- 相關推薦
七年級下冊數(shù)學教案(14篇)
在教學工作者開展教學活動前,常常要根據(jù)教學需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法。那么應當如何寫教案呢?下面是小編幫大家整理的七年級下冊數(shù)學教案,僅供參考,歡迎大家閱讀。
七年級下冊數(shù)學教案1
教學目標:
1.知識與技能:通過摸球游戲,了解并掌握計算一類事件發(fā)生可能性的方法,體會概率的意義。
2.過程與方法:通過本節(jié)課的學習,幫助學生更容易地感受到數(shù)學與現(xiàn)實生活的聯(lián)系,體驗到數(shù)學在解決實際問題中的作用,培養(yǎng)學生實事求是的態(tài)度及合作交流的能力。
3.情感與態(tài)度:通過環(huán)環(huán)相扣的、層層深入的問題設置,鼓勵學生積極參與,培養(yǎng)學生自主、合作、探究的能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點:
1.概率的定義及簡單的列舉法計算。
2.應用概率知識解決問題。
教學難點:
靈活應用概率的計算方法解決各種類型的實際問題。
教學過程:
一、復習舊知
1、下面事件:①在標準大氣壓下,水加熱到100℃時會沸騰。②擲一枚硬幣,出現(xiàn)反面。③三角形內(nèi)角和是360°;④螞蟻搬家,天會下雨,不可能事件的有 ,必然事件有 ,不確定事件有 。
2、任何兩個偶數(shù)之和是偶數(shù)是 事件;任何兩個奇數(shù)之和是奇數(shù)是 事件;
3、歡歡和瑩瑩進行“剪刀、石頭、布”游戲,約定“三局兩勝”決定誰最終獲勝,那么歡歡獲勝的可能性 。
4、足球比賽前裁判通過拋硬幣讓雙方的隊長猜正反來選場地,只拋了一次,而雙方的隊長卻都沒有異議,為什么?
5、一個均勻的骰子,拋擲一次,它落地時向上的數(shù)可能有幾種不同的結果?每一種結果的概率分別為多少?
求一個隨機事件概率的基本方法是通過大量的重復試驗,那么能不能不進行大量的重復試驗,只通過一次試驗中可能出現(xiàn)的結果求出隨機事件的概率,這就是我們今天要探究學習的“等可能事件的概率”。
二、情境導入
1、任意擲一枚均勻的硬幣,可能出現(xiàn)哪些結果?每種結果出現(xiàn)的可能性相同嗎?正面朝上的概率是多少?
2、這個袋子中有5個乒乓球,分別標有1,2,3,4,5這5個號碼,這些球除號碼外都相同,攪勻后任意摸出一個球,拿出來后再將球放回袋子中。
(1)會出現(xiàn)哪些可能的結果?
(2)每種結果出現(xiàn)的可能性相同嗎?它們的概率分別是多少?你是怎么得到概率的值?
學生分組討論,教師引導
三、探究新知
1、請大家觀察前面的拋硬幣、擲骰子和摸球游戲,它們有什么共同的特點?
學生分組討論,教師引導:
(1)一次試驗可能出現(xiàn)的結果是有限的;
(2)每種結果出現(xiàn)的可能性相同。
設一個實驗的所有可能結果有n種,每次試驗有且只有其中的一種結果出現(xiàn)。如果每種結果出現(xiàn)的可能性相同,那么我們就稱這個試驗的結果是等可能的。
2、探究等可能性事件的概率
(1)拋擲一個均勻的'骰子一次,它落地時向上的數(shù)是偶數(shù)的概率是多少呢?
(2)不透明的一個袋子中裝有大小相同的三個球,一個黃色和已編有1.2.3號碼的3個白球,從中摸出2個球,一共有多少種不同的結果?摸出2個白球有多少種不同結果?摸出2個白球的概率是多少?
學生先獨立思考,然后同桌間討論,教師巡視指導
一般地,如果一個試驗有n種等可能的結果,事件A包含其中的種結果,那么事件A發(fā)生的概率為:
P(A)=/n
必然事件發(fā)生的概率為1,記做P(必然事件)=1;不可能事件的發(fā)生的概率為0,記做P(不可能事件)=0;如果A為不確定事件,那么0
3、應用新知
例:任意擲一枚均勻骰子。
1.擲出的點數(shù)大于4的概率是多少?
2.擲出的點數(shù)是偶數(shù)的概率是多少?
解:任意擲一枚均勻骰子,所有可能的結果有6種:擲出的點數(shù)分別是1,2,3,4,5,6,因為骰子是均勻的,所以每種結果出現(xiàn)的可能性相等。
1.擲出的點數(shù)大于4的結果只有2兩種:擲出的點數(shù)分別是5,6。
所以P(擲出的點數(shù)大于4)=2/6=1/3
2.擲出的點數(shù)是偶數(shù)的結果有3種:擲出的點數(shù)分別是2,4,6。
所以P(擲出的點數(shù)是偶數(shù))=3/6=1/2
四、實踐練習
1、袋子里裝有三個紅球和一個白球,它們除顏色外完全相同。小麗從盒中任意摸出一球。請問摸出紅球的概率是多少?
2、先后拋擲2枚均勻的硬幣
(1)一共可能出現(xiàn)多少種不同的結果?
(2)出現(xiàn)“1枚正面、1面反面”的結果有多少種?
(3)出現(xiàn)“1枚正面、1面反面”的概率有多少種?
(4)出現(xiàn)“1枚正面、1面反面”的概率是1/3,對嗎?
3、將一個均勻的骰子先后拋擲2次,計算:
(1)一共有多少種不同的結果?
(2)其中向上的數(shù)之和分別是5的結果有多少種?
(3)向上的數(shù)之和分別是5的概率是多少?
(4)向上的數(shù)之和為6和7的概率是多少?
五、課堂檢測
1、甲、乙、丙三個人隨意的站一排拍照,乙恰好站中間的概率是( )
A 2/9 B 1/3 C 4/9 D以上都不對
2、在一次抽獎中,若抽中的概率是0.34,則抽不中的概率是( )
A 0.34 B 0.17 C 0.66 D 0.76
3、把標有1、2、3、4…10的10個乒乓球放在一個箱中,搖勻后,從中任取一個,號碼小于7的奇數(shù)概率是( )
A 3/10 B 7/10 C 2/5 D 3/5
4、某商場舉辦有獎銷售活動辦法如下:凡購滿100元得獎券一張,多購多得,現(xiàn)有10000張獎券,設特等獎1個,一等獎10個,二等獎100個,則一張獎券中一等獎的概率是
5、一個袋中裝有3個紅球,2個白球和4個黃球,每個球除顏色外都相同。從中任意摸出一球,則: P(摸到紅球)=
P(摸到白球)=
P(摸到黃球)=
6、一個袋中有3個紅球和5個白球,每個球除顏色外都相同。從中任意摸出一球,摸到紅球和摸到白球的概率相等嗎?分別是多少?如果不相等,能否通過改變袋中紅球或白球的數(shù)量,使摸到的紅球和白球的概率相等?
六、課堂小結
回想一下這節(jié)課的學習內(nèi)容,同學們自己的收獲是什么?
1、等可能性事件的特征:
(1)一次試驗中有可能出現(xiàn)的結果是有限的。(有限性)
(2)每種結果出現(xiàn)的可能性相等。(等可能性)
2、求等可能性事件概率的步驟:
(1)審清題意,判斷本試驗是否為等可能性事件。
(2)計算所有基本事件的總結果數(shù)n。
(3)計算事件A所包含的結果數(shù)。
(4)計算P(A)=/n。
布置作業(yè):
1、P148習題6.4知識技能 1.2.3
2、問題解決:請大家為“翠苑小區(qū)”親子活動設計一個有獎競猜活動方案。
七年級下冊數(shù)學教案2
一.教學目標:
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數(shù)學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
三.教學過程
(一)創(chuàng)設情景,引入課題
1.本班共有40人,請問能確定男女生各幾人嗎?為什么?
。1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
。2)這是什么方程?根據(jù)什么?
2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的.y都表示?
像這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
(設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學)
。ǘ┨骄啃轮,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
。2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。)
2.二元一次方程組的解的概念
。1)由學生給出引例的答案,教師指出這就是此方程組的解。
。2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>
方程x+y=0的解,方程2x+3y=2的解,方程組的解。
。3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
。4)練習:已知是方程組的解,求a,b的值。
。ㄈ┖献魈剿,嘗試求解
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數(shù)x,y,試找出方程組的解.
學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。
一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試.
。ㄔO計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗)
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
3.例 已知方程3X+2Y=10
、女擷=2時,求所對應的Y 的值;
、迫∫粋你自己喜歡的數(shù)作為X的值,求所對應的Y的值;
、怯煤琗的代數(shù)式表示Y;
、扔煤琘 的代數(shù)式表示X;
、僧擷=-2,0 時,所對應的Y值是多少;
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。)
(四)課堂小結,布置作業(yè)
1.這節(jié)課學哪些知識和方法?
2.你還有什么問題或想法需要和大家交流?
3.教材P82
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
七年級下冊數(shù)學教案3
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉(zhuǎn)化的數(shù)學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )
2.兩條直線被第三條直線所截,如果內(nèi)錯角互補,那么同旁內(nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業(yè)課本15頁-16頁練習的`1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的條件的應用.
學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級下冊數(shù)學教案4
【知識講解】
一、本講主要學習內(nèi)容
1、代數(shù)式的意義
2、列代數(shù)式的注意點
3、代數(shù)式值的意義
其中列代數(shù)式是重點,也是難點。
下面講述一下這三點知識的主要內(nèi)容。
1、代數(shù)式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數(shù)及 表示數(shù)的字母連接而成的式子叫代數(shù)式。單個的數(shù)字或字母也叫代數(shù)式。如:5,a, 4x, ab, x+2y, , a2等
2.列代數(shù)式的注意點
、旁诖鷶(shù)式中出現(xiàn)的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數(shù)字與數(shù)字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
⑶數(shù)字寫在字母的前面。
⑷在代數(shù)式中出現(xiàn)除法運算時,一般按照分數(shù)的寫法來寫, 如s÷t寫作 。
、纱鷶(shù)式中帶分數(shù)與字母相乘時,應寫成假分數(shù)與字母相乘的形式,如 應寫作 。
(6)兩個代數(shù)式相乘,應該用分數(shù)形式表示。
3.代數(shù)式值的意義
用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式指明的運算,計算出的結果,就叫做代數(shù)式的值。
二、典型例題
例1 填空
、倮忾L是acm 的正方體的體積是___cm3。
、跍囟扔蓆°c下降2°c后是___°c。
③產(chǎn)量由m千克增長10%,就達到___千克。
④a和b 的倒數(shù)和是___。
、輆和b的和的倒數(shù)是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數(shù)式的關鍵在于仔細審題,弄清題意,正確找出題中的數(shù)量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數(shù)量關系,可先分段考慮,要正確地使用括號。
、葡馻3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數(shù)式表示
⑴被4整除得 m的數(shù)
、票2除商為 a余1的數(shù)
、莾蓴(shù)的平均數(shù)
、萢和b兩數(shù)的平方差與這兩數(shù)平方和的商
、梢豁椆こ,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數(shù)。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數(shù)式表示此人行完全路程的平均速度。
、藗位數(shù)字是8,十位數(shù)字是 b 的兩位數(shù)。
解: ⑴4m ⑵2a+1 ⑶設這兩個數(shù)分別為a、b、則平均數(shù)為 。
⑷ ⑸ ⑹ ⑺10b+8
分析說明:
、艛(shù)a除以數(shù)b,除得的商正好是整數(shù),而沒有余數(shù),我們稱a能被b整除。
、颇鼙2整除的數(shù)叫偶數(shù),不能被2整除的數(shù)叫奇數(shù)。兩個連續(xù)奇數(shù),若較小的是n,則較大的是n +2 。
、菍τ陬}⑶中兩數(shù)沒有給出,為說明其一般性?上仍O這兩個數(shù)為a, b;用字母表示數(shù)時,在同一個問題中,不同的數(shù)要用不同的字母表示。
、阮}⑷中的a,b兩數(shù)的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
、深}⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
⑹平均速度=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應清楚自然數(shù)的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數(shù)總可以用它各個數(shù)位上的數(shù)字來表示。
例3說出下列代數(shù)式的意義。
、 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點。
①不含括號的代數(shù)式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
、诤ㄌ柕拇鷶(shù)應該把括號里的代數(shù)式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
、塾捎诜謹(shù)線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當x=7,y=4, z=0時,求代數(shù)式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數(shù)式值的一般步驟是:①代入 ②計算⑵在代數(shù)式中,數(shù)字與字母之間,字母與字母之間的乘號是省略不寫的'。而當代入數(shù)據(jù)求值時,都變成了數(shù)字相乘,原來省略的乘號“×”應補上。
【一周一練】
1、選擇題
(1)下列各式中,屬于代數(shù)式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數(shù)式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數(shù)式表示“a的 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數(shù)式 ,表述不正確的是( )
a、比a的倒數(shù)小2的數(shù); b、a與2的差的倒數(shù)
c、1除以a減去2的商 d、比a小2的數(shù)的倒數(shù)
2、判斷題
、舗除m用代數(shù)式可表示成 ( )
、迫齻連續(xù)的奇數(shù),中間一個是n,其余兩個分別是n-2和n+2( )
、侨绻鹡是偶數(shù),則緊跟在n后面的兩個連續(xù)奇數(shù)分別是n+1,n+3( )
3、填空題
、琶勘揪毩暠臼0.3元,買a本練習本需__元。
、菩∶饔5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
、潜3整除得n 的數(shù)是__。
、葌位上的數(shù)是a,十位上的數(shù)是個位上的數(shù)的2倍少3的兩位數(shù)是_。
、杉庸ひ慌慵瞞個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。
⑹一種小麥磨成面粉后,重量減少數(shù)15%, b千克小麥磨成面粉后,面粉的重量是__千克。
、艘粋長方形的長是a,寬是長的 還多1,這個長方形的周長是__
、蘟、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4.求下列代數(shù)式的值。
、 其中a=2
、飘 時,求代數(shù)式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數(shù)比女生人數(shù)的 多16人,男生人數(shù)是a,問a的代數(shù)式表示:⑴女生人數(shù)。 ⑵該班學生總數(shù);當a=25時,求該班學生總數(shù)。
七年級下冊數(shù)學教案5
教學目標:
1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.
2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).
教學重點:
數(shù)軸的概念.
教學難點:
從直觀認識到理性認識,從而建立數(shù)軸概念.
教與學互動設計:
(一)創(chuàng)設情境,導入新課
課件展示課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學的內(nèi)容——數(shù)軸.
【點撥】(1)引導學生學會畫數(shù)軸.
第一步:畫直線,定原點.
第二步:規(guī)定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當?shù)拈L度為單位長度(據(jù)情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數(shù)軸的結構是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數(shù)軸:
規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.
做一做學生自己練習畫出數(shù)軸.
試一試你能利用你自己畫的數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?
討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?
可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
、贁(shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的點所表示的數(shù)都是有理數(shù).正確的說法有( )
A.1個B.2個C.3個D.4個
【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).
【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個B.1999個或20xx個
C.20xx個或20xx個D.20xx個或20xx個
(四)總結反思,拓展升華
數(shù)軸是非常重要的工具,它使數(shù)和直線上的點建立了一一對應的關系.它揭示了數(shù)和形的內(nèi)在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).
(五)課堂跟蹤反饋
夯實基礎
1.規(guī)定了、 、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.
2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的`數(shù)是.
3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應點表示的數(shù)是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是( )
A.正數(shù)B.負數(shù)
C.不是負數(shù)D.不是正數(shù)
5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.
9.下列四個數(shù)中,在-2到0之間的數(shù)是( )
A.-1 B.1 C.-3 D.3
七年級下冊數(shù)學教案6
學習目標
1. 理解有序數(shù)對的應用意義,了解平面上確定點的常用方法
2. 培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣.
學習重點: 理解有序數(shù)對的意義和作用
學習難點: 用有序數(shù)對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質(zhì)部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
二.概念確定
有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
利用有序數(shù)對,可以很準確地表示出一個位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
。1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數(shù)來確定目標所在的'位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
。1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?
。2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
。3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
[鞏固練習]
1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
。1) 你能表示出象的位置嗎?
。2) 寫出馬的下一步可以到達的位置。
[小結]
1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業(yè)]
必做題:教科書44頁:1題
七年級下冊數(shù)學教案7
第一章 一元一次不等式組
1.1 一元一次不等式組
第1教案
教學目標
1. 能結合實例,了解一元一次不等式組的相關概念。
2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉(zhuǎn)化”思想方法。
3. 提高分析問題的能力,增強數(shù)學應用意識,體會數(shù)學應用價值。
教學重、難點
1..不等式組的解集的概念。
2.根據(jù)實際問題列不等式組。
教學方法
探索方法,合作交流。
教學過程
一、 引入課題:
1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。
2. 由許多問題受到多種條件的限制引入本章。
二、 探索新知:
自主探索、解決第2頁“動腦筋”中的'問題,完成書中填空。
分別解出兩個不等式。
把兩個不等式解集在同一數(shù)軸上表示出來。
找出本題的答案。
三、 抽象:
教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)
七年級下冊數(shù)學教案8
[教學目標]
1. 通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質(zhì)與應用
難點:理解對頂角相等的性質(zhì)的探索
[教學設計]
一.創(chuàng)設情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質(zhì)
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
學生思考并在小組內(nèi)交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且 的'兩邊分別是 兩邊的反向延長線
2.學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚角相等)
3學生根據(jù)觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數(shù)量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質(zhì)
三.初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質(zhì)解釋剪刀剪布過程中所看到的現(xiàn)象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數(shù)。
[鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數(shù)
[小結]
鄰補角、對頂角.
[作業(yè)]課本P9-1,2P10-7,8
七年級下冊數(shù)學教案9
一、素質(zhì)教育目標
(一)知識教學點
1.了解有理數(shù)除法的定義.
2.理解倒數(shù)的意義.
3.掌握有理數(shù)除法法則,會進行運算.
(二)能力訓練點
1.通過有理數(shù)除法法則的導出及運算,讓學生體會轉(zhuǎn)化思想.
2.培養(yǎng)學生運用數(shù)學思想指導思維活動的能力.
(三)德育滲透點
通過學習有理數(shù)除法運算、感知數(shù)學知識具有普遍聯(lián)系性、相互轉(zhuǎn)化性.
(四)美育滲透點
把小學算術里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美.
二、學法引導
1.教學方法:遵循啟發(fā)式教學原則,注意創(chuàng)設問題情境,精心構思啟發(fā)導語 并及時點撥,使學生主動發(fā)展思維和能力.
2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:除法法則的靈活運用和倒數(shù)的概念.
2.難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當?shù)姆椒ㄇ笊痰慕^對值.
3.疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片、彩粉筆.
六、師生互動活動設計
教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創(chuàng)設情境,復習導入
師:以上我們學習了有理數(shù)的乘法,這節(jié)我們應該學習,板書課題.
【教法說明】
同小學算術中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學好求一個有理數(shù)的倒數(shù)為基礎學習.
(二)探索新知,講授新課
1.倒數(shù).
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
學生活動:口答以上題目.
【教法說明】
在有理數(shù)乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的.全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學生回憶、體會出求各種數(shù)的倒數(shù)的方法.
師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關系?
學生活動:乘積是1的兩個數(shù)互為倒數(shù).(板書)
師問:0有倒數(shù)嗎?為什么?
學生活動:通過題目0×( )=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).
師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?
【教法說明】
教師注意創(chuàng)設問題情境,讓學生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是.對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.
(出示投影2)
求下列各數(shù)的倒數(shù):
(1); (2); (3);
(4); (5)-5; (6)1.
學生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求.
2.計算:8÷(-4).
計算:8×()=? (-2)
8÷(-4)=8×().
再嘗試:-16÷(-2)=? -16×()=?
師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學生活動:同桌互相討論.(一個學生回答)
師強調(diào)后板書:
[板書]
【教法說明】
通過學生親自演算和教師的引導,對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.
(三)嘗試反饋,鞏固練習
師在黑板上出示例題.
計算(1)(-36)÷9, (2)()÷().
學生嘗試做此題目.
(出示投影3)
1.計算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.計算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
學生活動:
1題讓學生搶答,教師用復合膠片顯示結果.
2題在練習本上演示,兩個同學板演(教師訂正).
【教法說明】
此組練習中兩個題目都是對的直接應用.1題是整數(shù),利用口答形式訓練學生速算能力.2題是小數(shù)、分數(shù)略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數(shù)都化成分數(shù)再轉(zhuǎn)化成乘法來計算.
提出問題:(1)兩數(shù)相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數(shù),0做被除數(shù)時商是多少?
學生活動:分組討論,1—2個同學回答.
[板書]
2.兩數(shù)相除,同號得正,異號得負,并把絕對值相除.
0除以任何不等于0的數(shù),都得0.
【教法說明】
通過上組練習的結果,不難看出與有理數(shù)乘法有類似的法則,這個法則的得出為計算有理數(shù)除法又添了一種方法,這時教師要及時指出,在做有理數(shù)除法的題目時,要根據(jù)具體情況,靈活運用這兩種方法.
(四)變式訓練,培養(yǎng)能力
回顧例1 計算:
(1)(-36)÷9; (2)()÷().
提出問題:每個題目你想采用哪種法則計算更簡單?
學生活動:(1)題采用兩數(shù)相除,異號得負并把絕對值相除的方法較簡單.
(2)題仍用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)較簡單.
提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?
學生活動:口答出答案.
(出示投影4)
例2 化簡下列分數(shù)
例3 計算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.
【教法說明】
例2是檢查學生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分數(shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常?赡芎喕嬎.例3培養(yǎng)學生分析問題的能力,優(yōu)化學生思維品質(zhì):
如在(1)()÷(-6)中.
根據(jù)方法①()÷(-6)=×()=.
根據(jù)方法②()÷(-6)=(24+)×=4+=.
讓學生區(qū)分方法的差異,點明方法②非常簡便,肯定當除法轉(zhuǎn)化成乘法時,可以利用有理數(shù)乘法運算律簡化運算.(2)(3)小題也是如此.
(五)歸納小結
師:今天我們學習了及倒數(shù)的概念,回答問題:
1.的倒數(shù)是__________________();
學生活動:分組討論。
【教法說明】
對這節(jié)課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節(jié)內(nèi)容進行了梳理,并且上升到了用字母表示的數(shù)學式子,逐步培養(yǎng)學生用數(shù)學語言表達數(shù)學規(guī)律的能力.
八、隨堂練習
1.填空題
(1)的倒數(shù)為__________,相反數(shù)為____________,絕對值為___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
(4);
(5)若,是;
(6)若、互為倒數(shù),則;
(7)或、互為相反數(shù)且,則,;
(8)當時,有意義;
(9)當時,;
(10)若,,則,和符號是_________,___________.
2.計算
(1)-4.5÷()×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作業(yè)
(一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.
2.計算:(1)()×()÷();
(2)-6÷(-0.25)×.
3.當,,時求的值.
(二)選做題:1.填空:用“>”“<”“=”號填空
(1)如果,則,;
(2)如果,則,;
(3)如果,則,;
(4)如果,則,;
2.判斷:正確的打“√”錯的打“×”
(1)( );
(2)( ).
3.(1)倒數(shù)等于它本身的數(shù)是______________.
(2)互為相反數(shù)的數(shù)(0除外)商是________________.
【教法說明】
必做題為本節(jié)的重點內(nèi)容,首先在這節(jié)課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調(diào)動了學生積極性,提高了學生運用知識的能力.
選作題是對這節(jié)課重點內(nèi)容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.
十、板書設計
七年級下冊數(shù)學教案10
教學目標:
1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質(zhì)
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的'運算性質(zhì),并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,
增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。
教學重點:
同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題。
教學過程:
一、復習回顧
活動內(nèi)容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:
二、情境引入
活動內(nèi)容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?
(3)等號兩邊的指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調(diào)冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
四、應用提高
活動內(nèi)容:
1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
五、拓展延伸
活動內(nèi)容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
。5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
六、課堂小結
活動內(nèi)容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調(diào)與補充,學生也可談一談個人的學習感受。
七、布置作業(yè)
1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
七年級下冊數(shù)學教案11
教學目標
1,通過對數(shù)“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念;
2,利用正負數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進一步體驗正負數(shù)在生產(chǎn)生活實際中的廣泛應用,提高解決實際問題的能力,激發(fā)學習數(shù)學的興趣。
教學難點
深化對正負數(shù)概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負數(shù)來表示.這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?學生思考并討論.(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發(fā)和引導,下面的.例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負數(shù)來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負數(shù).那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數(shù)還是負數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負數(shù)?
問題2:引入負數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類? “數(shù)0耽不是正數(shù),也不是負數(shù)”也應看作是負數(shù)定義的一部分.在引入負數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界.了解。的這一層意義,也有助于對正負數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數(shù)0既不是正數(shù),也不是負數(shù)”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負數(shù)表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等?梢暯虒W中的實際情況進行補充.
這種用正負數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數(shù)表示是解題的關健.這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向?qū)W生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數(shù)應用的很好例子,要花時間讓學生討論交流
小結與作業(yè)
課堂小結以問題的形式,要求學生思考交流:
1,引人負數(shù)后,你是怎樣認識數(shù)0的,數(shù)0的意義有哪些變化?
2,怎樣用正負數(shù)表示具有相反意義的量?(用正數(shù)表示其中一種意義的量,另一種量用負數(shù)表示;特別地,在用正負數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負數(shù).)
本課作業(yè)1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數(shù)概念的理解和用正負數(shù)表示實際生產(chǎn)生活中的向指
定方向變化的量。
2,“數(shù)0既不是正數(shù),也不是負數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數(shù)定義的一部分.在引人負數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界。了解0的這一層意義,也有助于對正負數(shù)的理解,且對數(shù)的順利擴張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數(shù)表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現(xiàn)了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數(shù)學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發(fā)學生學習數(shù)學的興趣.
七年級下冊數(shù)學教案12
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質(zhì)
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,
增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。
教學重點:同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題。
教學過程:
一、復習回顧
活動內(nèi)容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:
二、情境引入
活動內(nèi)容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的'形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?
(3)等號兩邊的指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調(diào)冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
三、應用提高
活動內(nèi)容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內(nèi)容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內(nèi)容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調(diào)與補充,學生也可談一談個人的學習感受。
六、布置作業(yè)
1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)
七年級下冊數(shù)學教案13
教學目標:
1.理解有理數(shù)的意義.
2.能把給出的有理數(shù)按要求分類.
3.了解0在有理數(shù)分類中的作用.
教學重點:
會把所給的各數(shù)填入它所在的數(shù)集圖里.
教學難點:
掌握有理數(shù)的兩種分類.
教與學互動設計:
(一)創(chuàng)設情境,導入新課
討論交流現(xiàn)在,同學們都已經(jīng)知道除了我們小學里所學的數(shù)之外,還有另一種形式的數(shù),即負數(shù).大家討論一下,到目前為止,你已經(jīng)認識了哪些類型的數(shù).
(二)合作交流,解讀探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
議一議你能說說這些數(shù)的特點嗎?
學生回答,并相互補充:有小學學過的正整數(shù)、0、分數(shù),也有負整數(shù)、負分數(shù).
說明我們把所有的這些數(shù)統(tǒng)稱為有理數(shù).
試一試你能對以上各種類型的數(shù)作出一張分類表嗎?
有理數(shù)
做一做以上按整數(shù)和分數(shù)來分,那可不可以按性質(zhì)(正數(shù)、負數(shù))來分呢,試一試.
有理數(shù)
數(shù)的集合
把所有正數(shù)組成的集合,叫做正數(shù)集合.
試一試試著歸納總結,什么是負數(shù)集合、整數(shù)集合、分數(shù)集合、有理數(shù)集合.
(三)應用遷移,鞏固提高
【例1】把下列各數(shù)填入相應的集合內(nèi):
,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是兩位同學的分類方法,你認為他們分類的`結果正確嗎?為什么?
有理數(shù)有理數(shù)
(四)總結反思,拓展升華
提問:今天你獲得了哪些知識?
由學生自己小結,然后教師總結:今天我們學習了有理數(shù)的定義和兩種分類的方法.我們要能正確地判斷一個數(shù)屬于哪一類,要特別注意“0”的正確說法.
下面兩個圈分別表示負數(shù)集合和分數(shù)集合,你能說出兩個圖的重疊部分表示什么數(shù)的集合嗎?
(五)課堂跟蹤反饋
夯實基礎
1.把下列各數(shù)填入相應的大括號內(nèi):
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整數(shù)集合{};
(2)分數(shù)集合{};
(3)負分數(shù)集合{ };
(4)非負數(shù)集合{ };
(5)有理數(shù)集合{ }.
2.下列說法中正確的是( )
A.整數(shù)就是自然數(shù)
B. 0不是自然數(shù)
C.正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)
D. 0是整數(shù),而不是正數(shù)
提升能力
3.字母a可以表示數(shù),在我們現(xiàn)在所學的范圍內(nèi),你能否試著說明a可以表示什么樣的數(shù)?
2
七年級下冊數(shù)學教案14
教學目標:
1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;
2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);
3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學。
教學難點:
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)
知識重點
教學過程(師生活動) 設計理念
設置情境
引入課題
教師通過實例、課件演示得到溫度計讀數(shù).
問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學。
探究新知
教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?
從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。
從游戲中學數(shù)學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調(diào)整為等距離,規(guī)定第4個同學為原點,由西向東為正方向,每個同學都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數(shù)字”,如果規(guī)定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數(shù)軸概念的理解
尋找規(guī)律
歸納結論
問題3:
1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
2, 如果給你一些數(shù),你能相應地在數(shù)軸上找出它們的準確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?
3, 哪些數(shù)在原點的`左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)
歸納出一般結論,教科書第12的歸納。 這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業(yè)
課堂小結
請學生總結:
1, 數(shù)軸的三個要素;
2, 數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。
本課作業(yè)
1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數(shù)軸是數(shù)形轉(zhuǎn)化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。
3, 注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。