天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)并集教案

高中數(shù)學(xué)并集教案

時間:2022-12-30 08:24:11 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)并集教案

  作為一名教職工,編寫教案是必不可少的,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?以下是小編整理的高中數(shù)學(xué)并集教案,僅供參考,歡迎大家閱讀。

高中數(shù)學(xué)并集教案

高中數(shù)學(xué)并集教案1

各位評委、各位專家:

  大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進行說課。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

 。ǘ┙虒W(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。

  二、教學(xué)目標分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:

  知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

  (一)學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計

  本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

 。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個一次”的關(guān)系

  本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“”則變成一元二次不等式x2—x—60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計了以下幾個問題:

  1、請同學(xué)們解以下方程和不等式:

 、2x—7=0;②2x—70;③2x—70

  學(xué)生回答,我板書。

  2、我指出:2x—70和2x—70的解實際上只需利用不等式基本性質(zhì)就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x—7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關(guān)系:

 、2x—7=0的解恰是函數(shù)y=2x—7的圖象與x軸

  交點的橫坐標。

  ②2x—70的解集正是函數(shù)y=2x—7的圖象

  在x軸的上方的點的橫坐標的集合。

  ③2x—70的解集正是函數(shù)y=2x—7的圖象

  在x軸的下方的點的橫坐標的集合。

  三組關(guān)系的得出,實際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2—x—6的圖象來求不等式x2—x—60的解集。

 。ǘ┍扰f悟新,引出“三個二次”的關(guān)系

  為此我引導(dǎo)學(xué)生作出函數(shù)y=x2—x—6的圖象,按照“看一看說一說問一問”的思路進行探究。

  看函數(shù)y=x2—x—6的圖象并說出:

 、俜匠蘹2—x—6=0的解是

  x=—2或x=3;

 、诓坏仁絰2—x—60的.解集是

  {x|x—2,或x3};

 、鄄坏仁絰2—x—60的解集是

  {x|—23}。

  此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

  學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2—x—6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

 。ㄈw納提煉,得出“三個二次”的關(guān)系

  1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。

  2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項系數(shù)由負化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

 。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認識,為鞏固所學(xué)知識,我們一起來完成以下例題:

  例1、解不等式2x2-3x-20

  解:因為Δ0,方程2x2-3x-2=0的解是

  x1=,x2=2

  所以,不等式的解集是

  { x| x,或x2}

  例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學(xué)習(xí)課本例2。

  例2解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。

  通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

  例3解不等式4x2-4x+10

  例4解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚。

  4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

 。ㄎ澹┛偨Y(jié)

  解一元二次不等式的“四部曲”:

  (1)把二次項的系數(shù)化為正數(shù)

 。2)計算判別式Δ

 。3)解對應(yīng)的一元二次方程

  (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

 。┳鳂I(yè)布置

  為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

 。1)必做題:習(xí)題1。5的1、3題

 。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為p,ax2+bx+c0的解集為m,ax2+bx+c0的解集為n,那么p∪m∪n=______________;②已知不等式(k2+4k—5)x2+4(1—k)x+30的解集是r,求實數(shù)k的取值范圍。

 。ㄆ撸┌鍟O(shè)計

  一元二次不等式解法(1)

  六、教學(xué)效果評價

  本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

高中數(shù)學(xué)并集教案2

  教學(xué)目標:

 。1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義,

 。3)掌握有關(guān)子集、全集、補集的符號及表示,會用它們正確表示一些簡單的集合,培養(yǎng)的符號表示的;

 。4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

 。5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學(xué)生的結(jié)合的數(shù)學(xué)思想;

  (6)培養(yǎng)學(xué)生用集合的觀點分析問題、解決問題的能力.

  教學(xué)重點:子集、補集的概念

  教學(xué)難點:弄清元素與子集、屬于與包含之間的區(qū)別

  教學(xué)用具:幻燈機

  教學(xué)過程設(shè)計

  (一)導(dǎo)入新課

  上節(jié)課我們了集合、元素、集合中元素的三性、元素與集合的關(guān)系等.

  【提出問題】(投影打出)

  已知 , , ,問:

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說出各集合中的元素.

  5.將每個集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的關(guān)系用符號表示出來.

  6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

  【找學(xué)生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結(jié)合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5....... (筆練結(jié)合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題.

  (二)新授知識

  1.子集

 。1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質(zhì):

 、 (任何一個集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的.部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

 。2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.

  【提問】

 。1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

 。2) 判斷下列寫法是否正確

  ① A ② A ③ ④A A

  性質(zhì):

 。1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

 。2)如果 , ,則 .

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】

  (1)子集與真子集符號的方向。

  (2)易混符號

 、佟 ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}

  ②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

 。3) 不是 ;

 。4) 的所有子集是 ;

 。5)如果 且 ,那么B必是A的真子集;

  (6) 與 不能同時成立.

  解:

 。1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

 。2)不正確.空集是任何非空集合的真子集;

 。3)不正確. 與 表示同一集合;

 。4)不正確. 的所有子集是 ;

 。5)正確

 。6)不正確.當 時, 與 能同時成立.

  例4 用適當?shù)姆枺?, )填空:

 。1) ; ; ;

 。2) ; ;

 。3) ;

 。4)設(shè) , , ,則A B C.

  解:(1)0 0 ;

 。2) = , ;

 。3) , ∴ ;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  【練習(xí)】教材P9

  用適當?shù)姆枺?, )填空:

 。1) ; (5) ;

 。2) ; (6) ;

 。3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提問:見教材P9例子

 。ǘ 全集與補集

  1.補集:一般地,設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

  A在S中的補集 可用右圖中陰影部分表示.

  性質(zhì): S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

 。2)若A={0},則 NA=N*;

 。3) RQ是無理數(shù)集。

  2.全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用 表示.

  注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.

  例如:若 ,當 時, ;當 時,則 .

  例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.

  解:∵

  ∴

  ∴

  ∴

  練習(xí):見教材P10練習(xí)

  1.填空:

  , , ,那么 , .

  解: ,

  2.填空:

 。1)如果全集 ,那么N的補集 ;

  (2)如果全集, ,那么 的補集 ( )= .

  解:(1) ;(2) .

 。ㄈ┬〗Y(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

  2.五條性質(zhì)

 。1)空集是任何集合的子集。Φ A

 。2)空集是任何非空集合的真子集。Φ A (A≠Φ)

 。3)任何一個集合是它本身的子集。

 。4)如果 , ,則 .

 。5) S( SA)=A

  3.兩組易混符號:(1)“ ”與“ ”:(2){0}與

  (四)課后作業(yè):見教材P10習(xí)題1.2

 。ㄎ澹┌鍟O(shè)計:

【高中數(shù)學(xué)并集教案】相關(guān)文章:

高中數(shù)學(xué)教案08-16

教案高中數(shù)學(xué)模板02-01

高中數(shù)學(xué)數(shù)列教案12-30

高中數(shù)學(xué)教案12-30

高中數(shù)學(xué) 數(shù)列教案01-03

高中數(shù)學(xué)必修教案03-01

【薦】高中數(shù)學(xué)教案01-31

高中數(shù)學(xué)教案【精】02-01

【熱門】高中數(shù)學(xué)教案02-01