【推薦】初中數(shù)學(xué)教案
作為一名教學(xué)工作者,常常需要準(zhǔn)備教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么你有了解過(guò)教案嗎?下面是小編整理的初中數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學(xué)教案1
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問(wèn)題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問(wèn)題.
二、過(guò)程與方法
1.經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問(wèn)題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見(jiàn).
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問(wèn)題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問(wèn)題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問(wèn)題,建立函數(shù)模型,教學(xué)時(shí)注意分析過(guò)程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過(guò)程
一、創(chuàng)設(shè)問(wèn)題情境,引入新課
活動(dòng)1
問(wèn) 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問(wèn)題,這也稱(chēng)為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問(wèn)題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來(lái)看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過(guò)題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問(wèn)題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問(wèn)題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
①學(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問(wèn)題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
③學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來(lái)解決此問(wèn)題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過(guò)題(1)中所用力的一半,即不超過(guò)200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過(guò)400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.
生:也可用不等式來(lái)解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過(guò)400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫(huà)出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問(wèn)題:
用反比例函數(shù)的知識(shí)解釋?zhuān)涸谖覀兪褂们凉鲿r(shí),為什么動(dòng)力臂越長(zhǎng)越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問(wèn)題中的.應(yīng)用.
活動(dòng)3
問(wèn)題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門(mén)的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門(mén),經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問(wèn)題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類(lèi)問(wèn)題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問(wèn)題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門(mén)的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問(wèn)題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿(mǎn)足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書(shū)設(shè)計(jì)
17.2 實(shí)際問(wèn)題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋?zhuān)涸谖覀兪?用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?
設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減。
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫(xiě)出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問(wèn)題:如果該綠化帶的長(zhǎng)不得超過(guò)40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過(guò)程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說(shuō)明點(diǎn)A的橫縱坐標(biāo)滿(mǎn)足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過(guò)點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過(guò)40m,則它的寬應(yīng)大于等于10m。
初中數(shù)學(xué)教案2
一、內(nèi)容特點(diǎn)
在知識(shí)與方法上類(lèi)似于數(shù)系的第一次擴(kuò)張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。
內(nèi)容定位:了解無(wú)理數(shù)、實(shí)數(shù)概念,了解(算術(shù))平方根的概念;會(huì)用根號(hào)表示數(shù)的(算術(shù))平方根,會(huì)求平方根、立方根,用有理數(shù)估計(jì)一個(gè)無(wú)理數(shù)的大致范圍,實(shí)數(shù)簡(jiǎn)單的四則運(yùn)算(不要求分母有理化)。
二、設(shè)計(jì)思路
整體設(shè)計(jì)思路:
無(wú)理數(shù)的引入----無(wú)理數(shù)的表示----實(shí)數(shù)及其相關(guān)概念(包括實(shí)數(shù)運(yùn)算),實(shí)數(shù)的應(yīng)用貫穿于內(nèi)容的始終。
學(xué)習(xí)對(duì)象----實(shí)數(shù)概念及其運(yùn)算;學(xué)習(xí)過(guò)程----通過(guò)拼圖活動(dòng)引進(jìn)無(wú)理數(shù),通過(guò)具體問(wèn)題的解決說(shuō)明如何表示無(wú)理數(shù),進(jìn)而建立實(shí)數(shù)概念;以類(lèi)比,歸納探索的方式,尋求實(shí)數(shù)的運(yùn)算法則;學(xué)習(xí)方式----操作、猜測(cè)、抽象、驗(yàn)證、類(lèi)比、推理等。
具體過(guò)程:
首先通過(guò)拼圖活動(dòng)和計(jì)算器探索活動(dòng),給出無(wú)理數(shù)的概念,然后通過(guò)具體問(wèn)題的解決,引入平方根和立方根的概念和開(kāi)方運(yùn)算。最后教科書(shū)總結(jié)實(shí)數(shù)的概念及其分類(lèi),并用類(lèi)比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。
第一節(jié):數(shù)怎么又不夠用了:通過(guò)拼圖活動(dòng),讓學(xué)生感受無(wú)理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性;借助計(jì)算器探索無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),并從中體會(huì)無(wú)限逼近的思想;會(huì)判斷一個(gè)數(shù)是有理數(shù)還是無(wú)理數(shù)。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長(zhǎng)?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開(kāi)方運(yùn)算。
第四節(jié):公園有多寬:在實(shí)際生活和生產(chǎn)實(shí)際中,對(duì)于無(wú)理數(shù)我們常常通過(guò)估算來(lái)求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過(guò)估算比較大小,檢驗(yàn)計(jì)算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。
第五節(jié):用計(jì)算器開(kāi)方:會(huì)用計(jì)算器求平方根和立方根。經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的活動(dòng),發(fā)展合情推理的能力。
第六節(jié):實(shí)數(shù)?偨Y(jié)實(shí)數(shù)的概念及其分類(lèi),并用類(lèi)比的'方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。
三、一些建議
1.注重概念的形成過(guò)程,讓學(xué)生在概念的形成的過(guò)程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對(duì)無(wú)理數(shù)和實(shí)數(shù)概念的意義理解。
2.鼓勵(lì)學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。
3.注意運(yùn)用類(lèi)比的方法,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系。
4.淡化二次根式的概念。
初中數(shù)學(xué)教案3
教學(xué)目標(biāo)
1.理解二元一次方程及二元一次方程的解的概念;
2.學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?duì)數(shù)值是否為二元一次方程的解;
3.學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來(lái)表示;
4.在解決問(wèn)題的過(guò)程中,滲透類(lèi)比的思想方法,并滲透德育教育。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念.
難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程.
教學(xué)過(guò)程
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的'項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對(duì)值小于10的整數(shù))的值,女同學(xué)馬上給出對(duì)應(yīng)的x的值;接下來(lái)男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請(qǐng)算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法.提問(wèn):給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡(jiǎn)便?
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時(shí),y=_
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書(shū)寫(xiě)格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習(xí)。
初中數(shù)學(xué)教案4
生活中的立體圖形:(常見(jiàn)的有)圓柱、圓錐、正方體、長(zhǎng)方體、棱柱、球。棱:相鄰兩個(gè)面的交線(xiàn)。
側(cè)棱:相鄰兩個(gè)側(cè)面的交線(xiàn)。棱柱的所有側(cè)棱長(zhǎng)都相等。
底面:棱柱有上、下兩個(gè)底面,形狀相同。
側(cè)面:棱柱的'側(cè)面都是平行四邊形。
立體圖形的分類(lèi):錐體、柱體、球體。也可分為有曲面、無(wú)曲面。還可以分為有頂點(diǎn)、無(wú)頂點(diǎn)。
棱柱:分為直棱柱、斜棱柱。直棱柱的側(cè)面是長(zhǎng)方形。
特殊的四棱柱:長(zhǎng)方體、正方體。正方體的每個(gè)面都是正方形。
圓柱:上、下兩個(gè)面都是圓形,側(cè)面展開(kāi)圖是長(zhǎng)方形。
圓錐:底面是圓形,側(cè)面展開(kāi)圖是扇形。
截面:用一個(gè)平面去截一個(gè)幾何體,截出的面。
球:用一個(gè)平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長(zhǎng)方形、梯形、三角形。
圓柱體的截面:可以是長(zhǎng)方形、圓形、橢圓形、三角形。
展開(kāi)與折疊:兩個(gè)面出現(xiàn)在同一位置的展開(kāi)圖形,是不可折疊的。
從三個(gè)方向看物體的形狀:正面看(主視圖)、左面看(側(cè)視圖)、上面看(俯視圖)
初中數(shù)學(xué)教案5
平行線(xiàn)的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.
2.掌握直線(xiàn)平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想
學(xué)習(xí)重難點(diǎn):探索并掌握直線(xiàn)平行的條件是本課的重點(diǎn)也是難點(diǎn).
一、探索直線(xiàn)平行的條件
平行線(xiàn)的判定方法1:
二、練一練1、判斷題
1.兩條直線(xiàn)被第三條直線(xiàn)所截,如果同位角相等,那么內(nèi)錯(cuò)角也相等.( )
2.兩條直線(xiàn)被第三條直線(xiàn)所截,如果內(nèi)錯(cuò)角互補(bǔ),那么同旁?xún)?nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線(xiàn)a、b被直線(xiàn)c所截,且∠1+∠2=180°,試判斷直線(xiàn)a、b的位置關(guān)系,并說(shuō)明理由.
五、作業(yè)課本15頁(yè)-16頁(yè)練習(xí)的1、2、3、
5.2.2平行線(xiàn)的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展空
間觀念,推理能力和有條理表達(dá)能力.
毛2.分析題意說(shuō)理過(guò)程,能靈活地選用直線(xiàn)平行的方法進(jìn)行說(shuō)理.
學(xué)習(xí)重點(diǎn):直線(xiàn)平行的條件的應(yīng)用.
學(xué)習(xí)難點(diǎn):選取適當(dāng)判定直線(xiàn)平行的'方法進(jìn)行說(shuō)理是重點(diǎn)也是難點(diǎn).
一、學(xué)習(xí)過(guò)程
平行線(xiàn)的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個(gè)合格的變形管道ABCD需要AB邊與CD邊平行,若一個(gè)拐角∠ABC=72°,則另一個(gè)拐角∠BCD=_______時(shí),這個(gè)管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因?yàn)椤?=∠4,所以DE∥AB
B.因?yàn)椤?=∠3,所以AB∥EC
C.因?yàn)椤?=∠A,所以AB∥DE
D.因?yàn)椤螦DE+∠BED=180°,所以AD∥BE
2.如圖,直線(xiàn)AB、CD被直線(xiàn)EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線(xiàn)嗎?與同伴說(shuō)說(shuō)你的折法.
2.已知,如圖2,點(diǎn)B在AC上,BD⊥BE,∠1+∠C=90°,問(wèn)射線(xiàn)CF與BD平行嗎?試用兩種方法說(shuō)明理由.
初中數(shù)學(xué)教案6
教學(xué)內(nèi)容:在學(xué)生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。
教學(xué)目標(biāo):1、通過(guò)對(duì)"撲克"有趣的研究,培養(yǎng)起學(xué)生對(duì)生活中平常小事的.關(guān)注。
2、調(diào)動(dòng)學(xué)生豐富的聯(lián)想,養(yǎng)成一種思考的習(xí)慣。
教學(xué)重難點(diǎn):"撲克"與年月日、季度的聯(lián)系。
教學(xué)過(guò)程:
一、談話(huà)引入
師:同學(xué)們,這個(gè)你們一定見(jiàn)過(guò)吧!這是我們生活中比較常見(jiàn)的"撲克"。誰(shuí)愿意告訴我們,你對(duì)撲克的了解呢?
生:......
。ń處熝a(bǔ)充,引發(fā)學(xué)生的好奇心。)
師: "撲克"還有一種作用,而且與數(shù)學(xué)有關(guān)!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽(yáng) 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數(shù)
所有牌的和+小王+大王=閏年的天數(shù)
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個(gè)月
6、365÷7≈52一年有52個(gè)星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個(gè)星期。
7、一種花色的和=一個(gè)季度的天數(shù)
一種花色有13張牌=一個(gè)季度有13個(gè)星期
三、小結(jié)
生活中有很多的數(shù)學(xué),他每時(shí)每刻都在我們的身邊出現(xiàn),只是我們大家沒(méi)有注意到。請(qǐng)大家都要學(xué)會(huì)留心觀察,做生活的有心人。
初中數(shù)學(xué)教案7
教學(xué)目的
1、使學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,掌握實(shí)數(shù)的分類(lèi),會(huì)準(zhǔn)確判斷一個(gè)數(shù)是有理數(shù)還是無(wú)理數(shù)。
2、使學(xué)生能了解實(shí)數(shù)絕對(duì)值的意義。
3、使學(xué)生能了解數(shù)軸上的點(diǎn)具有一一對(duì)應(yīng)關(guān)系。
4、由實(shí)數(shù)的分類(lèi),滲透數(shù)學(xué)分類(lèi)的思想。
5、由實(shí)數(shù)與數(shù)軸的一一對(duì)應(yīng),滲透數(shù)形結(jié)合的思想。
教學(xué)分析
重點(diǎn):無(wú)理數(shù)及實(shí)數(shù)的概念。
難點(diǎn):有理數(shù)與無(wú)理數(shù)的區(qū)別,點(diǎn)與數(shù)的一一對(duì)應(yīng)。
教學(xué)過(guò)程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類(lèi)?
(按定義分與按大小分。)
二、新授
1、無(wú)理數(shù)定義:無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。
判斷:無(wú)限小數(shù)都是無(wú)理數(shù);無(wú)理數(shù)都是無(wú)限小數(shù);帶根號(hào)的數(shù)都是無(wú)理數(shù)。
2、實(shí)數(shù)的.定義:有理數(shù)與無(wú)理數(shù)統(tǒng)稱(chēng)為實(shí)數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫(xiě)出列表。
4、實(shí)數(shù)的相反數(shù):
5、實(shí)數(shù)的絕對(duì)值:
6、實(shí)數(shù)的運(yùn)算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實(shí)數(shù)的偶次冪是正實(shí)數(shù)。( )
。2)在實(shí)數(shù)范圍內(nèi),若| x|=|y|則x=y。( )
。3)0是最小的實(shí)數(shù)。( )
。4)0是絕對(duì)值最小的實(shí)數(shù)。( )
解:略
三、練習(xí)
P148 練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實(shí)數(shù),請(qǐng)同學(xué)們首先要清楚,實(shí)數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對(duì)實(shí)數(shù)兩種不同的分類(lèi)要清楚。
2、要對(duì)應(yīng)有理數(shù)的相反數(shù)與絕對(duì)值定義及運(yùn)算律和運(yùn)算性質(zhì),來(lái)理解在實(shí)數(shù)中的運(yùn)用。
五、作業(yè)
1、P150 習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
初中數(shù)學(xué)教案8
一、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面,F(xiàn)將檢查情況總結(jié)如下教案方面的特點(diǎn)與不足。
特點(diǎn):
1、絕大多數(shù)教案設(shè)計(jì)完整,教學(xué)重點(diǎn)、難點(diǎn)突出,設(shè)置得當(dāng),緊緊圍繞新課標(biāo),例如:劉興華、孫菊、江文李雅芳等能突出對(duì)學(xué)科素養(yǎng)的高度關(guān)注。教師撰寫(xiě)的課后反思能體現(xiàn)教師對(duì)教材處理的新方法,能側(cè)重對(duì)自己教法和學(xué)生學(xué)法的指導(dǎo),并且還能對(duì)自己不得法的教學(xué)手段、方式、方法進(jìn)行深刻地解剖,能很好地體現(xiàn)課堂教學(xué)的`反思意識(shí),反思深刻、務(wù)實(shí)、有針對(duì)性。
2、注重選擇恰當(dāng)?shù)慕虒W(xué)方法,注重在靈活多樣的教學(xué)方法中培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學(xué)手段,注重培養(yǎng)學(xué)生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學(xué)反思不夠認(rèn)真、不夠詳細(xì),沒(méi)能對(duì)本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對(duì)課后反思還不夠重視。
2、個(gè)別教師教案過(guò)于簡(jiǎn)單。
作業(yè)方面的特點(diǎn)與不足
特點(diǎn):
1、能按進(jìn)度布置作業(yè),作業(yè)設(shè)置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級(jí)評(píng)定。教師批改要求嚴(yán)格、細(xì)致,能夠反映學(xué)生作業(yè)中的錯(cuò)誤做法及糾正措施。
3、學(xué)生在書(shū)寫(xiě)方面有很大進(jìn)步。從檢查可以發(fā)現(xiàn)教師對(duì)學(xué)生作業(yè)的書(shū)寫(xiě)格式有明確的要求。
不足:
1、對(duì)于學(xué)生書(shū)寫(xiě)的工整性,還需加強(qiáng)教育。
2、教師在批閱作業(yè)時(shí),要稍細(xì)心些,發(fā)現(xiàn)問(wèn)題就讓學(xué)生當(dāng)時(shí)改正,學(xué)生也就會(huì)逐漸養(yǎng)成做事認(rèn)真的習(xí)慣。
初中數(shù)學(xué)教案9
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過(guò)程,在此過(guò)程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過(guò)驗(yàn)證過(guò)程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。
3.通過(guò)豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過(guò)程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問(wèn)題與合作交流方法與經(jīng)驗(yàn)。
4.通過(guò)獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過(guò)豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn)1.通過(guò)綜合運(yùn)用已有知識(shí)解決問(wèn)題的過(guò)程,加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過(guò)拼圖驗(yàn)證公式的過(guò)程,使學(xué)習(xí)獲得一些研究問(wèn)題與合作交流的方法與經(jīng)驗(yàn)。
難點(diǎn)利用數(shù)形結(jié)合的方法驗(yàn)證公式
教學(xué)方法動(dòng)手操作,合作探究課型新授課教具投影儀
教師活動(dòng)學(xué)生活動(dòng)
情景設(shè)置:
你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶。美國(guó)第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長(zhǎng)分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話(huà)。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁(yè)例題的拼法及相關(guān)公式
提問(wèn):還能通過(guò)怎樣拼圖來(lái)解決以下問(wèn)題
。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長(zhǎng)方形,計(jì)算它的面積,并寫(xiě)出相應(yīng)的`等式;
。2)任意寫(xiě)出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2
試用拼一個(gè)長(zhǎng)方形的方法,把這個(gè)二次三項(xiàng)式因式分解。
這個(gè)問(wèn)題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過(guò)程中進(jìn)行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過(guò)程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
。ń處煈(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說(shuō)的進(jìn)行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
。╝+b)(c+d)=ac+ad+bc+bd
。╝+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)第95頁(yè)第3題
板書(shū)設(shè)計(jì)
復(fù)習(xí)例1板演
………………
………………
……例2……
………………
………………
教學(xué)后記
初中數(shù)學(xué)教案10
教學(xué)目標(biāo):
。1)能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過(guò)程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的.一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫(xiě)在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫(xiě)出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問(wèn)題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問(wèn)題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見(jiàn),達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。 對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見(jiàn)。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對(duì)于3,教師可提出問(wèn)題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問(wèn)題
某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷(xiāo)出約100件.該店想通過(guò)降低售價(jià)、增加銷(xiāo)售量的辦法來(lái)提高利潤(rùn),經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷(xiāo)售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷(xiāo)售利潤(rùn)最大? 在這個(gè)問(wèn)題中,可提出如下問(wèn)題供學(xué)生思考并回答:
1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷(xiāo)售量之間有什么關(guān)系?
[利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷(xiāo)售量]
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷(xiāo)
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問(wèn)題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式? (分別是二次多項(xiàng)式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來(lái)表示的)
(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)? 讓學(xué)生討論、交流,發(fā)表意見(jiàn),歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問(wèn)題可以轉(zhuǎn)化為二次函數(shù)來(lái)解決,請(qǐng)你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫(xiě)出函數(shù)關(guān)系式。
六、作業(yè):略
初中數(shù)學(xué)教案11
學(xué)習(xí)目標(biāo):
1.理解平行線(xiàn)的意義兩條直線(xiàn)的兩種位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會(huì)根據(jù)幾何語(yǔ)句畫(huà)圖,會(huì)用直尺和三角板畫(huà)平行線(xiàn);
學(xué)習(xí)重點(diǎn):
探索和掌握平行公理及其推論.
學(xué)習(xí)難點(diǎn):
對(duì)平行線(xiàn)本質(zhì)屬性的理解,用幾何語(yǔ)言描述圖形的性質(zhì)
一、學(xué)習(xí)過(guò)程:預(yù)習(xí)提問(wèn)
兩條直線(xiàn)相交有幾個(gè)交點(diǎn)?
平面內(nèi)兩條直線(xiàn)的位置關(guān)系除相交外,還有哪些呢?
。ㄒ唬┊(huà)平行線(xiàn)
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫(huà)"。
3、請(qǐng)你根據(jù)此方法練習(xí)畫(huà)平行線(xiàn):
已知:直線(xiàn)a,點(diǎn)B,點(diǎn)C.
(1)過(guò)點(diǎn)B畫(huà)直線(xiàn)a的平行線(xiàn),能畫(huà)幾條?
(2)過(guò)點(diǎn)C畫(huà)直線(xiàn)a的`平行線(xiàn),它與過(guò)點(diǎn)B的平行線(xiàn)平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過(guò)點(diǎn)B畫(huà)直線(xiàn)a的平行線(xiàn),能畫(huà) 條;
②過(guò)點(diǎn)C畫(huà)直線(xiàn)a的平行線(xiàn),能畫(huà) 條;
、勰惝(huà)的直線(xiàn)有什么位置關(guān)系? 。
、谔剿鳎喝鐖D,P是直線(xiàn)AB外一點(diǎn),CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測(cè):
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因?yàn)閍//d, b//c,所以c//d B、因?yàn)閍//c, b//d,所以c//d
C、因?yàn)閍//b, a//c,所以b//c D、因?yàn)閍//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線(xiàn),若其中有兩條且只有兩條直線(xiàn)平行,則它們交點(diǎn)的個(gè)數(shù)為( )
A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
(二)填空題:
1、在同一平面內(nèi),與已知直線(xiàn)L平行的直線(xiàn)有 條,而經(jīng)過(guò)L外一點(diǎn),與已知直線(xiàn)L平行的直線(xiàn)有且只有 條。
2、在同一平面內(nèi),直線(xiàn)L1與L2滿(mǎn)足下列條件,寫(xiě)出其對(duì)應(yīng)的位置關(guān)系:
(1)L1與L2 沒(méi)有公共點(diǎn),則 L1與L2 ;
。2)L1與L2有且只有一個(gè)公共點(diǎn),則L1與L2 ;
。3)L1與L2有兩個(gè)公共點(diǎn),則L1與L2 。
3、在同一平面內(nèi),一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角的大小關(guān)系是 。
4、平面內(nèi)有a 、b、c三條直線(xiàn),則它們的交點(diǎn)個(gè)數(shù)可能是 個(gè)。
三、CD⊥AB于D,E是BC上一點(diǎn),EF⊥AB于F,∠1=∠2.試說(shuō)明∠BDG+∠B=180°.
初中數(shù)學(xué)教案12
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過(guò)二次根式性質(zhì)和的.介紹滲透對(duì)稱(chēng)性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
。1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)提問(wèn)
1、什么叫平方根、算術(shù)平方根?
2、說(shuō)出下列各式的意義,并計(jì)算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):
。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?
解:略。
說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時(shí),下列各式為二次根式:
分析:由二次根式的定義,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿(mǎn)足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿(mǎn)足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
(4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿(mǎn)足的條件是:b=0。
初中數(shù)學(xué)教案13
教學(xué)目標(biāo)
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線(xiàn)段或角的相等關(guān)系·
教學(xué)重點(diǎn):等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn):正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線(xiàn)段的相等關(guān)系·
教學(xué)過(guò)程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問(wèn)題,創(chuàng)設(shè)情境
出示投影片·某地質(zhì)專(zhuān)家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(shù)(B點(diǎn))為B標(biāo),然后在這棵樹(shù)的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專(zhuān)家測(cè)得AC的長(zhǎng)度就可知河流寬度·
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問(wèn)題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”·
II引入新課
1·由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的.內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?
2·引導(dǎo)學(xué)生根據(jù)圖形,寫(xiě)出已知、求證·
2、小結(jié),通過(guò)論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書(shū)定理名稱(chēng))·
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類(lèi)似于性質(zhì)定理可簡(jiǎn)稱(chēng)“等角對(duì)等邊”·
4·引導(dǎo)學(xué)生說(shuō)出引例中地質(zhì)專(zhuān)家的測(cè)量方法的根據(jù)·
III例題與練習(xí)
1·如圖2
其中△ABC是等腰三角形的是[ ]
2·①如圖3,已知△ABC中,AB=AC·∠A=36°,則∠C______(根據(jù)什么?)·
、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?)·
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______·
、苋粢阎狝D=4cm,則BC______cm·
3·以問(wèn)題形式引出推論l______·
4·以問(wèn)題形式引出推論2______·
例:如果三角形一個(gè)外角的平分線(xiàn)平行于三角形的一邊,求證這個(gè)三角形是等腰三角形·
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫(xiě)出已知、求證,并分析證明·
練習(xí):5·(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線(xiàn)相交于點(diǎn)F,過(guò)F作DE//BC,交AB于點(diǎn)D,交AC于E·問(wèn)圖中哪些三角形是等腰三角形?
。2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1·判定一個(gè)三角形是等腰三角形有幾種方法?
2·判定一個(gè)三角形是等邊三角形有幾種方法?
3·等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4·現(xiàn)在證明線(xiàn)段相等問(wèn)題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁(yè)習(xí)題12·3第5、6題
初中數(shù)學(xué)教案14
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問(wèn)題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問(wèn)題和解決問(wèn)題的能力;
3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂(lè)趣,感受一元一次不等式組在解決實(shí)際問(wèn)題中的'價(jià)值。
教學(xué)難點(diǎn)
正確分析實(shí)際問(wèn)題中的不等關(guān)系,列出不等式組。
知識(shí)重點(diǎn)
建立不等式組解實(shí)際問(wèn)題的數(shù)學(xué)模型。
探究實(shí)際問(wèn)題
出示教科書(shū)第145頁(yè)例2(略)
問(wèn):(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個(gè)問(wèn)題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書(shū)146頁(yè)“歸納”(略).
2、你覺(jué)得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見(jiàn)下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
初中數(shù)學(xué)教案15
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線(xiàn)平行,有什么樣的結(jié)論?
反之,滿(mǎn)足什么條件的兩直線(xiàn)是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過(guò)程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
(2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;
(3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長(zhǎng)度之間滿(mǎn)足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過(guò)情境的'創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:
1.這三組數(shù)都滿(mǎn)足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿(mǎn)足 ,可以構(gòu)成直角三角形;②7,24,25滿(mǎn)足 ,可以構(gòu)成直角三角形;③8,15,17滿(mǎn)足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說(shuō)理
提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形
滿(mǎn)足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問(wèn):
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫(huà)出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿(mǎn)足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿(mǎn)足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書(shū)設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案08-12
初中數(shù)學(xué)教案:公式12-29
人教版初中數(shù)學(xué)教案12-30
【熱】初中數(shù)學(xué)教案01-12
初中數(shù)學(xué)教案【熱門(mén)】01-12
【熱門(mén)】初中數(shù)學(xué)教案01-12
初中數(shù)學(xué)教案【推薦】01-12
【薦】初中數(shù)學(xué)教案01-12
初中數(shù)學(xué)教案【薦】01-12
【精】初中數(shù)學(xué)教案01-12