天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

高一數(shù)學(xué)教案

時(shí)間:2022-11-25 15:28:10 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)教案匯編15篇

  作為一名辛苦耕耘的教育工作者,編寫(xiě)教案是必不可少的,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。教案要怎么寫(xiě)呢?下面是小編幫大家整理的高一數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)教案匯編15篇

高一數(shù)學(xué)教案1

  一、教材分析

  1、 教材的地位和作用:

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

  2、 教學(xué)目標(biāo)及確立的依據(jù):

  教學(xué)目標(biāo):

  (1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。

  (2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。

  (3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

  教學(xué)目標(biāo)確立的依據(jù):

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

  3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

  教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。

  教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。

  重點(diǎn)難點(diǎn)確立的依據(jù):

  映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。

  二、教材的處理:

  將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。

  三、教學(xué)方法和學(xué)法

  教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。

  依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

  學(xué)法:四、教學(xué)程序

  一、課程導(dǎo)入

  通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

  二. 新課講授:

  (1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的.共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。

  (2)鞏固練習(xí)課本52頁(yè)第八題。

  此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。

  例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

  并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

  再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

  3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

  4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。

  5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

  66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

  三.講解例題

  例1.問(wèn)y=1(x∈a)是不是函數(shù)?

  解:y=1可以化為y=0*x+1

  畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

  [注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。

  四.課時(shí)小結(jié):

  1. 映射的定義。

  2. 函數(shù)的近代定義。

  3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。

  4. 函數(shù)近代定義的五大注意點(diǎn)。

  五.課后作業(yè)及板書(shū)設(shè)計(jì)

  書(shū)本p51 習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。

  預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。

  函數(shù)(一)

  一、映射:

  2.函數(shù)近代定義: 例題練習(xí)

  二、函數(shù)的定義 [注]1—5

  1.函數(shù)傳統(tǒng)定義

  三、作業(yè):

高一數(shù)學(xué)教案2

  教學(xué)目標(biāo):①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)

  合函數(shù)的定義域、值 域及單調(diào)性。

 、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高

  解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  教學(xué)過(guò)程設(shè)計(jì):

 、睆(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

 、查_(kāi)始正課

  1 比較數(shù)的大小

  例 1 比較下列各組數(shù)的大小。

 、舕oga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

  生:這兩個(gè)對(duì)數(shù)底相等。

  師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

  生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

  師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

  生:對(duì)數(shù)函數(shù)的.單調(diào)性取決于底的大小:當(dāng)0

  調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

  增,所以loga5.1

  板書(shū):

  解:Ⅰ)當(dāng)0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

  ∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

  生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

  師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

  生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書(shū):略。

  師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函

  數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)

  函數(shù)圖象的位置關(guān)系來(lái)比大小。

  2 函數(shù)的定義域, 值 域及單調(diào)性。

高一數(shù)學(xué)教案3

  一、課標(biāo)要求:

  理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.

  二、知識(shí)與方法回顧:

  1、充分條件、必要條件與充要條件的概念:

  2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:

  3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:

  4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來(lái)否定結(jié)論

  5、化歸思想:

  表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;

  這里要注意原命題 逆否命題、逆命題 否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.

  6、數(shù)形結(jié)合思想:

  利用韋恩圖(即集合的包含關(guān)系)來(lái)判斷充分不必要條件,必要不充分條件,充要條件.

  三、基礎(chǔ)訓(xùn)練:

  1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、 設(shè)集合M,N為是全集U的兩個(gè)子集,則 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  3、 若 是實(shí)數(shù),則 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  四、例題講解

  例1 已知實(shí)系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )

  (1) 是這個(gè)方程有實(shí)根的充分不必要條件

  (2) 是這個(gè)方程有實(shí)根的必要不充分條件

  (3) 是這個(gè)方程有實(shí)根的充要條件

  (4) 是這個(gè)方程有實(shí)根的充分不必要條件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問(wèn)甲是乙的 ( )

  (2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  變式:a = 0是直線 與 平行的 條件;

  例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

  的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.

  例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的.必要不充分條件,求實(shí)數(shù)a的取值范圍;

  例5 設(shè) 是方程 的兩個(gè)實(shí)根,試分析 是兩實(shí)根 均大于1的什么條件?并給予證明.

  五、課堂練習(xí)

  1、設(shè)命題p: ,命題q: ,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③ 若r則﹁s

 、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;

  3、是否存在實(shí)數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說(shuō)明理由.

  六、課堂小結(jié):

  七、教學(xué)后記:

  高三 班 學(xué)號(hào) 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  3、 2x2-5x-30的一個(gè)必要不充分條件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  5、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分又不必要條件

  6、若命題A: ,命題B: ,則命題A是B的 條件;

  7、設(shè)條件p:|x|=x,條件q:x2-x,則p是q的 條件;

  8、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是 ;

  9、關(guān)于x的方程x2+mx+n = 0有兩個(gè)小于1的正根的一個(gè)充要條件是 ;

  10、已知 ,求證: 的充要條件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)m的取值范圍。

  12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有兩個(gè)正根的充要條件;

  (2)方程至少有一正根的充要條件.

高一數(shù)學(xué)教案4

  一、教學(xué)目標(biāo)

  1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

  2、能根據(jù)所給條件寫(xiě)出簡(jiǎn)單的一次函數(shù)表達(dá)式。

  二、能力目標(biāo)

  1、經(jīng)歷一般規(guī)律的探索過(guò)程、發(fā)展學(xué)生的抽象思維能力。

  2、通過(guò)由已知信息寫(xiě)一次函數(shù)表達(dá)式的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  三、情感目標(biāo)

  1、通過(guò)函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

  2、經(jīng)歷利用一次函數(shù)解決實(shí)際問(wèn)題的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  四、教學(xué)重難點(diǎn)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、會(huì)根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

  五、教學(xué)過(guò)程

  1、新課導(dǎo)入

  有關(guān)函數(shù)問(wèn)題在我們?nèi)粘I钪须S處可見(jiàn),如彈簧秤有自然長(zhǎng)度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長(zhǎng)度相應(yīng)的會(huì)拉長(zhǎng),那么所掛物體的重量與彈簧的長(zhǎng)度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,

  請(qǐng)看:某彈簧的自然長(zhǎng)度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長(zhǎng)度y增加0.5厘米。

  (1)計(jì)算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長(zhǎng)度,

  (2)你能寫(xiě)出x與y之間的關(guān)系式嗎?

  分析:當(dāng)不掛物體時(shí),彈簧長(zhǎng)度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長(zhǎng)度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見(jiàn),所掛物體每增加1千克,彈簧就伸長(zhǎng)0.5厘米,所掛物體為x千克,彈簧就伸長(zhǎng)0.5x厘米,則彈簧總長(zhǎng)為原長(zhǎng)加伸長(zhǎng)的長(zhǎng)度,即y=3+0.5x。

  2、做一做

  某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫(xiě)出x與y之間的關(guān)系嗎?(y=1000。18x或y=100 x)

  接著看下面這些函數(shù),你能說(shuō)出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個(gè)函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的`指數(shù)都是一次。

  3、一次函數(shù),正比例函數(shù)的概念

  若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

  4、例題講解

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

高一數(shù)學(xué)教案5

  一、教學(xué)目標(biāo)

  1、知識(shí)與技能

 。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

 。3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

 。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

  2、過(guò)程與方法

 。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

 。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

  3、情感態(tài)度與價(jià)值觀

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

 。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

  (1)學(xué)法:觀察、思考、交流、討論、概括。

 。2)實(shí)物模型、投影儀 四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭示課題

  1、教師提出問(wèn)題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

  2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

  (二)、研探新知

  1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

  2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

  3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

 。1)有兩個(gè)面互相平行;

  (2)其余各面都是平行四邊形;

 。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?

  請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的`結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

  8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

  1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

  2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3、課本P8,習(xí)題1.1 A組第1題。

  4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

  四、鞏固深化

  練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)

  課本P8 練習(xí)題1.1 B組第1題

  課外練習(xí) 課本P8 習(xí)題1.1 B組第2題

高一數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  1、理解對(duì)數(shù)的概念,能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化;

  2、滲透應(yīng)用意識(shí),培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。

  教學(xué)重點(diǎn):

  對(duì)數(shù)的概念

  教學(xué)過(guò)程:

  一、問(wèn)題情境:

  1、(1)莊子:一尺之棰,日取其半,萬(wàn)世不竭、①取5次,還有多長(zhǎng)?②取多少次,還有0、125尺?

 。2)假設(shè)20xx年我國(guó)國(guó)民生產(chǎn)總值為a億元,如果每年平均增長(zhǎng)8%,那么經(jīng)過(guò)多少年國(guó)民生產(chǎn)總值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問(wèn)題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來(lái)嗎?

  二、學(xué)生活動(dòng):

  1、討論問(wèn)題,探究求法、

  2、概括內(nèi)容,總結(jié)對(duì)數(shù)概念、

  3、研究指數(shù)與對(duì)數(shù)的`關(guān)系、

  三、建構(gòu)數(shù)學(xué):

  1)引導(dǎo)學(xué)生自己總結(jié)并給出對(duì)數(shù)的概念、

  2)介紹對(duì)數(shù)的表示方法,底數(shù)、真數(shù)的含義、

  3)指數(shù)式與對(duì)數(shù)式的關(guān)系、

  4)常用對(duì)數(shù)與自然對(duì)數(shù)、

  探究:

 、咆(fù)數(shù)與零沒(méi)有對(duì)數(shù)、

 、疲、

 、菍(duì)數(shù)恒等式(教材P58練習(xí)6)

 、;②、

 、葍煞N對(duì)數(shù):

 、俪S脤(duì)數(shù):;

 、谧匀粚(duì)數(shù):、

  (5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、

  四、數(shù)學(xué)運(yùn)用:

  1、例題:

  例1、(教材P57例1)將下列指數(shù)式改寫(xiě)成對(duì)數(shù)式:

 。1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對(duì)數(shù)式改寫(xiě)成指數(shù)式:

  (1);(2)3=—2;(3);(4)(補(bǔ)充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

 、;⑵;⑶(補(bǔ)充)、

  2、練習(xí):

  P58(練習(xí))1,2,3,4,5、

  五、回顧小結(jié):

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

 、艑(duì)數(shù)的定義;

⑵指數(shù)式與對(duì)數(shù)式互換;

⑶求對(duì)數(shù)式的值(利用計(jì)算器求對(duì)數(shù)值)、

  六、課外作業(yè):P63習(xí)題1,2,3,4、

高一數(shù)學(xué)教案7

  重點(diǎn)

  理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.

  難點(diǎn)

  理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  展示實(shí)物:時(shí)鐘,圓規(guī),折扇等.

  (1)觀察實(shí)物與圖片,你發(fā)現(xiàn)其中有什么相同圖形嗎?學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生.

  (2)你能把觀察得到的圖形畫(huà)在本子上或黑板上嗎?這是一些什么圖形?思考,動(dòng)手畫(huà)一畫(huà).

  (3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點(diǎn)嗎?

  學(xué)生相互交流并回答,挖掘和利用現(xiàn)實(shí)生活中與角相關(guān)的背景,讓學(xué)生在現(xiàn)實(shí)背景中認(rèn)識(shí)角,培養(yǎng)學(xué)生的動(dòng)手能力.引導(dǎo)學(xué)生觀察并歸納角的共同點(diǎn),進(jìn)而引入課題.

  二、自主合作,感受新知

  回顧以前學(xué)的知識(shí)、閱讀課文并結(jié)合生活實(shí)際,完成“預(yù)習(xí)導(dǎo)學(xué)”部分.

  三、師生互動(dòng),理解新知

  探究點(diǎn)一:角的概念及表示方法

  活動(dòng)一:從生活中認(rèn)識(shí)角

  我們看物體時(shí),有視角,鐘表的指針轉(zhuǎn)動(dòng)也形成角.請(qǐng)同學(xué)們看課本后回答下面問(wèn)題.

  (1)角是一個(gè)幾何圖形,請(qǐng)大家說(shuō)說(shuō),角是由什么圖形構(gòu)成的?(學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生)

  (2)如果我們把角看作是一條射線繞它的端點(diǎn)旋轉(zhuǎn)圍成的圖形,那么始邊和終邊又指什么?

  教師總結(jié):角有兩個(gè)定義,一個(gè)是靜態(tài)的定義,把角看作由一點(diǎn)出發(fā)的兩條射線組成的圖形;另一個(gè)定義是動(dòng)態(tài)的,把角看作一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形,把開(kāi)始位置的射線叫做始邊,把終止位置的射線叫做終邊.

  (3)請(qǐng)同學(xué)們說(shuō)一說(shuō),我們?nèi)粘I钪,哪些地方有角?學(xué)生舉例)

  活動(dòng)二:角的'表示方法

  我們?cè)鯓颖硎窘悄??qǐng)同學(xué)們看課本上說(shuō)了幾種表示方法?(學(xué)生先看書(shū),后回答)

  教師總結(jié):(1)用三個(gè)大寫(xiě)字母可以表示一個(gè)角,比如∠AOB.

  練習(xí):誰(shuí)能指出下列各角的頂點(diǎn)和兩條邊?

  注意:①三個(gè)字母的順序有規(guī)定,頂點(diǎn)的字母必須寫(xiě)在中間.

  ②頂點(diǎn)的字母不一定用O,角的始邊與終邊的字母也可以隨意.

  (2)當(dāng)一個(gè)頂點(diǎn)只有一個(gè)角時(shí),也可以用頂點(diǎn)的字母表示.比如,下面的角可以表示為∠O.

  練習(xí):判斷下列角可以用頂點(diǎn)的字母表示嗎?

  (3)用數(shù)字或小寫(xiě)的希臘字母表示角.(注意:角中不能有角)

  練習(xí):下面表示角的方法,哪個(gè)是正確的?哪個(gè)是錯(cuò)誤的?

  探究點(diǎn)二:角的度量

  活動(dòng)三:角的度量

  (1)請(qǐng)同學(xué)們借助量角器畫(huà)出下列各角:

 、30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  學(xué)生畫(huà)圖,教師指導(dǎo).(根據(jù)需要教師可先做示范)

  (2)任意畫(huà)一個(gè)角,用量角器測(cè)量角的大。釂(wèn):如果這個(gè)角的度數(shù)不是整數(shù),應(yīng)該怎樣表示這個(gè)角的度數(shù)呢?引出角的度量單位是度、分、秒.

  教師總結(jié):它們之間的關(guān)系是:1°=60′,1′=60″ (強(qiáng)調(diào)度、分、秒是60進(jìn)制,不是十進(jìn)制).

  (3)還有什么單位是60進(jìn)制?

  (4)讓學(xué)生畫(huà)一個(gè)1°角,感受1°角有多大.

  四、應(yīng)用遷移,運(yùn)用新知

  1.角的定義

  例1 下列說(shuō)法中,正確的是( )

  A.兩條射線組成的圖形叫做角

  B.有公共端點(diǎn)的兩條線段組成的圖形叫做角

  C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形

  D.角可以看作是由一條線段繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形

  解析:A.有公共端點(diǎn)的兩條射線組成的圖形叫做角,故錯(cuò)誤;B.根據(jù)A可得B錯(cuò)誤;C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形,正確;D.據(jù)C可得D錯(cuò)誤.

  方法總結(jié):此題考查了角的定義,有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角.這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊.

  2.角的表示方法

  例2 下列四個(gè)圖形中,能用∠1、∠AOB、∠O三種方法表示同一個(gè)角的圖形是( )

  A B C D

  解析:在角的頂點(diǎn)處有多個(gè)角時(shí),用一個(gè)字母表示這個(gè)角,這種方法是錯(cuò)誤的.所以A、C、D錯(cuò)誤.

  方法總結(jié):角的兩個(gè)基本元素中,邊是兩條射線,

  頂點(diǎn)是這兩條射線的公共端點(diǎn).

  3.判斷角的數(shù)量

  例3 如圖所示,在∠AOB的內(nèi)部有3條射線,則圖中角的個(gè)數(shù)為( )

  A.10 B.15 C.5 D.20

  解析:可以根據(jù)圖形依次數(shù)出角的個(gè)數(shù);或者根據(jù)公式求圖中角的個(gè)數(shù)是12×5×(5-1)=10.

  方法總結(jié):若從一點(diǎn)發(fā)出n條射線,則構(gòu)成12n(n-1)個(gè)角.

  4.角的度量

  例4 見(jiàn)課本P144例1.

  方法總結(jié):用度、分、秒表示的角度和用度表示的角度的相互轉(zhuǎn)化的過(guò)程正好相反:大單位化小單位,乘以進(jìn)率;而小單位化大單位要除以進(jìn)率.

  五、嘗試練習(xí),掌握新知

  課本P144練習(xí)第1、2題、P145練習(xí)第1、2題.

  “隨堂演練”部分.

  六、課堂小結(jié),梳理新知

  通過(guò)本節(jié)課的學(xué)習(xí),我們都學(xué)到了哪些數(shù)學(xué)知識(shí)和方法?

  本節(jié)課學(xué)習(xí)了角及角的有關(guān)概念,并會(huì)表示角;知道角的度量單位,并能進(jìn)行單位的轉(zhuǎn)換;會(huì)把角的知識(shí)與現(xiàn)實(shí)生活相聯(lián)系,用角的知識(shí)解釋生活中的一些現(xiàn)象.

  七、深化練習(xí),鞏固新知

  課本P145~146習(xí)題4.4第1~4題.

  “課時(shí)作業(yè)”部分.

高一數(shù)學(xué)教案8

  一、學(xué)習(xí)目標(biāo):

  知識(shí)與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義, 并會(huì)應(yīng)用性質(zhì)解決問(wèn)題

  過(guò)程與方法:能應(yīng)用文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理

  情感態(tài)度與價(jià)值觀:通過(guò)自主學(xué)習(xí)、主動(dòng)參與、積極探究的學(xué)習(xí)過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會(huì)事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法

  二、學(xué)習(xí)重、難點(diǎn)

  學(xué)習(xí)重點(diǎn): 直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用

  學(xué)習(xí)難點(diǎn): 將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的方法,

  三、學(xué)法指導(dǎo)及要求:

  1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨(dú)立規(guī)范作答,不會(huì)的先繞過(guò),做好記號(hào)。

  2、把學(xué)案中自己易忘、易出錯(cuò)的知識(shí)點(diǎn)和疑難問(wèn)題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班完成A.B類題

  四、知識(shí)鏈接:

  1.空間直線與直線的位置關(guān)系

  2.直線與平面的位置關(guān)系

  3.平面與平面的位置關(guān)系

  4.直線與平面平行的判定定理的符號(hào)表示

  5.平面與平面平行的判定定理的符號(hào)表示

  五、學(xué)習(xí)過(guò)程:

  A問(wèn)題1:

  1)如果一條直線與一個(gè)平面平行,那么這條直線與這個(gè)平面內(nèi)的直線有哪些位置關(guān)系?

  (觀察長(zhǎng)方體)

  2)如果一條直線和一個(gè)平面平行,如何在這個(gè)平面內(nèi)做一條直線與已知直線平行?

  (可觀察教室內(nèi)燈管和地面)

  A問(wèn)題2: 一條直線與平面平行,這條直線和這個(gè)平面內(nèi)直線的位置關(guān)系有幾種可能?

  A問(wèn)題3:如果一條直線 與平面平行,在什么條件下直線 與平面內(nèi)的`直線平行呢?

  由于直線 與平面內(nèi)的任何直線無(wú)公共點(diǎn),所以過(guò)直線 的某一平面,若與平面相交,則直線 就平行于這條交線

  B自主探究1:已知: ∥, ,=b。求證: ∥b。

  直線與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行

  符號(hào)語(yǔ)言:

  線面平行性質(zhì)定理作用:證明兩直線平行

  思想:線面平行 線線平行

  例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過(guò)木料表面ABCD 內(nèi)的一點(diǎn)P和棱BC將木料鋸開(kāi),應(yīng)怎樣畫(huà)線?(2)所畫(huà)的線和面AC有什么關(guān)系?

  例2:已知平面外的兩條平行直線中的一條平行于這個(gè)平面,求證:另一條也平行于這個(gè)平面。

  問(wèn)題5:兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面有什么樣的關(guān)系?兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系?

  自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b

  平面與平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行

  符號(hào)語(yǔ)言:

  面面平行性質(zhì)定理作用:證明兩直線平行

  思想:面面平行 線線平行

  例3 求證:夾在兩個(gè)平行平面間的平行線段相等

  六、達(dá)標(biāo)檢測(cè):

  A1.61頁(yè)練習(xí)

  A2.下列判斷正確的是( )

  A. ∥, ,則 ∥b B. =P,b ,則 與b不平行

  C. ,則a∥ D. ∥,b∥,則 ∥b

  B3.直線 ∥平面,P,過(guò)點(diǎn)P平行于 的直線( )

  A.只有一條,不在平面內(nèi) B.有無(wú)數(shù)條,不一定在內(nèi)

  C.只有一條,且在平面內(nèi) D.有無(wú)數(shù)條,一定在內(nèi)

  B4.下列命題錯(cuò)誤的是 ( )

  A. 平行于同一條直線的兩個(gè)平面平行或相交

  B. 平行于同一個(gè)平面的兩個(gè)平面平行

  C. 平行于同一條直線的兩條直線平行

  D. 平行于同一個(gè)平面的兩條直線平行或相交

  B5. 平行四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )

  A. EH∥BD,BD不平行與FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,F(xiàn)G∥BD

  D. 以上都不對(duì)

  B6.若直線 ∥b, ∥平面,則直線b與平面的位置關(guān)系是

  B7一個(gè)平面上有兩點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面

  七、小結(jié)與反思:

高一數(shù)學(xué)教案9

  第一節(jié) 集合的含義與表示

  學(xué)時(shí):1學(xué)時(shí)

  [學(xué)習(xí)引導(dǎo)]

  一、自主學(xué)習(xí)

  1.閱讀課本 .

  2.回答問(wèn)題:

 、疟竟(jié)內(nèi)容有哪些概念和知識(shí)點(diǎn)?

  ⑵嘗試說(shuō)出相關(guān)概念的含義?

  3完成 練習(xí)

  4小結(jié)

  二、方法指導(dǎo)

  1、要結(jié)合例子理解集合的概念,能說(shuō)出常用的數(shù)集的名稱和符號(hào)。

  2、理解集合元素的特性,并會(huì)判斷元素與集合的關(guān)系

  3、掌握集合的.表示方法,并會(huì)正確運(yùn)用它們表示一些簡(jiǎn)單集合。

  4、在學(xué)習(xí)中要特別注意理解空集的意義和記法

  [思考引導(dǎo)]

  一、提問(wèn)題

  1.集合中的元素有什么特點(diǎn)?

  2、集合的常用表示法有哪些?

  3、集合如何分類?

  4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語(yǔ)言表述?

  5集合 和 是否相同?

  二、變題目

  1.下列各組對(duì)象不能構(gòu)成集合的是( )

  A.北京大學(xué)2008級(jí)新生

  B.26個(gè)英文字母

  C.著名的藝術(shù)家

  D.2008年北京奧運(yùn)會(huì)中所設(shè)定的比賽項(xiàng)目

  2.下列語(yǔ)句:①0與 表示同一個(gè)集合;

 、谟1,2,3組成的集合可表示為 或 ;

 、鄯匠 的解集可表示為 ;

 、芗 可以用列舉法表示。

  其中正確的是( )

  A.①和④ B.②和③

  C.② D.以上語(yǔ)句都不對(duì)

  [總結(jié)引導(dǎo)]

  1.集合中元素的三特性:

  2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號(hào)語(yǔ)言的表示和理解:

  3.空集的含義:

  [拓展引導(dǎo)]

  1.課外作業(yè): 習(xí)題11第 題;

  2.若集合 ,求實(shí)數(shù) 的值;

  3.若集合 只有一個(gè)元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .

  撰稿:程曉杰 審稿:宋慶

高一數(shù)學(xué)教案10

  學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!

  教學(xué)目標(biāo)

  1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.

  (2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.

  (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).

  2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

  3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的'思維習(xí)慣.

  教學(xué)建議

  (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等.

  (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

  (3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.

  (4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.

  (5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.

  (6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.

  上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!

高一數(shù)學(xué)教案11

  學(xué)習(xí)目標(biāo)

  1. 根據(jù)具體函數(shù)圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;

  2. 通過(guò)用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問(wèn)題的意識(shí).

  舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)

  復(fù)習(xí)1:什么叫零點(diǎn)?零點(diǎn)的等價(jià)性?零點(diǎn)存在性定理?

  對(duì)于函數(shù) ,我們把使 的實(shí)數(shù)x叫做函數(shù) 的零點(diǎn).

  方程 有實(shí)數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .

  如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點(diǎn).

  復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?

  合作探究

  探究:有12個(gè)小球,質(zhì)量均勻,只有一個(gè)是比別的球重的,你用天平稱幾次可以找出這個(gè)球的,要求次數(shù)越少越好.

  解法:第一次,兩端各放 個(gè)球,低的那一端一定有重球;

  第二次,兩端各放 個(gè)球,低的那一端一定有重球;

  第三次,兩端各放 個(gè)球,如果平衡,剩下的就是重球,否則,低的就是重球.

  思考:以上的方法其實(shí)這就是一種二分法的`思想,采用類似的方法,如何求 的零點(diǎn)所在區(qū)間?如何找出這個(gè)零點(diǎn)?

  新知:二分法的思想及步驟

  對(duì)于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過(guò)不斷的把函數(shù)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫二分法(bisection).

  反思: 給定精度,用二分法求函數(shù) 的零點(diǎn)近似值的步驟如何呢?

  ①確定區(qū)間 ,驗(yàn)證 ,給定精度

 、谇髤^(qū)間 的中點(diǎn) ;[]

 、塾(jì)算 : 若 ,則 就是函數(shù)的零點(diǎn); 若 ,則令 (此時(shí)零點(diǎn) ); 若 ,則令 (此時(shí)零點(diǎn) );

  ④判斷是否達(dá)到精度即若 ,則得到零點(diǎn)零點(diǎn)值a(或b);否則重復(fù)步驟②~④.

  典型例題

  例1 借助計(jì)算器或計(jì)算機(jī),利用二分法求方程 的近似解.

  練1. 求方程 的解的個(gè)數(shù)及其大致所在區(qū)間.

  練2.求函數(shù) 的一個(gè)正數(shù)零點(diǎn)(精確到 )

  零點(diǎn)所在區(qū)間 中點(diǎn)函數(shù)值符號(hào) 區(qū)間長(zhǎng)度

  練3. 用二分法求 的近似值.

  課堂小結(jié)

 、 二分法的概念;②二分法步驟;③二分法思想.

  知識(shí)拓展

  高次多項(xiàng)式方程公式解的探索史料

  在十六世紀(jì),已找到了三次和四次函數(shù)的求根公式,但對(duì)于高于4次的函數(shù),類似的努力卻一直沒(méi)有成功,到了十九世紀(jì),根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認(rèn)識(shí)到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運(yùn)算及根號(hào)表示的一般的公式解.同時(shí),即使對(duì)于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來(lái)講并不適宜作具體計(jì)算.因此對(duì)于高次多項(xiàng)式函數(shù)及其它的一些函數(shù),有必要尋求其零點(diǎn)近似解的方法,這是一個(gè)在計(jì)算數(shù)學(xué)中十分重要的課題.

  學(xué)習(xí)評(píng)價(jià)

  1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).

  A. 至少有一個(gè)零點(diǎn) B. 只有一個(gè)零點(diǎn)

  C. 沒(méi)有零點(diǎn) D. 至多有一個(gè)零點(diǎn)

  2. 下列函數(shù)圖象與 軸均有交點(diǎn),其中不能用二分法求函數(shù)零點(diǎn)近似值的是().

  3. 函數(shù) 的零點(diǎn)所在區(qū)間為( ).

  A. B. C. D.

  4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實(shí)根,由計(jì)算器可算得 , , ,那么下一個(gè)有根區(qū)間為 .

  課后作業(yè)

  1.若函數(shù)f(x)是奇函數(shù),且有三個(gè)零點(diǎn)x1、x2、x3,則x1+x2+x3的值為()

  A.-1 B.0 C.3 D.不確定

  2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()

  A.至少有一實(shí)數(shù)根 B.至多有一實(shí)數(shù)根

  C.沒(méi)有實(shí)數(shù)根 D.有惟一實(shí)數(shù)根

  3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)()

  A.在區(qū)間1e,1,(1,e)內(nèi)均有零點(diǎn) B.在區(qū)間1e,1, (1,e)內(nèi)均無(wú)零點(diǎn)

  C.在區(qū)間1e,1內(nèi)有零點(diǎn);在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)[]

  D.在區(qū)間1e,1內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

  4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是()

  A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

  5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是()

  A.m1 B.01 D.0

  6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點(diǎn)有()

  A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)

  7.函數(shù)y=3x-1x2的一個(gè)零點(diǎn)是()

  A.-1 B.1 C.(-1,0) D.(1,0)

  8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點(diǎn)的個(gè)數(shù)為( )

  A.至多有一個(gè) B.有一個(gè)或兩個(gè) C.有且僅有一個(gè) D.一個(gè)也沒(méi)有

  9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為()

  x -1 0 1 2 3

  ex 0.37 1 2.72 7.39 20.09

  A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

  10.求函數(shù)y=x3-2x2-x+2的零點(diǎn),并畫(huà)出它的簡(jiǎn)圖.

  【總結(jié)】

  20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:用二分法求方程的近似解,今后還會(huì)發(fā)布更多更好的文章希望對(duì)大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!

高一數(shù)學(xué)教案12

  【內(nèi)容與解析】

  本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。

  【教學(xué)目標(biāo)與解析】

  1、教學(xué)目標(biāo)

 。1)理解函數(shù)的概念;

  (2)了解區(qū)間的概念;

  2、目標(biāo)解析

 。1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

 。2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;

  【問(wèn)題診斷分析】

  在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

  【教學(xué)過(guò)程】

  問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

  1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

  1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

  設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。

  問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。

  問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

  設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

  問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的.觀點(diǎn)分析,函數(shù)還可以怎樣定義?

  4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?

  4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

  4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?

  【例題】:

  例1求下列函數(shù)的定義域

  分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!

  例2已知函數(shù)

  分析:理解函數(shù)f(x)的意義

  例3下列函數(shù)中哪個(gè)與函數(shù)相等?

  例4在下列各組函數(shù)中與是否相等?為什么?

  分析:

 。1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;

  (2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.

  【課堂目標(biāo)檢1測(cè)】

  教科書(shū)第19頁(yè)1、2.

  【課堂小結(jié)】

  1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;

  2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。

高一數(shù)學(xué)教案13

  一、教學(xué)目標(biāo)

 。1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

 。2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

 。3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

 。4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

  (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

 。6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

  三、教學(xué)過(guò)程

  1.新課導(dǎo)入

  在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

  初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

 。◤某踔薪佑|過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

  學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

  教師提問(wèn):什么是命題?

 。▽W(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

 。ń處熆隙送瑢W(xué)的回答,并作板書(shū).)

  由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛队捌,和學(xué)生討論以下問(wèn)題.)

  例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

  命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

  2.講授新課

  大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

 。ㄆ毯笳(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語(yǔ)句叫做命題.

  判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  命題可分為簡(jiǎn)單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的`命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

 。4)命題的表示:用p ,q ,r ,s ,……來(lái)表示.

 。ń處煾鶕(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

  我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對(duì)于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

 。1)5 ;

 。2)0.5非整數(shù);

  (3)內(nèi)錯(cuò)角相等,兩直線平行;

 。4)菱形的對(duì)角線互相垂直且平分;

 。5)平行線不相交;

 。6)若ab=0 ,則a=0 .

  (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

高一數(shù)學(xué)教案14

  [教學(xué)重、難點(diǎn)]

  認(rèn)識(shí)直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會(huì)每一類三角形的特點(diǎn)。

  [教學(xué)準(zhǔn)備]

  學(xué)生、老師剪下附頁(yè)2中的圖2。

  [教學(xué)過(guò)程]

  一、畫(huà)一畫(huà),說(shuō)一說(shuō)

  1、學(xué)生各自借助三角板或直尺分別畫(huà)一個(gè)銳角、直角、鈍角。

  2、教師巡查練習(xí)情況。

  3、學(xué)生展示練習(xí),說(shuō)一說(shuō)為什么是銳角、直角、鈍角?

  二、分一分

  1、小組活動(dòng);把附頁(yè)2中的圖2中的三角形進(jìn)行分類,動(dòng)手前先觀察這些三角形的特點(diǎn),然后小組討論怎樣分?

  2、匯報(bào):分類的標(biāo)準(zhǔn)和方法。可以按角來(lái)分,可以按邊來(lái)分。

  二、按角分類:

  1、觀察第一類三角形有什么共同的特點(diǎn),從而歸納出三個(gè)角都是銳角的'三角形是銳角三角形。

  2、觀察第二類三角形有什么共同的特點(diǎn),從而歸納出有一個(gè)角是直角的三角形是直角三角形

  3、觀察第三類三角形有什么共同的特點(diǎn),從而歸納出有一個(gè)角是鈍角的三角形是鈍角三角形。

  三、按邊分類:

  1、觀察這類三角形的邊有什么共同的`特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn)每個(gè)三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

  2、引導(dǎo)學(xué)生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

  四、填一填:

  24、25頁(yè)讓學(xué)生辨認(rèn)各種三角形。

  五、練一練:

  第1題:通過(guò)“猜三角形游戲”讓學(xué)生體會(huì)到看到一個(gè)銳角,不能決定是一個(gè)銳角三角形,必須三個(gè)角都是銳角才是銳角三角形。

  第2題:在點(diǎn)子圖上畫(huà)三角形第3題:剪一剪。

  六、完成26頁(yè)實(shí)踐活動(dòng)。

高一數(shù)學(xué)教案15

  教學(xué)目標(biāo)

  (1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

  (3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

  教學(xué)建議

  (一)教材分析

  1.知識(shí)結(jié)構(gòu)

  首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).

  2.重點(diǎn)難點(diǎn)分析

  本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.

 。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.

 。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:

 、偈紫确智鍡l件是什么,結(jié)論是什么;

  ②然后嘗試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說(shuō)明其不成立;

 、圩詈笤僦赋鰲l件是結(jié)論的什么條件.

  (3)在討論條件和條件的關(guān)系時(shí),要注意:

 、偃簦,則是的充分但不必要條件;

 、谌,但,則是的必要但不充分條件;

 、廴簦,則是的充要條件;

 、苋,且,則是的充要條件;

 、萑簦,則是的既不充分也不必要條件.

 。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.

 、偃,則是的充分條件;

  顯然,要使元素,只需就夠了.類似地還有:

 、谌,則是的必要條件;

 、廴,則是的充要條件;

 、苋,且,則是的既不必要也不充分條件.

 。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.

  (二)教法建議

  1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡(jiǎn)單命題,也可以是不能判斷真假的語(yǔ)句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.

  2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.

  3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.

  4.教材中對(duì)“充分條件”、“必要條件”的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)“充分條件”的.概念,從互為逆否命題的等價(jià)性來(lái)引出“必要條件”的概念.

  教學(xué)設(shè)計(jì)示例

  充要條件

  教學(xué)目標(biāo)

 。1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

 。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

  教學(xué)重點(diǎn)難點(diǎn):

  關(guān)于充要條件的判斷

  教學(xué)用具:

  幻燈機(jī)或?qū)嵨锿队皟x

  教學(xué)過(guò)程設(shè)計(jì)

  1.復(fù)習(xí)引入

  練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

 。1)若,則;

 。2)若,則;

 。3)全等三角形的面積相等;

 。4)對(duì)角線互相垂直的四邊形是菱形;

 。5)若,則;

 。6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.

 。▽W(xué)生口答,教師板書(shū).)

  (1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

  置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?

  答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

  對(duì)于命題“若,則”,如果由經(jīng)過(guò)推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.

  2.講授新課

  (板書(shū)充分條件的定義.)

  一般地,如果已知,那么我們就說(shuō)是成立的充分條件.

  提問(wèn):請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

 。▽W(xué)生口答)

 。1)“,”是“”成立的充分條件;

  (2)“三角形全等”是“三角形面積相等”成立的充分條件;

 。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.

  從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒(méi)有,也就沒(méi)有,亦即是成立的必須要有的條件,也就是必要條件.

 。ò鍟(shū)必要條件的定義.)

  提出問(wèn)題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.

 。▽W(xué)生口答).

 。1)因?yàn),所以是的充分條件,是的必要條件;

 。2)因?yàn)椋允堑谋匾獥l件,是的充分條件;

 。3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

 。4)因?yàn)椤八倪呅蔚膶?duì)角線互相垂直”“四邊形是菱形”,所以“四邊形的對(duì)角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線互相垂直”的充分條件;

 。5)因?yàn),所以是的必要條件,是的充分條件;

 。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.

  總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡(jiǎn)稱充要條件,記作.

 。ò鍟(shū)充要條件的定義.)

  3.鞏固新課

  例1(用投影儀投影.)

 。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)

 、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

 、谝欢芡瞥觯灰欢ㄍ瞥,所以是的充分非必要條件,是的必要非充分條件;

 、、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

  ④表示或,所以是成立的必要非充分條件;

 、萦山患亩x可知且是成立的充要條件;

 、抻芍,所以是成立的充分非必要條件;

 、哂芍,所以是,成立的必要非充分條件;

 、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

 。ㄍㄟ^(guò)對(duì)上述問(wèn)題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)

  例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)

  解:由已知得,

  所以是的充分條件,或是的必要條件.

  4.小結(jié)回授

  今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問(wèn)題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).

  課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)l、2;第36頁(yè)練習(xí)l、2.

  (通過(guò)練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)

  5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.

【高一數(shù)學(xué)教案】相關(guān)文章:

高一優(yōu)秀數(shù)學(xué)教案09-28

高一數(shù)學(xué)教案11-05

人教版高一數(shù)學(xué)教案06-10

高一數(shù)學(xué)教案數(shù)列12-29

高一數(shù)學(xué)教案函數(shù)12-28

高一數(shù)學(xué)教案【精】11-29

高一數(shù)學(xué)教案【推薦】11-30

【精】高一數(shù)學(xué)教案12-01

【薦】高一數(shù)學(xué)教案11-27

高一數(shù)學(xué)教案【熱門(mén)】11-28