高一數(shù)學教案【薦】
作為一位不辭辛勞的人民教師,通常會被要求編寫教案,教案是教學活動的依據(jù),有著重要的地位?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編幫大家整理的高一數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學教案1
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);
(2)理解任意角的三角函數(shù)不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).
2、過程與方法
初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的'函數(shù).引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數(shù).講解例題,總結方法,鞏固練習.
3、情態(tài)與價值
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應關系,也表明了這兩個函數(shù)之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一數(shù)學教案2
教學目標
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
(4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學建議
(一)教材分析
1.知識結構
首先給出推斷符號“”,并引出的意義,在此基礎上講述了充要條件的初步知識.
2.重點難點分析
本節(jié)的重點與難點是關于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學概念,主要用來區(qū)分命題的條件和結論之間的因果關系.
。2)在判斷條件和結論之間的因果關系中應該:
①首先分清條件是什么,結論是什么;
、谌缓髧L試用條件推結論,再嘗試用結論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;
③最后再指出條件是結論的什么條件.
。3)在討論條件和條件的關系時,要注意:
、偃,但,則是的充分但不必要條件;
、谌簦,則是的必要但不充分條件;
、廴簦,則是的充要條件;
、苋,且,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現(xiàn),結論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.
、偃,則是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌,則是的必要條件;
③若,則是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學習充分條件、必要條件和充要條件知識,要注意與前面有關邏輯初步知識內容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結詞或“若則”形式的復合命題.
2.由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關鍵.教學中始終要注意以學生為主,讓學生在自我思考、相互交流中去結概念“下定義”,去體會概念的本質屬性.
3.由于“充要條件”與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.
4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.
教學設計示例
充要條件
教學目標:
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
(4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學重點難點:
關于充要條件的判斷
教學用具:
幻燈機或實物投影儀
教學過程設計
1.復習引入
練習:判斷下列命題是真命題還是假命題(用幻燈投影):
(1)若,則;
(2)若,則;
。3)全等三角形的面積相等;
。4)對角線互相垂直的四邊形是菱形;
。5)若,則;
。6)若方程有兩個不等的實數(shù)解,則.
。▽W生口答,教師板書.)
(1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結論的成立,這時我們稱條件是成立的充分條件,記作.
2.講授新課
。ò鍟浞謼l件的定義.)
一般地,如果已知,那么我們就說是成立的充分條件.
提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結論之間的關系.
。▽W生口答)
。1)“,”是“”成立的.充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個不等的實數(shù)解”是“”成立的充分條件.
從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.
。ò鍟匾獥l件的定義.)
提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.
。▽W生口答).
。1)因為,所以是的充分條件,是的必要條件;
(2)因為,所以是的必要條件,是的充分條件;
(3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
(4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;
(5)因為,所以是的必要條件,是的充分條件;
。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.
總結:如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.
。ò鍟湟獥l件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W生活動,教師引導學生作出下面回答.)
、僖驗橛欣頂(shù)一定是實數(shù),但實數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
、鼙硎净,所以是成立的必要非充分條件;
、萦山患亩x可知且是成立的充要條件;
、抻芍,所以是成立的充分非必要條件;
、哂芍颍允,成立的必要非充分條件;
、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
。ㄍㄟ^對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)
例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結回授
今天我們學習了充分條件、必要條件和充要條件的概念,并學會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學問題打下了等價轉化的基礎.
課內練習:課本(人教版,試驗修訂本,第一冊(上))第35頁練習l、2;第36頁練習l、2.
。ㄍㄟ^練習,檢查學生掌握情況,有針對性的進行講評.)
5.課外作業(yè):教材第36頁 習題1.8 1、2、3.
高一數(shù)學教案3
第一節(jié) 集合的含義與表示
學時:1學時
[學習引導]
一、自主學習
1.閱讀課本 .
2.回答問題:
、疟竟(jié)內容有哪些概念和知識點?
⑵嘗試說出相關概念的含義?
3完成 練習
4小結
二、方法指導
1、要結合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關系
3、掌握集合的`表示方法,并會正確運用它們表示一些簡單集合。
4、在學習中要特別注意理解空集的意義和記法
[思考引導]
一、提問題
1.集合中的元素有什么特點?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關系?如何用數(shù)學語言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對象不能構成集合的是( )
A.北京大學2008級新生
B.26個英文字母
C.著名的藝術家
D.2008年北京奧運會中所設定的比賽項目
2.下列語句:①0與 表示同一個集合;
、谟1,2,3組成的集合可表示為 或 ;
、鄯匠 的解集可表示為 ;
、芗 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語句都不對
[總結引導]
1.集合中元素的三特性:
2.集合、元素、及其相互關系的數(shù)學符號語言的表示和理解:
3.空集的含義:
[拓展引導]
1.課外作業(yè): 習題11第 題;
2.若集合 ,求實數(shù) 的值;
3.若集合 只有一個元素,則實數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學教案4
一、教材
首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學必修2第三章3.1.2的內容,本節(jié)課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學習了直線的傾斜角與斜率,為本節(jié)課的學習打下了基礎。
二、學情
教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經(jīng)趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應該積極發(fā)揮這種優(yōu)勢,讓學生獨立思考探索。
三、教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關系。
(二)過程與方法
在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態(tài)度價值觀
在猜想論證的過程中,體會數(shù)學的嚴謹性。
四、教學重難點
我認為一節(jié)好的數(shù)學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內容肯定是密不可分的.。那么根據(jù)授課內容可以確定本節(jié)課的教學重點是:兩條直線平行與垂直的判定。本節(jié)課的教學難點是:兩條直線平行與垂直的判定的推導。
五、教法和學法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結合本節(jié)課的內容特點和學生的年齡特征,本節(jié)課我采用講授法、練習法、小組合作等教學方法。
六、教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
首先是導入環(huán)節(jié),那么我采用復習導入,回顧上節(jié)課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?
利用上節(jié)課所學的知識進行導入,很好的克服學生的畏難情緒。
(二)新知探索
接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學教案5
教材:邏輯聯(lián)結詞
目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯(lián)結詞,并能由簡單命題構成含有邏輯聯(lián)結詞的復合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結詞
二、命題的概念:
例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結詞構成的命題叫復合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的`
垂直且平分⑤ 對角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結詞成復合命題。
3.其實,有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復合命題的構成形式
如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結:1.命題 2.復合命題 3.復合命題的構成形式
高一數(shù)學教案6
本文題目:高一數(shù)學教案:函數(shù)的奇偶性
課題:1.3.2函數(shù)的奇偶性
一、三維目標:
知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操. 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質。
二、學習重、難點:
重點:函數(shù)的奇偶性的概念。
難點:函數(shù)奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。
五、學習過程:
函數(shù)的奇偶性:
(1)對于函數(shù) ,其定義域關于原點對稱:
如果______________________________________,那么函數(shù) 為奇函數(shù);
如果______________________________________,那么函數(shù) 為偶函數(shù)。
(2)奇函數(shù)的`圖象關于__________對稱,偶函數(shù)的圖象關于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性 ;偶函數(shù)在對稱區(qū)間的增減性 。
六、達標訓練:
A1、判斷下列函數(shù)的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .
B3、已知 ,其中 為常數(shù),若 ,則
_______ .
B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關于 ( )
(A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對
B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .
C6、若函數(shù) 是定義在R上的奇函數(shù),且當 時, ,那么當
時, =_______ .
D7、設 是 上的奇函數(shù), ,當 時, ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .
七、學習小結:
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質。
八、課后反思:
高一數(shù)學教案7
教學目標:
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質及運算律;
3、了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題;
4、掌握向量垂直的條件、
教學重難點:
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用
教學工具:
投影儀
教學過程:
一、復習引入:
1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ
五,課堂小結
(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的`體會是什么?
六、課后作業(yè)
P107習題2、4A組2、7題
課后小結
(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習題
高一數(shù)學教案8
教學目的:
(1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學生初步了解“屬于”關系的意義
。3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
內容分析:
集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎 例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1、簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
。2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,
。2)正整數(shù)集:非負整數(shù)集內排除0的集 記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合 記作Z ,
。4)有理數(shù)集:全體有理數(shù)的.集合 記作Q ,
。5)實數(shù)集:全體實數(shù)的集合 記作R
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內排除0的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù) (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )
。ˋ)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
。1) 當x∈N時, x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結:本節(jié)課學習了以下內容:
1、集合的有關概念:(集合、元素、屬于、不屬于)
2、集合元素的性質:確定性,互異性,無序性
3、常用數(shù)集的定義及記法
高一數(shù)學教案9
一、教學目標
。1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
。2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;
。3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;
。4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;
。5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的`過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
。◤某踔薪佑|過的“命題”入手,提出問題,進而學習邏輯的有關知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
。ㄍ瑢W議論結果,答案是肯定的.)
教師提問:什么是命題?
。▽W生進行回憶、思考.)
概念總結:對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
。ń處熇猛队捌,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?
。ㄆ毯笳埻瑢W舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
。2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
命題可分為簡單命題和復合命題.
不含邏輯聯(lián)結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結詞“且”構成的復合命題.
。4)命題的表示:用p ,q ,r ,s ,……來表示.
。ń處煾鶕(jù)學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯(lián)結詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.
對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結論q .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.
。1)5 ;
。2)0.5非整數(shù);
(3)內錯角相等,兩直線平行;
。4)菱形的對角線互相垂直且平分;
。5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
高一數(shù)學教案10
教學目標:
1、理解對數(shù)的概念,能夠進行對數(shù)式與指數(shù)式的互化;
2、滲透應用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學發(fā)現(xiàn)能力。
教學重點:
對數(shù)的概念
教學過程:
一、問題情境:
1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?
。2)假設20xx年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是20xx年的.2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?
二、學生活動:
1、討論問題,探究求法、
2、概括內容,總結對數(shù)概念、
3、研究指數(shù)與對數(shù)的關系、
三、建構數(shù)學:
1)引導學生自己總結并給出對數(shù)的概念、
2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、
3)指數(shù)式與對數(shù)式的關系、
4)常用對數(shù)與自然對數(shù)、
探究:
、咆摂(shù)與零沒有對數(shù)、
⑵,、
、菍(shù)恒等式(教材P58練習6)
、;②、
、葍煞N對數(shù):
①常用對數(shù):;
、谧匀粚(shù):、
。5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、
四、數(shù)學運用:
1、例題:
例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:
。1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:
(1);(2)3=—2;(3);(4)(補充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
⑴;⑵;⑶(補充)、
2、練習:
P58(練習)1,2,3,4,5、
五、回顧小結:
本節(jié)課學習了以下內容:
、艑(shù)的定義;
⑵指數(shù)式與對數(shù)式互換;
⑶求對數(shù)式的值(利用計算器求對數(shù)值)、
六、課外作業(yè):P63習題1,2,3,4、
高一數(shù)學教案11
目標:
1.讓學生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;
2.讓學生了解函數(shù)的零點與方程根的聯(lián)系 ;
3.讓學生認識到函數(shù)的圖象及基本性質(特別是單調性)在確定函數(shù)零點中的作用 ;
4。培養(yǎng)學生動手操作的能力 。
二、教學重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復習引入
例1:判斷方程 x2-x-6=0 解的存在。
分析:考察函數(shù)f(x)= x2-x-6, 其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
點B (0,-6)與點C(4,6)之間的那部分曲線
必然穿過x軸,即在區(qū)間(0,4)內至少有點
X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內也至
少有點X2,使得f( X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內各有一解
定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的'零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標叫做該函數(shù)的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在 (a,b)內至少有一個實數(shù)解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數(shù)解;
3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。
四、知識應用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內沒有實數(shù)解?為什么?
解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區(qū)間[-1,0]內有零點,即f(x)=0在區(qū)間[-1,0]內有實數(shù)解
練習:求函數(shù)f(x)=lnx+2x-6 有沒有零點?
例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。
解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在( -,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。
練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。
五、課后作業(yè)
p133第2,3題
高一數(shù)學教案12
教學目標
1.了解函數(shù)的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調性,單調區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調性,能利用定義證明某些函數(shù)的單調性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從特殊到一般的數(shù)學思想.
3.通過對函數(shù)單調性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度.
教學建議
一、知識結構
(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數(shù)單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的`,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數(shù)單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.
函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學教案13
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節(jié)的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯(lián)系,滲透了數(shù)形結合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數(shù)形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經(jīng)歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標
激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結規(guī)律的能力,解題時養(yǎng)成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數(shù)學思想。
五、教學方法
根據(jù)本節(jié)課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設計一系列問題串,以引導學生的數(shù)學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創(chuàng)設泰坦尼克號的情景,并從中抽象出數(shù)學模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經(jīng)學習的直線與圓的位置關系,將所想到的航行路線轉化成數(shù)學簡圖,即相交、相切、相離。
設計意圖:在已有的.知識基礎上,提出新的問題,有利于保持學生知識結構的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現(xiàn),兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數(shù)解時,直線l與圓C相交;
當方程組有一組實數(shù)解時,直線l與圓C相切;
當方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續(xù)學習的信心。
(五)小結作業(yè)
在小結環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學習的主要內容是什么?
(2)在數(shù)學問題的解決過程中運用了哪些數(shù)學思想?
設計意圖:啟發(fā)式的課堂小結方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網(wǎng)絡進行主動建構。
作業(yè):在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。
七、板書設計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。
高一數(shù)學教案14
一、教材分析
本節(jié)課選自《普通高中課程標準數(shù)學教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。函數(shù)是數(shù)學的重要的基礎概念之一,是高等數(shù)學重多學科的基礎概念和重要的研究對象。同時函數(shù)也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。
二、學生學習情況分析
函數(shù)是中學數(shù)學的主體內容,學生在中學階段對函數(shù)的認識分三個階段:
。ㄒ唬┏踔袕倪\動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);
。ǘ└咧杏眉吓c對應的觀點來刻畫函數(shù),研究函數(shù)的性質,學習典型的對、指、冪和三解函數(shù);
。ㄈ└咧杏脤(shù)工具研究函數(shù)的單調性和最值。
1、有利條件
現(xiàn)代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。
初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規(guī)律的內容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數(shù)打下了一定的基礎。
2、不利條件
用集合與對應的觀點來定義函數(shù),形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰(zhàn),是本節(jié)課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;了解構成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。
1、知識與能力目標:
、拍軓募吓c對應的角度理解函數(shù)的概念,更要理解函數(shù)的本質屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關系;
、菚蠛唵魏瘮(shù)的定義域和值域
2、過程與方法目標:
、磐ㄟ^豐富實例,使學生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關系的數(shù)學模型;
⑵在函數(shù)實例中,通過對關鍵詞的強調和引導使學發(fā)現(xiàn)它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。
3、情感、態(tài)度與價值觀目標:
感受生活中的數(shù)學,感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1、教學重點:對函數(shù)概念的理解,用集合與對應的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應的語言來刻畫函數(shù)。二者反映的本質是一致的,即“函數(shù)是一種對應關系”。但是,初中定義并未完全揭示出函數(shù)概念的本質,對y?1這樣的函數(shù)用運動變化的'觀點也很難解釋。在以函數(shù)為重要內容的高中階段,課本應將函數(shù)定義為兩個數(shù)集之間的一種對應關系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關系,讓學生融會貫通地理解函數(shù)的概念應為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。
2、教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據(jù):數(shù)學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當?shù)匾龑,而對抽象符號的理解則要結合函數(shù)的三要素和小例子進行說明。
五、教法與學法分析
1、教法分析
本節(jié)課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發(fā),關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2、學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數(shù)問題、通過自主學習法總結“區(qū)間”的知識。
高一數(shù)學教案15
一、教學目標
1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系。
2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。
二、能力目標
1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學生的抽象思維能力。
2、通過由已知信息寫一次函數(shù)表達式的過程,發(fā)展學生的數(shù)學應用能力。
三、情感目標
1、通過函數(shù)與變量之間的關系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學生的數(shù)學思維。
2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學生的數(shù)學應用能力。
四、教學重難點
1、一次函數(shù)、正比例函數(shù)的概念及關系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
五、教學過程
1、新課導入
有關函數(shù)問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,
請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的`質量x每增加1千克、彈簧長度y增加0.5厘米。
。1)計算所掛物體的質量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,
。2)你能寫出x與y之間的關系式嗎?
分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做
某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000。18x或y=100 x)
接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。
3、一次函數(shù),正比例函數(shù)的概念
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。
4、例題講解
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:這道題考查的是一次函數(shù)的概念,特別要強調一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B
【高一數(shù)學教案】相關文章:
高一優(yōu)秀數(shù)學教案09-28
高一數(shù)學教案11-05
人教版高一數(shù)學教案06-10
【精】高一數(shù)學教案12-01
【熱門】高一數(shù)學教案11-26
【熱】高一數(shù)學教案12-05
高一數(shù)學教案【推薦】11-30
高一數(shù)學教案【熱】12-03
【推薦】高一數(shù)學教案12-04