運(yùn)算法則的過程,理解整式運(yùn)算的算理,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力。

  3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),會(huì)進(jìn)行簡(jiǎn)單的整式加、減、乘、除運(yùn)算。

  4.會(huì)推導(dǎo)乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

  第二章:

  1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。

  2.在具體情境中了解補(bǔ)角、余角、對(duì)頂角,知道等角的余角相等、等角的補(bǔ)角相等、對(duì)頂角相等。會(huì)用三角尺過已知直線外一點(diǎn)畫這條直線的平行線;會(huì)用尺規(guī)作一條線段等于已知線段、作一個(gè)角等于已知角。

  3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。

  4.進(jìn)一步激發(fā)學(xué)生對(duì)數(shù)學(xué)方面的興趣,體驗(yàn)從數(shù)學(xué)的角度認(rèn)識(shí)現(xiàn)實(shí)。

  第三章:

  1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學(xué)記數(shù)法表示它們,進(jìn)一步發(fā)展數(shù)感;能借助計(jì)算器進(jìn)行有關(guān)科學(xué)記數(shù)法的計(jì)算。

  2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會(huì)近似數(shù)的意義及在生活中的作用。

  3.通過實(shí)例,體驗(yàn)收集、整理、描述和分析數(shù)據(jù)的過程。

  4.能讀懂統(tǒng)計(jì)圖并從中獲取信息,能形象、有效地運(yùn)用統(tǒng)計(jì)圖描述數(shù)據(jù)。

  第四章:

  1.經(jīng)歷從實(shí)際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。

  2.體會(huì)等可能性與游戲規(guī)則的公平性,抽象出概率模型,計(jì)算概率,解決實(shí)際、作出合理決策的過程,體會(huì)概率是描述不確定現(xiàn)象的數(shù)學(xué)模型。

  3.能設(shè)計(jì)符合要求的簡(jiǎn)單概率模型。

  第五章:

  1.通過觀察、操作、想象、推理、交流等活動(dòng),發(fā)展空間觀念,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

  2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達(dá)能力。

  3.進(jìn)一步認(rèn)識(shí)三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。

  4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個(gè)三角形全等的條件,能應(yīng)用三角形的全等解決一些實(shí)際問題。

  5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。

  第六章:

  1.經(jīng)歷探索具體情境中兩個(gè)變量之間的關(guān)系的過程,進(jìn)一步發(fā)展符號(hào)感和抽象思維。

  2.能發(fā)現(xiàn)實(shí)際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。

  3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進(jìn)行表達(dá),發(fā)展有條理地進(jìn)行思考和表達(dá)的能力。

  4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對(duì)變量之間關(guān)系的分析,嘗試對(duì)變化趨勢(shì)進(jìn)行初步的預(yù)測(cè)。

  第七章:

  1.在豐富的現(xiàn)實(shí)情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計(jì)等數(shù)學(xué)活動(dòng)過程,進(jìn)一步發(fā)展空間觀念。

  2.通過豐富的生活實(shí)例認(rèn)識(shí)軸對(duì)稱,探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分的性質(zhì)。

  3.探索并了解基本圖形的軸對(duì)稱性及其相關(guān)性質(zhì)。

  4.能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過軸對(duì)稱后的圖形,探索簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,并能指出對(duì)稱軸。

  5.欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形,能利用軸對(duì)稱進(jìn)行一些圖案設(shè)計(jì),體驗(yàn)軸對(duì)稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價(jià)值。

  四、教學(xué)改革的設(shè)想(教學(xué)具體措施)

  充分體現(xiàn)培優(yōu)扶困的實(shí)施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實(shí)做到:

  1、根據(jù)學(xué)生的個(gè)別差異。因材施教,熱情關(guān)懷,循循善誘,加強(qiáng)個(gè)別輔導(dǎo)。幫助他們?cè)鰪?qiáng)學(xué)習(xí)的信心,逐步達(dá)到教學(xué)的基本要求,盡量做好培優(yōu)輔差工作。

  2、精心設(shè)計(jì)練習(xí),講究練習(xí)方式提高練習(xí)效率,對(duì)作業(yè)嚴(yán)格要求,及時(shí)檢查,認(rèn)真批改,對(duì)作業(yè)中的'錯(cuò)誤及時(shí)找出原因,要求學(xué)生認(rèn)真改正,培養(yǎng)學(xué)生獨(dú)立完成作業(yè)的良好習(xí)慣。

  3、認(rèn)真?zhèn)湔n,深入鉆研教材,堅(jiān)持自主學(xué)習(xí),充分發(fā)揮學(xué)生的主動(dòng)學(xué)習(xí)有積極性,了解學(xué)生裝學(xué)習(xí)數(shù)學(xué)的特點(diǎn),研究教學(xué)規(guī)律,不斷改進(jìn)教學(xué)方法。

  4、堅(jiān)持學(xué)習(xí),多聽課,多模仿,虛心向有經(jīng)驗(yàn)的老師請(qǐng)教教育教學(xué)方法。努力提升自身的教學(xué)技能。

  5、在教學(xué)中,加強(qiáng)學(xué)生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學(xué)活動(dòng)課,擴(kuò)大學(xué)生的視野,拓寬知識(shí)面,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展數(shù)學(xué)才能,發(fā)揮學(xué)生的主動(dòng)性,獨(dú)立性和創(chuàng)造性。

  6、開展“一幫一”活動(dòng),實(shí)行以優(yōu)帶差點(diǎn)的幫助方法,多利用課余時(shí)間加強(qiáng)輔導(dǎo),從基礎(chǔ)知識(shí)補(bǔ)起,力求使學(xué)生一課一得,力求提高優(yōu)秀率和及格率。

  7.課前充分備好課,在課堂教學(xué)中特別要體現(xiàn)出培扶,分層次教育。

  8.重視學(xué)生學(xué)習(xí)興趣的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的內(nèi)驅(qū)力。

  9.大膽地深度嘗試新的教學(xué)方法,要因地制宜,因材施教。

  10.重視基礎(chǔ)知識(shí)過關(guān)和單元測(cè)試過關(guān)工作,及時(shí)進(jìn)行單元總結(jié),做好平時(shí)的查漏補(bǔ)缺工作,不遺漏知識(shí)盲點(diǎn)。

  11.注重對(duì)作業(yè)、練習(xí)紙、練習(xí)冊(cè)、測(cè)驗(yàn)卷的及時(shí)批改,并盡量做到全批全改,及時(shí)反饋信息。

  12.多用多媒體教學(xué),使數(shù)學(xué)生動(dòng)化。

  13.多用實(shí)物教學(xué),使數(shù)學(xué)形象化。

  14.實(shí)行課課清,日日清,周周清。

  15.加強(qiáng)課堂管理,嚴(yán)把課堂質(zhì)量關(guān),提高課堂效率。

  16.抓好學(xué)生的作業(yè)上交完成情況。

  17.加強(qiáng)與學(xué)生的交流,做好學(xué)生的思想教育與培優(yōu)輔差工作。

  五、擬定本學(xué)期教學(xué)目標(biāo)

  六、擬定本學(xué)期培優(yōu)扶養(yǎng)計(jì)劃。

  培扶措施

  對(duì)臨界優(yōu)秀生

  在理解題、思維訓(xùn)練題給予方法指導(dǎo),并要加強(qiáng)書面的表達(dá)能力。做到思路清晰,格式標(biāo)準(zhǔn)。基礎(chǔ)訓(xùn)練題的過關(guān)檢測(cè),對(duì)每次測(cè)試的成績(jī)給予個(gè)別指導(dǎo),多用激勵(lì)教育。

  對(duì)臨界及格生:

  首先加強(qiáng)基礎(chǔ)知識(shí)的培訓(xùn),尤其要在選擇題、填空題多下功夫。在課堂上、課后對(duì)他們多加注意,及時(shí)糾正錯(cuò)誤。抓好每次單元過關(guān)測(cè)試工作,抓好時(shí)機(jī),多表揚(yáng),樹立信心。

  七、教學(xué)內(nèi)容及課時(shí)安排(略)

  八、作業(yè)格式及批改要求:

  作業(yè)格式:

  1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。

  2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。

  3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。

  批改要求:

  1.每題作業(yè)都要有批改的痕跡,錯(cuò)的打“×”,對(duì)的打“√”,書寫要清晰,明確看出錯(cuò)對(duì)。

  2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分?jǐn)?shù)+等級(jí)(等級(jí)分A、B、C三等,代表學(xué)生的書寫成績(jī)。)

  3、每次的作業(yè)要及時(shí)更正,更正時(shí)統(tǒng)一在每次的作業(yè)后面用紅筆更正。

初二數(shù)學(xué)上冊(cè)教案10

  教學(xué)目的:

  1、在具體的操作活動(dòng)中,讓學(xué)生認(rèn)、讀、寫11-20各數(shù),掌握20以內(nèi)數(shù)的順序,初步建立數(shù)位的概念。

  2、結(jié)合學(xué)生的實(shí)際情況,讓學(xué)生填寫算式。

  3、在教學(xué)中滲透數(shù)的順序,并進(jìn)行社會(huì)秩序教育。

  4、學(xué)會(huì)與人合作,體會(huì)計(jì)算的多樣化,發(fā)展學(xué)生思維。

  教學(xué)重點(diǎn):掌握20以內(nèi)數(shù)的順序。

  教學(xué)難點(diǎn):初步建立數(shù)的概念

  教學(xué)準(zhǔn)備:每組一個(gè)數(shù)位計(jì)數(shù)器及40-50根小棒等。

  教學(xué)方法:抓問題,用多種游戲,把抽象的數(shù)位具體化。

  教學(xué)步驟:

  一、創(chuàng)設(shè)情景,尋找關(guān)鍵問題

  1、數(shù)學(xué)課研究數(shù)學(xué)問題,一些小棒會(huì)有什么數(shù)學(xué)問題。

 。繌堊雷影l(fā)40-50根小棒,玩小棒時(shí)間為3-5分鐘)

  2、你發(fā)現(xiàn)了什么數(shù)學(xué)問題。

 。康模壕毩(xí)20以內(nèi)數(shù)的順序,也可以在玩小棒中發(fā)現(xiàn)十根捆一捆)

  3、游戲,看誰的手小巧。

  老師報(bào)數(shù),學(xué)生用棒子表示,討論:快的同學(xué)的訣竅。

  出示:十根可以捆一捆。

  再進(jìn)行游戲,讓學(xué)生習(xí)慣中把1捆當(dāng)作10根用。

  4、完成:

 。ǎ﹤(gè)一()個(gè)十

  試一試,在計(jì)數(shù)器拔出10

  個(gè)位只有幾顆珠子,怎么辦?(10個(gè)一是1個(gè)10)

  在個(gè)位拔上一顆珠子,表示1個(gè)十,也表示10個(gè)一。

  二、自主合作,解決數(shù)位順序。

  在解決了10是1個(gè)十也是10個(gè)一后,還能過度試一試在計(jì)數(shù)器上表示。接下來就是讓學(xué)生通過自主合作,數(shù)位,組成和算式結(jié)合,理解11-20各數(shù)。

 。、11-20各數(shù)在計(jì)數(shù)器上怎么表示呢?

  問題提出后,可以組織學(xué)生討論交流,并加以解決,并結(jié)合p68的圖示表達(dá)自己的想法,學(xué)生之間互相交流,實(shí)現(xiàn)生生互動(dòng)。

 。ㄟ@兒注意11-20的'表達(dá)多樣,只要求至少一樣,方法選擇,方法應(yīng)用應(yīng)由學(xué)生通過自主交流來確定。)

  2、

 。眰(gè)十,1個(gè)一是1110+1=11

  10和11,十位上是1,沒有變,個(gè)位由0變成1,就是11。

  3、15、19、20的數(shù)位可重點(diǎn)檢查。

 。20的數(shù)位可由10-20,也可19-20來描述。)

  4、小結(jié),從右邊起,第一位是個(gè)位,第二位是十位,數(shù)位不一樣,數(shù)也不一樣,十位上1表示1個(gè)十,個(gè)位上1表示1個(gè)一。

  5、練習(xí):(口算)

  10+910+810+710+610+5

  10+410+39+108+107+10

  6+105+104+103+10

  三、實(shí)踐應(yīng)用,實(shí)現(xiàn)知識(shí)延伸

  1、尋找粗心丟失的數(shù)。

  游戲報(bào)數(shù)。(報(bào)數(shù)時(shí)丟一些中間數(shù))

  2、開火車順數(shù)

  游戲:數(shù)數(shù)(順數(shù)和倒數(shù))

  3、拔珠游戲(師生――生生)

  報(bào)數(shù)13,拔13并寫出13,同時(shí)說13的含義,還可畫珠。

  4、p691-6自己完成。

  四、課外實(shí)踐,拓展知識(shí)應(yīng)用。

  1、完成10-20各數(shù)數(shù)位圖及小棒圖。

  2、和父母互說10-20各數(shù)組成。

  課后評(píng)析:

初二數(shù)學(xué)上冊(cè)教案11

  1、教材分析

  (1)知識(shí)結(jié)構(gòu):

  (2)重點(diǎn)和難點(diǎn)分析:

  重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

  難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

  2、教法建議

  (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

  (3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

  (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題。

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

  2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。

  (二)能力訓(xùn)練點(diǎn)

  1、通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。

  2、通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。

  3、會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形。

  4、講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想。

  (三)德育滲透點(diǎn)

  使學(xué)生認(rèn)識(shí)到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。

  (四)美育滲透點(diǎn)

  通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。

  二、學(xué)法引導(dǎo)

  類比、觀察、引導(dǎo)、講解

  三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法

  1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。

  2、教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。

  3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。

  四、課時(shí)安排

  2課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。

  第一課時(shí)

  七、教學(xué)步驟

  【復(fù)習(xí)引入】

  在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一

  章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問題。

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖。

  師問:在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。

  【講解新課】

  1、四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的.邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):

  (1)要結(jié)合圖形。

  (2)要與三角形類比。

  (3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

  (4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系。

  (5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。

  (6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。

  2、四邊形內(nèi)角和定理

  教師問:

  (1)在圖4—3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?

  (2)在圖4—6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?

  (3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。

  我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

  ①2180=360如圖4

 、4180—360=360如圖4—7。

  例1已知:如圖48,直線于B、于C。

  求證:(1) (2) 。

  本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。

  【總結(jié)、擴(kuò)展】

  1、四邊形的有關(guān)概念。

  2、四邊形對(duì)角線的作用。

  3、四邊形內(nèi)角和定理。

  八、布置作業(yè)

  教材P128中1(1)、2、 3。

  九、板書設(shè)計(jì)

  四邊形有關(guān)概念

  四邊形內(nèi)角和

  例1

  十、隨堂練習(xí)

  教材P122中1、2、3。

初二數(shù)學(xué)上冊(cè)教案12

  一、學(xué)生起點(diǎn)分析

  《平面直角坐標(biāo)系》是八年級(jí)上冊(cè)第五章《位置與坐標(biāo)》第二節(jié)內(nèi)容。本章是“圖形與坐標(biāo)”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標(biāo)系”等內(nèi)容,而且也從坐標(biāo)的角度使學(xué)生進(jìn)一步體會(huì)圖形平移、軸對(duì)稱的數(shù)學(xué)內(nèi)涵,同時(shí)又是一次函數(shù)的重要基礎(chǔ)。《平面直角坐標(biāo)系》反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。因此,教學(xué)過程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問題情境,會(huì)引起學(xué)生的極大關(guān)注,會(huì)有利于學(xué)生對(duì)內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究。

  二、教學(xué)任務(wù)分析

  教學(xué)目標(biāo)設(shè)計(jì):

  知識(shí)目標(biāo):

  1、理解平面直角坐標(biāo)系以及橫軸、縱軸、原點(diǎn)、坐標(biāo)等概念;

  2、認(rèn)識(shí)并能畫出平面直角坐標(biāo)系;

  3、能在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。

  能力目標(biāo):

  1、通過畫坐標(biāo)系、由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識(shí)、合作交流意識(shí);

  2、通過對(duì)一些點(diǎn)的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn),縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識(shí)和能力。

  情感目標(biāo):

  由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點(diǎn)找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。

  教學(xué)重點(diǎn):

  1、理解平面直角坐標(biāo)系的有關(guān)知識(shí);

  2、在給定的平面直角坐標(biāo)系中,會(huì)根據(jù)點(diǎn)的位置寫出它的坐標(biāo);

  3、由觀察點(diǎn)的坐標(biāo)、縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,說明坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。

  教學(xué)難點(diǎn):

  1、橫(或縱)坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系的探究;

  2、坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)的總結(jié)。

  三、教學(xué)過程設(shè)計(jì)

  第一環(huán)節(jié)感受生活中的'情境,導(dǎo)入新課

  同學(xué)們,你們喜歡旅游嗎?假如你到了某一個(gè)城市旅游,那么你應(yīng)怎樣確定旅游景點(diǎn)的位置呢?下面給出一張某市旅游景點(diǎn)的示意圖,根據(jù)示意圖(圖5— 6),回答以下問題:

 。1)你是怎樣確定各個(gè)景點(diǎn)位置的?

 。2)“大成殿”在“中心廣場(chǎng)”南、西各多少個(gè)格?“碑林”在“中心廣場(chǎng)”北、東各多少個(gè)格?

 。3)如果以“中心廣場(chǎng)”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右、向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長(zhǎng)看做一個(gè)單位長(zhǎng)度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢?

  在上一節(jié)課,我們已經(jīng)學(xué)習(xí)了許多確定位置的方法,這個(gè)問題中,大家看用哪種方法比較合適?

  第二環(huán)節(jié)分類討論,探索新知

  1、平面直角坐標(biāo)系、橫軸、縱軸、橫坐標(biāo)、縱坐標(biāo)、原點(diǎn)的定義和象限的劃分。

  學(xué)生自學(xué)課本,理解上述概念。

  2、例題講解

 。ǔ鍪就队埃├1

  例1寫出圖中的多邊形ABCDEF各頂點(diǎn)的坐標(biāo)。

  3.2平面直角坐標(biāo)系:課后練習(xí)

  一、選擇題(共9小題,每小題3分,滿分27分)

  1、若點(diǎn)A(﹣2,n)在x軸上,則點(diǎn)B(n﹣1,n+1)在()

  A、第四象限B、第三象限C、第二象限D(zhuǎn)、第一象限

  【考點(diǎn)】點(diǎn)的坐標(biāo)。

  【專題】計(jì)算題。

  【分析】由點(diǎn)在x軸的條件是縱坐標(biāo)為0,得出點(diǎn)A(﹣2,n)的n=0,再代入求出點(diǎn)B的坐標(biāo)及象限。

  【解答】解:∵點(diǎn)A(﹣2,n)在x軸上,

  ∴n=0,

  ∴點(diǎn)B的坐標(biāo)為(﹣1,1)。

  則點(diǎn)B(n﹣1,n+1)在第二象限。

  故選C。

  【點(diǎn)評(píng)】本題主要考查點(diǎn)的坐標(biāo)問題,解決本題的關(guān)鍵是掌握好四個(gè)象限的點(diǎn)的坐標(biāo)的特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù)。

  2、已知點(diǎn)M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點(diǎn)的坐標(biāo)為()

  A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)

  【考點(diǎn)】點(diǎn)的坐標(biāo)。

  【分析】根據(jù)到坐標(biāo)軸的距離判斷出橫坐標(biāo)與縱坐標(biāo)的長(zhǎng)度,再根據(jù)第三象限的點(diǎn)的坐標(biāo)特征解答。

  【解答】解:∵點(diǎn)M到x軸的距離為3,

  ∴縱坐標(biāo)的長(zhǎng)度為3,

  ∵到y(tǒng)軸的距離為2,

  ∴橫坐標(biāo)的長(zhǎng)度為2,

  ∵點(diǎn)M在第三象限,

  ∴點(diǎn)M的坐標(biāo)為(﹣2,﹣3)。

  故選D。

  【點(diǎn)評(píng)】本題考查了點(diǎn)的坐標(biāo),難點(diǎn)在于到y(tǒng)軸的距離為橫坐標(biāo)的長(zhǎng)度,到x軸的距離為縱坐標(biāo)的長(zhǎng)度,這是同學(xué)們?nèi)菀谆煜鴮?dǎo)致出錯(cuò)的地方。

  3.2平面直角坐標(biāo)系同步測(cè)試題

  1.點(diǎn)A(3,—1)其中橫坐標(biāo)為XX,縱坐標(biāo)為XX。

  2.過B點(diǎn)向x軸作垂線,垂足點(diǎn)坐標(biāo)為—2,向y軸作垂線,垂足點(diǎn)坐標(biāo)為5,則點(diǎn)B的坐標(biāo)為。

  3.點(diǎn)P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。

初二數(shù)學(xué)上冊(cè)教案13

  教學(xué)目標(biāo)

  1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.

  教學(xué)重點(diǎn):

  1.等腰三角形的概念及性質(zhì).

  2.等腰三角形性質(zhì)的應(yīng)用.

  教學(xué)難點(diǎn):

  等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

  教學(xué)過程

 、.提出問題,創(chuàng)設(shè)情境

  在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形.來研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

  有的三角形是軸對(duì)稱圖形,有的三角形不是.

  問題:那什么樣的三角形是軸對(duì)稱圖形?

  滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.

  我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.

 、.導(dǎo)入新課: 要求學(xué)生通過自己的思考來做一個(gè)等腰三角形.

  作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

  等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的.角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难、底邊、頂角和底?

  思考:

  1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.

  2.等腰三角形的兩底角有什么關(guān)系?

  3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

  4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

  結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.

  要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.

  沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

  由此可以得到等腰三角形的性質(zhì):

  1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成等邊對(duì)等角).

  2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作三線合一).

  由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程).

初二數(shù)學(xué)上冊(cè)教案14

  教學(xué)目標(biāo)

  1.會(huì)解簡(jiǎn)易方程,并能用簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題;

  2.通過代數(shù)法解簡(jiǎn)易方程進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力,發(fā)展學(xué)生的應(yīng)用意識(shí);

  3.通過解決問題的實(shí)踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的鉆研精神。

  教學(xué)建議

  一、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):簡(jiǎn)易方程的解法;

  難點(diǎn):根據(jù)實(shí)際問題中的數(shù)量關(guān)系正確地列出方程并求解。

  二、重點(diǎn)、難點(diǎn)分析

  解簡(jiǎn)易方程的基本方法是:將方程兩邊同時(shí)加上(或減去)同一個(gè)適當(dāng)?shù)臄?shù);將方程兩邊同時(shí)乘以(或除以)同一個(gè)適當(dāng)?shù)臄?shù)。最終求出問題的解。

  判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個(gè)數(shù)是否“適當(dāng)”,關(guān)鍵是看運(yùn)算的第一步能否使方程的一邊只含有帶有未知數(shù)的`那個(gè)數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結(jié)果。

  列簡(jiǎn)易方程解應(yīng)用題是以列代數(shù)式為基礎(chǔ)的,關(guān)鍵是在弄清楚題目語句中各種數(shù)量的意義及相互關(guān)系的基礎(chǔ)上,選取適當(dāng)?shù)奈粗獢?shù),然后把與數(shù)量有關(guān)的語句用代數(shù)式表示出來,最后利用題中的相等關(guān)系列出方程并求解。

  三、知識(shí)結(jié)構(gòu)

  導(dǎo)入方程的概念解簡(jiǎn)易方程利用簡(jiǎn)易方程解應(yīng)用題。

  四、教法建議

  (1)在本節(jié)的導(dǎo)入部分,須使學(xué)生理解的是算術(shù)運(yùn)算只對(duì)已知數(shù)進(jìn)行加、減、乘、除,而代數(shù)運(yùn)算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進(jìn)行加、減、乘、除運(yùn)算。對(duì)于方程、方程的解、解方程的概念讓學(xué)生了解即可。

  (2)解簡(jiǎn)易方程,要在學(xué)生積極參與的基礎(chǔ)上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個(gè)數(shù),以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個(gè)數(shù)。另一個(gè)重要的問題就是“適當(dāng)?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗(yàn),但為了學(xué)生從一開始就養(yǎng)成自我檢查的好習(xí)慣,可以讓學(xué)生在草稿紙上檢驗(yàn),同時(shí)也是對(duì)前面學(xué)過的求代數(shù)式的值的復(fù)習(xí)。

  (3)教材給出了三道應(yīng)用題,其中例4是一道有關(guān)公式應(yīng)用的方程問題。列簡(jiǎn)易方程解應(yīng)用題,關(guān)鍵在引導(dǎo)學(xué)生加深對(duì)代數(shù)式的理解基礎(chǔ)上,認(rèn)真讀懂題意,弄清楚題目中的關(guān)鍵語句所包含的各種數(shù)量的意義及相互關(guān)系。恰當(dāng)?shù)卦O(shè)未知數(shù),用代數(shù)式表示數(shù)學(xué)語句,依據(jù)相等關(guān)系正確的列出方程并求解。

  (4)教學(xué)過程中,應(yīng)充分發(fā)揮多媒體技術(shù)的輔助教學(xué)作用,可以參考運(yùn)用相關(guān)課件提高學(xué)生的學(xué)習(xí)興趣,加深對(duì)列簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題的整個(gè)分析、解決問題過程的理解。此外,通過應(yīng)用投影儀、幻燈片可以提高課堂效率,有利于對(duì)知識(shí)點(diǎn)的掌握。

  五、列簡(jiǎn)易方程解應(yīng)用題

  列簡(jiǎn)易方程解應(yīng)用題的一般步驟

  (1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個(gè)未知數(shù).

  (2)找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.

  (3)根據(jù)這個(gè)相等關(guān)系列出需要的代數(shù)式,從而列出方程.

  (4)解這個(gè)方程,求出未知數(shù)的值.

  (5)寫出答案(包括單位名稱).

  概括地說,列簡(jiǎn)易方程解應(yīng)用題,一般有“設(shè)、列、解、驗(yàn)、答”五個(gè)步驟,審題可在草稿紙上進(jìn)行.其中關(guān)鍵是“列”,即列出符合題意的方程.難點(diǎn)是找等量關(guān)系.要想抓住關(guān)鍵、突破難點(diǎn),一定要開動(dòng)腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.

初二數(shù)學(xué)上冊(cè)教案15

  一、基本知識(shí)和需說明的問題:

 。ㄒ唬﹫A的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個(gè)。

  1、垂徑定理:

  本定理和它的三個(gè)推論說明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對(duì)的。唬4)過圓心(是半徑或是直徑)這四個(gè)語句中,滿足兩個(gè)就可得到其它兩個(gè)的結(jié)論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對(duì)的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線,經(jīng)過圓心且平分弦所對(duì)的弧。條件是垂直弦,、分弦,結(jié)論是過圓心、平分弦。

  應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個(gè)直角三角形,利用勾股定理解直角三角形的知識(shí),可計(jì)算弦長(zhǎng)、半徑、弦心距和弓形的高。

  2、圓心角、弧、弦、弦心距四者之間的關(guān)系定理:

  在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個(gè)定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的。

  3、圓周角定理:

  此定理在證題中不大用,但它的推論,即弧相等所對(duì)的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線形成直角。

  4、圓內(nèi)接四邊形的性質(zhì)。

 。ǘ┲本和圓的位置關(guān)系。

  1、性質(zhì):

  圓的切線垂直于經(jīng)過切點(diǎn)的半徑。(有了切線,將切點(diǎn)與圓心連結(jié),則半徑與切線垂直,所以連結(jié)圓心和切點(diǎn),這條輔助線是常用的。)

  2、切線的判定有兩種方法。

 、偃糁本與圓有公共點(diǎn),連圓心和公共點(diǎn)成半徑,證明半徑與直線垂直即可。

 、谌糁本和圓公共點(diǎn)不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據(jù)不同的條件,選擇不同的添加輔助線的方法是極重要的。

  3、三角形的內(nèi)切圓:

  內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說某點(diǎn)是三角形的內(nèi)心。連結(jié)三角形的頂點(diǎn)和內(nèi)心,即是角平分線。

  4、切線長(zhǎng)定理:自圓外一點(diǎn)引圓的切線,則切線和半徑、圓心到該點(diǎn)的連線組成直角三角形。

 。ㄈ﹫A和圓的位置關(guān)系。

  1、記住5種位置關(guān)系的圓心距d與兩圓半徑之間的相等或不等關(guān)系。會(huì)利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會(huì)利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系。

  2、相交兩圓,添加公共弦,通過公共弦將兩圓連結(jié)起來。

 。ㄋ模┱噙呅魏蛨A。

  1、弧長(zhǎng)公式。

  2、扇形面積公式。

  3、圓錐側(cè)面積計(jì)算公式:S= 2π=π。

  二、鞏固練習(xí)。

 。ㄒ唬┚倪x一選,相信自己的判斷!

  1、如圖,把自行車的兩個(gè)車輪看成同一平面內(nèi)的兩個(gè)圓,則它們的位置關(guān)系是

  A、外離 B、外切 C、相交 D、內(nèi)切

  2、已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點(diǎn)的個(gè)數(shù)為( )

  A、2 B、1 C、0 D、不確定

  3、已知⊙O1與⊙O2的.半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( )

  A、外切 B、內(nèi)切 C、相交 D、相離

  4、已知在⊙O中,弦AB的長(zhǎng)為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )

  A、3厘米 B、4厘米 C、5厘米 D、8厘米

  5、下列命題錯(cuò)誤的是( )

  A、經(jīng)過三個(gè)點(diǎn)一定可以作圓 B、三角形的外心到三角形各頂點(diǎn)的距離相等

  C、同圓或等圓中,相等的圓心角所對(duì)的弧相等 D、經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  6、在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )

  A、與x軸相離、與y軸相切 B、與x軸、y軸都相離

  C、與x軸相切、與y軸相離 D、與x軸、y軸都相切

  7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )

  A、25π B、65π C、90π D、130π

 。ǘ┘(xì)心填一填,試自己的身手!

  12、各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形。(填“是”或“不是”)

  13、△ABC的內(nèi)切圓半徑為r,△ABC的周長(zhǎng)為l,則△ABC的面積為_______________ 。

  14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________。

  15、同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長(zhǎng)比為____________________。

【初二數(shù)學(xué)上冊(cè)教案】相關(guān)文章:

初二數(shù)學(xué)上冊(cè)教案11-14

初二數(shù)學(xué)上冊(cè)教案精選15篇12-12

初二數(shù)學(xué)上冊(cè)教案15篇11-16

初二上冊(cè)數(shù)學(xué)教案11-11

初二數(shù)學(xué)上冊(cè)教案 (15篇)12-06

初二數(shù)學(xué)上冊(cè)教案 15篇12-05

初二數(shù)學(xué)上冊(cè)教案 (通用15篇)12-08

初二數(shù)學(xué)上冊(cè)教案 合集15篇12-08

初二數(shù)學(xué)上冊(cè)教案匯編15篇11-17