天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>數(shù)學(xué)圓柱的體積教案

數(shù)學(xué)圓柱的體積教案

時間:2023-02-10 15:08:14 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)圓柱的體積教案(15篇)

  作為一名默默奉獻的教育工作者,總歸要編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。優(yōu)秀的教案都具備一些什么特點呢?以下是小編收集整理的數(shù)學(xué)圓柱的體積教案,歡迎大家分享。

數(shù)學(xué)圓柱的體積教案(15篇)

數(shù)學(xué)圓柱的體積教案1

  教學(xué)目標:

  1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:掌握圓柱體積的計算公式。

  教學(xué)難點:靈活應(yīng)用圓柱的體積公式解決實際問題。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、復(fù)習(xí)圓柱體積的推導(dǎo)過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  長方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。

  2、復(fù)習(xí)長方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題,并指名板演。

  二、解決實際問題

  1、練習(xí)三第7題。

  學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。

  2、練習(xí)三第5題。

 。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=VS。也可以列方程解答。

 。2)學(xué)生選擇喜愛的方法解答這道題目。

  3、練習(xí)三第8題。

 。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的.圓柱。

  (2)在充分理解題意后學(xué)生獨立完成,集體訂正。

  4、練習(xí)三第9、10題

 。1)學(xué)生獨立審題,完成9、10兩題。

 。2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

 。3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  三、布置作業(yè)

  完成一課三練的相關(guān)練習(xí)。

數(shù)學(xué)圓柱的體積教案2

  教學(xué)目標:

  1、知識技能

  運用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2、過程方法

  讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。

  3、情感態(tài)度價值觀

  通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。

  教學(xué)重點:

  圓柱體體積的計算公式的推導(dǎo)過程及其應(yīng)用。

  教學(xué)難點:

  理解圓柱體體積公式的推導(dǎo)過程。

  教學(xué)準備:圓柱體積公式推導(dǎo)演示學(xué)具、多媒體課件。

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入

  同學(xué)們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體

  的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?

  二、圖柱轉(zhuǎn)化,自主探究,驗證猜想。

 。ㄒ唬┎孪搿

  1、大家看圓柱的底面是一個圓形,在學(xué)習(xí)圓面積計算時,我們是把圓轉(zhuǎn)化成哪種圖形來計算的?(演示課件:圓轉(zhuǎn)化成長方形,推導(dǎo)圓面積公式的過程。)

  [數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師由復(fù)習(xí)圓面積公式的推導(dǎo)過程入手,實現(xiàn)知識的遷移。]

  2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。

 。ǘ┎僮黩炞C。

  1、請學(xué)生拿出圓柱體的演示學(xué)具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。

  在操作時,學(xué)生分組邊操作邊討論以下問題:

 、倨闯傻慕崎L方體的體積與原來的圓柱體積有什么關(guān)系?

 、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?

  ?.拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?

  2、小組代表匯報

 。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)

  3、電腦演示操作

  (1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:

  仔細觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當于圓柱的什么?長方體的寬和高又相當于圓柱的什么?

  動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?

 。ǚ值姆謹(shù)越多,拼成的圖形就越接近長方體)

 。2)根據(jù)學(xué)生的'觀察、分析、推想,老師完成板書:

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V=Sh

 。3)你的猜想正確嗎?學(xué)生齊讀圓柱的體積計算公式。

  三、練習(xí)鞏固,靈活應(yīng)用

  闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?

  讓學(xué)生試做,集體反饋。

  闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?

  學(xué)生討論、交流、匯報。

  小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)

  闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學(xué)生在練習(xí)本上獨立完成,集體反饋。

  四、課堂小結(jié)

  學(xué)習(xí)本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報收獲)

  五、布置作業(yè)

  教科書第21頁練習(xí)三第1-4題。

  板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  V= Sh

數(shù)學(xué)圓柱的體積教案3

  教學(xué)內(nèi)容:

  教科書第8~9頁的圓柱體積公式的推導(dǎo)和例4,完成練習(xí)二的第1~4題。

  教學(xué)目標:

  1、通過學(xué)生動手操作,分組交流,探究出圓柱體體積的計算方法。

  2、使學(xué)生理解和掌握圓柱體積的計算方法,并能結(jié)合實際計算出有關(guān)圓柱體的物體的體積。

  教學(xué)重點:

  圓柱體積計算公式。

  教學(xué)難點:

  圓柱體積計算公式的推導(dǎo)。

  教學(xué)理念:

  1、學(xué)習(xí)內(nèi)容緊密聯(lián)系生活實際。

  2、學(xué)習(xí)的方式以多媒體展示、自主探索與小組討論為主。

  教學(xué)設(shè)計:

  教學(xué)步驟:

  教師活動過程

  學(xué)生活動過程

  一、激疑引入

  1、求裝在圓柱形容器中水的體積。

  2、求橡皮泥捏的圓柱形體積。

  3、創(chuàng)設(shè)情境。

  1、出示裝了水的'圓柱容器。

  2、師:容器里面的水什么形狀,你們能想什么方法求出水的體積嗎?

  3、出示圓柱形橡皮泥。

  4、你們有方法求這個圓柱形橡皮泥的體積嗎?

  5、課件出示:圓形柱子、壓路機的圓柱形大前輪。你有辦法求出它們的體積嗎?

  6、今天,就讓我們一起來研究圓柱體積的計算方法。

  1、學(xué)生討論后匯報。

  2、指名回答

  二、媒體展示、引導(dǎo)探究

  1、回顧舊知,幫助遷移

  2、動手操作,實現(xiàn)遷移。

  3、得出公式。

  圓柱的體積=底面積×高

  4、教學(xué)例4

  5、拓展圓柱的體積計算公式。

  1、讓學(xué)生回憶我們怎樣推導(dǎo)出圓面積計算公式的?

  2、課件演示。

  3、想一想:怎樣計算圓柱的體積。

  4、課件演示。

  5、師:圓柱與所拼成的長方體有什么關(guān)系?

  6、根據(jù)學(xué)生的匯報師生共同概括公式。

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  7、引導(dǎo)學(xué)生用字母表示公式。

  8、出示例4,讓學(xué)生試做。提醒學(xué)生注意單位的處。

  9、讓學(xué)生看可課本。

  想一想:如果已知圓柱底面的半徑r和高h,圓柱的體積的計算公式師什么?

  10、教師行間巡視檢查。

  1、學(xué)生回答提問。

  2、學(xué)生匯報。

  3、學(xué)生分小組討論。

  3、學(xué)生操作學(xué)具,進行拼組。

  4、學(xué)生討論、交流、匯報。

  5、學(xué)生齊讀。

  6、學(xué)生試做。

  7、學(xué)生獨立思考,相互交流。

  三、利用資源、鞏固練習(xí)。

  1、做一做

  2、練習(xí)二第一題

  3、實踐與應(yīng)用

  4、提高練習(xí)

  1、讓學(xué)生獨立完成。

  2、師:完成練習(xí)二第一題。

  3、讓學(xué)生取出所準備的圓柱形實物。

  師:計算它的表面積,需要測量哪些數(shù)據(jù)并計算。

  4、課件出示圓柱形的大柱子。要知道這根柱子的體積,測量哪些數(shù)據(jù)比較方便?

  1、學(xué)生練習(xí)。

  2、同桌相互檢查,然后訂正。

  3、學(xué)生獨立填表,反饋。

  4、學(xué)生討論,小組內(nèi)交流。

  5、各小組匯報。

  6、學(xué)生討論,全班交流。

  四、課堂小結(jié)

  師:這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?

  學(xué)生回答

  五、布置作業(yè)

  師: 課堂作業(yè):練習(xí)二第2,3題。

數(shù)學(xué)圓柱的體積教案4

  教學(xué)目標:

  1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:

  掌握圓柱體積的計算公式。

  教學(xué)難點:

  靈活應(yīng)用圓柱的體積公式解決實際問題。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、復(fù)習(xí)圓柱體積的推導(dǎo)過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。

  2、復(fù)習(xí)長方體、正方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題求體積部分,并指名板演。

  二、解決實際問題

  1、練習(xí)三第4題。

  學(xué)生獨立練習(xí),強調(diào)選取有用信息,培養(yǎng)認真審題習(xí)慣。

  2、練習(xí)三第5題。

 。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=V÷S。也可以列方程解答。

  (2)學(xué)生選擇喜愛的方法解答這道題目。

  3、練習(xí)三第10題。

  指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  4、練習(xí)三第8題。

  (1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

  (2)在充分理解題意后學(xué)生獨立完成,集體訂正。

  4、練習(xí)三第9題

  (1)學(xué)生獨立審題后完成。

  評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

  5、練習(xí)三第11題。

  此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。

 。3)三、布置作業(yè)

  完成練習(xí)中未做完的習(xí)題

  教學(xué)反思

  第五課時特別關(guān)注

  練習(xí)三第4題,在教學(xué)中必須應(yīng)該特別關(guān)注。

  關(guān)注理由:

  1、有多余條件,是培養(yǎng)學(xué)生收集有用信息的契機。

  這道題中出現(xiàn)兩個圓柱體的`高,分別是花壇的高0.8米和花壇里面填土的高0 .5米。學(xué)生該如何合理做出選擇呢,關(guān)鍵要通過問題來思考。因為問題是求“花壇中共需要填土多少方”,所以應(yīng)該選用“填土的高度是0.5米”這條數(shù)學(xué)信息。

  在課堂中,我還要求學(xué)生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學(xué)生說“可以問花壇的體積是多少立方米”,還有的同學(xué)說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓(xùn)練,能夠有效培養(yǎng)學(xué)生收集、處理信息的能力,同時提升他們綜合分析問題的能力。

  2、有容易忽視的條件,是培養(yǎng)學(xué)生認真審題的契機。

  一般習(xí)題中的數(shù)據(jù)是用阿拉伯數(shù)字呈現(xiàn),可這道題的問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學(xué)生忽視的數(shù)據(jù)“兩個”。其實,配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學(xué)生仍舊會出錯。所以,應(yīng)抓住此題,培養(yǎng)學(xué)生良好審題的習(xí)慣。如在做這類習(xí)題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉(zhuǎn)化為數(shù)學(xué)問題等。

  學(xué)生巧解

  ——巧求削去部分的體積

  今天,全班同學(xué)做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米,F(xiàn)在,將它削成一個的圓柱體,求削去的部分是多少立方分米?

  我因為做得既對又快,最終獲得全班第一名的成績。通過對比,我發(fā)現(xiàn)自己的方法比同學(xué)們巧妙。

  同學(xué)們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。

  而我在做這一題時,想起上學(xué)期在正方形中畫的圓,圓的面積占正方形面積的157/200的結(jié)論。因為直柱體的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應(yīng)該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

數(shù)學(xué)圓柱的體積教案5

  教學(xué)目標:

  1、理解圓柱體積公式的推導(dǎo)過程。

  2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。

  3、進一步提高學(xué)生解決問題的能力。

  教學(xué)重、難點:

  1、理解圓柱體積公式的推導(dǎo)過程。

  2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。

  3、理解圓柱體積公式的推導(dǎo)過程。

  教學(xué)準備:圓柱切割組合模具、小黑板。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,生成問題

  1、什么是體積?( 物體所占空間的大小叫做物體的體積。)

  2、長方體的體積該怎樣計算?歸納到底面積乘高上來。

  3、圓的面積怎樣計算?

  二、探索交流,解決問題

  1、計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體 圖形來計算它的體積?

 。▎l(fā)學(xué)生思考。)

  2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進行觀察。

  3、思考:

 。1)圓柱切開后可以拼成一個什么形體?(長方體)

 。2)通過實驗?zāi)惆l(fā)現(xiàn)了什么?

  小組討論:實驗前后,什么變了?什么沒變?

  討論后,整理出來,再進行匯報。

 。ㄆ闯傻慕崎L方體體積大小沒變,形狀變了,拼成的近似長方

  體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)

  4、推導(dǎo)圓柱體積公式

  小組討論:怎樣計算圓柱的'體積?

  學(xué)生匯報討論結(jié)果。

  長方體的體積可以用底面積乘高來計算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。

  師:圓柱的體積怎樣計算?用字母公式,怎樣表示?

  板書: V=Sh

  5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?

  三、鞏固應(yīng)用練習(xí)。

  1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,

  這個水桶的容積是多少升?

  說明:求水桶的容積,就是求水桶的體積。想一想先求什么?

  2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?

  先求底面半徑再求底面積,最后求體積。

  已知底面周長對解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結(jié):

  通過這節(jié)課你學(xué)會了哪些知識,有什么收獲?五:課后作業(yè):

  教材第9頁,練一練第1、3、4、題

數(shù)學(xué)圓柱的體積教案6

  教學(xué)目標

  1.使學(xué)生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應(yīng)用分式解答一些實際問題。

  2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。

  教學(xué)重點和難點

  圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。

  教學(xué)過程設(shè)計

  我們已經(jīng)認識了圓柱體,學(xué)會了圓柱體側(cè)面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)

  (一)復(fù)習(xí)準備

  1.什么叫體積?(指名回答)

  生:物體所占空間的大小叫做體積。

  師:你學(xué)過哪些體積的計算公式?(指名回答)

  根據(jù)學(xué)生的回答,板書:

  長方體體積=底面積×高

  2.圓面積公式是怎樣推導(dǎo)出來的?

  生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。

  (二)學(xué)習(xí)新課

  1.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計算圓柱體積的公式?

  2.看書自學(xué)。

  (1)圓柱體是怎樣變成近似長方體的?

  (2)切拼成的長方體與圓柱體有什么關(guān)系?

  (3)怎樣計算切拼成的長方體體積?

  3.推導(dǎo)圓柱體積公式。

  (1)討論自學(xué)題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?

  把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)

  (2)動手操作切拼,將圓柱體轉(zhuǎn)化成長方體。

  出示兩個等底等高圓柱體,讓學(xué)生比一比,底面積大小一樣,高相等,使學(xué)生確信,兩個圓柱體的體積相等。

  請兩名同學(xué)按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學(xué)具,人人動手切拼,充分展示切拼過程和公式推導(dǎo)過程。)

  現(xiàn)在討論自學(xué)題(2)。

  師:這個長方體與圓柱體比較一下,什么變了?什么沒變?

  生:形狀變了,體積大小沒變。

  (3)推導(dǎo)圓柱體積公式。

  討論:切拼成的長方體與圓柱體有什么關(guān)系?(引導(dǎo)學(xué)生有順序的進行敘述,分小組討論,讓學(xué)生充分發(fā)言。)

  小結(jié):切拼成的長方體的`體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。

  師:圓柱的體積怎樣計算?用字母公式,怎樣表示?

  板書: V=Sh

  (4)利用公式進行計算。

  例1 一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?

  引導(dǎo)學(xué)生審題,說出題目中的已知條件和問題。做這道題還要注意什么?

  生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。

  2。1米=210厘米 (①用字母表示已知條件)

  S=50 h=210 (②寫出字母公式)

  V=Sh (③列式計算)

  =50×210 (④寫出答題)

  =10500

  答:它的體積是10500立方厘米。

  引導(dǎo)學(xué)生總結(jié)出做題步驟。

  小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。

  (三)鞏固反饋

  1.圓柱體的底面積314平方分米,高40厘米。它的體積是多少?

  2.求下面圓柱體的體積。(單位:厘米)

  3.填表:

  4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?

  5.一個圓柱形糧囤,從里面量,底面周長是6。28米,高20分米。它的容積是多少立方米?

  (四)課堂總結(jié)

  這節(jié)課,你學(xué)會了什么?還有什么問題?

  生:學(xué)會了圓柱體的體積計算公式,并會用公式解答實際問題。

  思考題:

  一張長方形的紙長6。28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。

  課堂教學(xué)設(shè)計說明

  本節(jié)教案分三個層次。

  第一層次是復(fù)習(xí)。

  第二層次,推導(dǎo)圓柱體的計算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納能力。

  第二層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當堂掌握所學(xué)的新知識,并通過練習(xí)達到一定技能。

  本節(jié)教案特點:充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動手、動腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于玩中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動手操作能力、口頭表達能力和邏輯思維能力,讓學(xué)生充分體驗成功的喜悅。

數(shù)學(xué)圓柱的體積教案7

  一、教學(xué)內(nèi)容:人教版教材六年級下冊19——20頁例5例6及相關(guān)的練習(xí)題。

  二、教學(xué)目標:

  1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。

  2、經(jīng)歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。并會解決一些簡單的實際問題。

  3、注意滲透類比、轉(zhuǎn)化思想。

  三、教學(xué)重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。

  四、教學(xué)難點:推導(dǎo)圓柱的體積計算公式。

  五、教法要素:

  1、已有的知識和經(jīng)驗:體積、體積單位,學(xué)習(xí)長方體正方體的體積公式的經(jīng)驗。

  2、原型:圓柱模型。

  3、探究的問題:

 。1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學(xué)過的立體圖形來計算體積?

  (2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個

  部分?

 。3)怎樣計算圓柱的體積?

  六、教學(xué)過程:

 。ㄒ唬﹩酒鹋c生成。

  1、什么叫物體的體積?我們學(xué)過哪些立體圖形的體積計算?

  2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?

  切入教學(xué):怎樣計算圓柱的體積?圓柱的體積計算會和什么有關(guān)?

 。ǘ┨骄颗c解決。

  探究:圓柱的體積

  1、 提出問題,啟發(fā)思考:如何計算圓柱的'體積?

  2、 類比猜測,提出假設(shè):結(jié)合長方體和正方體體積計算的知識,即長方

  體和正方體的體積都等于底面積×高,據(jù)此分析并猜測圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設(shè),圓柱的體積可能等于底面積×高。

  3、 轉(zhuǎn)化物體,分析推理:

  怎樣來驗證我們的猜想?我們在學(xué)圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導(dǎo)出圓的面積計算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學(xué)過的立體圖形呢?應(yīng)該怎樣轉(zhuǎn)化?結(jié)合圓的面積計算小組討論。學(xué)生匯報交流。

 。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學(xué)生觀察。)現(xiàn)在利用這個圓柱模型小組合作把它轉(zhuǎn)化為我們學(xué)過的立體圖形。學(xué)生在小組合作后匯報交流。

  4、全班交流,公式歸納:

  交流時,要學(xué)生說明拼成的長方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長方體的底面積有什么關(guān)系?拼成的長方體的高和圓柱的高有什么關(guān)系?引導(dǎo)學(xué)生推導(dǎo)出圓柱的體積計算方法。圓柱的體積=底面積×高。(在這一過程中,使學(xué)生認識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長方體的體積,分的份數(shù)越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,并用字母表示。

  回想一下,剛才我們是怎樣推導(dǎo)出圓柱的體積計算公式的?

  5、舉一反三,應(yīng)用規(guī)律:

  (1)你能用這個公式解決實際問題嗎?20頁做一做,學(xué)生獨立完成,全班訂正。

  如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導(dǎo)學(xué)生推導(dǎo)出V=∏r2h

 。2)教學(xué)例6

  學(xué)生審題之后,引導(dǎo)學(xué)生思考:解決這個問題就是要計算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學(xué)生獨立解決。反饋時,要引導(dǎo)學(xué)生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。

  (三)訓(xùn)練與強化。

  1、基本練習(xí)。

  練習(xí)三第1題,學(xué)生獨立完成,這兩個都可以直接用V=sh來計算。全班訂正,注意培養(yǎng)學(xué)生良好的計算習(xí)慣。

  2、變式練習(xí)。

  第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學(xué)生獨立完成,在交流時,注意計算方法的指導(dǎo)。

  第3題。求裝多少水,實際是求這個水桶的容積。學(xué)生獨立完成,全班交流。水是液體,單位應(yīng)用毫升或升。

  3、綜合練習(xí)。

  第5題。這題中知道了圓柱的體積和底面積求高,引導(dǎo)學(xué)生推出h=V÷s,如果有困難,也可列方程解答。學(xué)生獨立完成,有困難的小組交流。

  4、提高性練習(xí)。22頁第10題,學(xué)生先小組討論,再全班交流。

 。ㄋ模┛偨Y(jié)與提高。

  這節(jié)課我們是怎樣推導(dǎo)出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三棱柱、鋼管等),讓學(xué)生計算出他們的體積。

數(shù)學(xué)圓柱的體積教案8

  第二課時

  教學(xué)目標

  1.經(jīng)歷同桌合作,測量、計算圓柱形物體體積的過程。

  2.會測量圓柱形物體的有關(guān)數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計算圓柱的體積。

  3.能與同伴合作尋找解決問題的有效方法,能表達解決問題的大致過程和結(jié)果。

  教學(xué)重點

  能根據(jù)學(xué)生自己測量的數(shù)據(jù)進行圓柱體積的計算。

  教學(xué)難點

  給出圓柱底面周長如何計算圓柱的體積。

  教具準備

  學(xué)生自備的茶葉筒或露露瓶。

  教學(xué)過程

  一、測量茶葉筒的體積

  1.師:同學(xué)們,我們要想計算這個茶葉筒的體積,應(yīng)該首先知道哪些數(shù)據(jù)?

  生:茶葉筒的高,底面直徑或半徑。

  師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數(shù)據(jù),并計算出它們的體積。

  學(xué)生同桌合作測量并計算。

  2.交流測量數(shù)據(jù)的方法和計算的結(jié)果。

  3.剛才同學(xué)大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計算圓柱的體積呢?

  生:利用周長先求出半徑,再進行計算。

  師:你們會不會測量茶葉筒的底面周長呢?如果已經(jīng)忘記,就進行一下提示:在圓柱的底面上做一標記,然后把圓柱體在直尺上進行滾動;蛴闷こ邷y量。請大家實際測量一下底面周長,并進行計算,看看和剛才計算的結(jié)果是否一致。

  二、鞏固練習(xí)

  1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?

  2.獨立完成練一練的1-3題。

  三、家庭作業(yè)

  1.練一練的第4小題。

  2.①一個圓柱的的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?

 、谝桓鶊A柱形鋼材,截下2米,量得它的`橫截面的直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?

  圓柱的體積

  第三課時 容積

  教學(xué)目標

  1.結(jié)合具體事例,經(jīng)歷探索容積計算問題的過程。

  2.掌握計算容積的方法,能解決有關(guān)容積的簡單實際問題。

  3.在解決容積問題的過程中,體驗數(shù)學(xué)與日常生活的密切聯(lián)系。

  教學(xué)重點

  利用體積公式計算保溫杯的容積。

  教學(xué)難點

  計算容積所需要的數(shù)據(jù)是容器內(nèi)壁的高、底面直徑或半徑,如何獲得這些數(shù)據(jù)。

  教學(xué)過程

  一、復(fù)習(xí)舊知

  1.求下列圓柱的體積(口答列式)。

 。1)底面積3平方分米,高4分米;

  (2)底面半徑2厘米,高2厘米;

 。3)底面直徑2分米,高3分米。

  追問:圓柱的體積是怎樣計算的?(板書:V=Sh)

  2.復(fù)習(xí)容積。

  提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計算容積的?

  3.引入新課。

  我們已經(jīng)學(xué)習(xí)過圓柱的體積計算,知道了容積和容積的計算方法。這節(jié)課,就在計算圓柱體積的基礎(chǔ)上,學(xué)習(xí)圓柱的容積計算。(板書課題)

  二、教學(xué)新課

  1.教學(xué)例題。

  出示例題,讀題。提問:這道題求什么?你能計算它的容積嗎?請大家仔細看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數(shù))指名學(xué)生板演,其余學(xué)生做在練習(xí)本上。集體訂正,說明每一步求的什么,怎樣求的。同時注意是怎樣統(tǒng)一單位和取近似值的。

  2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:

  1立方分米=1升 1立方厘米=1毫升

  3.注意保溫杯內(nèi)壁的厚度應(yīng)該減去幾個才是內(nèi)壁的直徑,高應(yīng)該減去幾個厚度才是內(nèi)壁的高?

  4.學(xué)生獨立完成。然后進行全班交流。

  三、新課小結(jié)

  1.提問:求圓柱形容器的容積要怎樣計算?如果知道圓柱底面的半徑或直徑,怎樣求圓柱的體積?

  2.計算容積與計算體積有什么相同點和不同點?

  四、提高練習(xí)

  把6個這樣的保溫杯倒?jié)M水,大約需要多少千克水?

  注意大頭蛙的話:1毫升水重1克。

  五、鞏固練習(xí)

  1.拿一個水杯,量出它的內(nèi)直徑和高,算一算這個水杯大約可以裝多少水?

  注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計算?(內(nèi)壁就減兩個厚度,高減一個厚度,因為水杯沒有蓋。)

  2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計算容積有關(guān)嗎?需要用哪個數(shù)據(jù)來計算?(杯中水的高度)

  3.練一練第4小題。怎么鋼管的體積?

  1)鋼管體積=大圓柱體積-小圓柱體積

  2)鋼管體積=鋼管環(huán)形底面積高

數(shù)學(xué)圓柱的體積教案9

  教學(xué)內(nèi)容:

  北師大版小學(xué)數(shù)學(xué)教材六年級下冊第8—10頁。

  教學(xué)目標:

  1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,能夠運用公式正確的計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的思想和方法,提高解決實際問題的能力。

  教學(xué)重點、難點:

  重點:掌握圓柱體積的計算公式。

  難點:圓柱體積計算公式的推導(dǎo)。

  教學(xué)過程:

  一、情境導(dǎo)入

  1、出示教學(xué)情境:怎樣用學(xué)過的知識測量出老師的水杯里裝了多少毫升的水?

  想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?

  讓學(xué)生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。

  2、出示第二情境:圓柱形的木柱子、壓路機的車輪這樣的圓柱用這種方法還行嗎?怎么辦?

  怎樣計算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計算圓柱的體積)

  二、探究新知:

  1、大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?

  學(xué)生猜想,教師出示相應(yīng)的課件演示,讓學(xué)生觀察,體會圓柱的體積和它的底面積和高,有關(guān)系,有怎樣的關(guān)系。

  2、圓柱的體積可能等于什么?(說說猜想依據(jù))

  長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。

 。ㄓ谜n件展示切拼過程,讓學(xué)生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。)

  學(xué)生討論交流:

 。1)把圓柱拼成長方體后,什么變了,什么沒變?

 。2)拼成的長方體與圓柱之間有什么聯(lián)系?

 。3)通過觀察得到什么結(jié)論?

  得到:圓柱的體積=底面積×高 V=Sh

  三、拓展交流

  要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結(jié)出公式。

  四、練習(xí)設(shè)計:

  1、想一想,填一填:

  把圓柱體切割拼成近似(),它們的()相等。長方體的.高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因為長方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )

  2、判斷正誤,對的畫“√”,錯誤的畫“×”。

  (1)圓柱體的底面積越大,它的體積越大!

  (2)圓柱體的高越長,它的體積越大。×

  (3)圓柱體的體積與長方體的體積相等。×

  (4)圓柱體的底面直徑和高可以相等!

  3、分別計算下列各圖形的體積,再說說這幾個圖形體積計算方法之間的聯(lián)系。

  4×3×8

  6×6×6

  3.14×(5÷2)2×8

 。96(cm3)

 。216(cm3)

  =157(cm3)

  4、計算下面各圓柱的體積。

  60×4

  3.14×12×5

  3.14×(6÷2)2×10

 。240(cm3)

 。15.7(cm3)

  =282.6(dm3)

  5、這個杯子能否裝下3000mL的牛奶?

  3.14×(14÷2)2×20

  =3077.2(cm3)

 。3077.2(mL)

  3077.2mL>3000mL

  答:這個杯子能裝下3000mL的牛奶。

  五、課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?

數(shù)學(xué)圓柱的體積教案10

  設(shè)計說明

  本節(jié)課是在學(xué)生已經(jīng)了解了圓柱的特征,掌握了長方體體積的計算方法以及圓的面積計算公式的推導(dǎo)過程的基礎(chǔ)上進行教學(xué)的。根據(jù)學(xué)生的認知水平和已有經(jīng)驗,本節(jié)課在教學(xué)設(shè)計上體現(xiàn)了以下幾個特點:

  1.創(chuàng)設(shè)問題情境,點燃探索激情。

  基于“數(shù)學(xué)來源于生活,又應(yīng)用于生活”這一理念,教學(xué)過程中通過呈現(xiàn)身邊圓柱的體積問題,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,認識到學(xué)習(xí)圓柱的體積計算公式的必要性,從而激發(fā)了學(xué)生的探究興趣,使學(xué)習(xí)成為學(xué)生自覺的需求。

  2.注重直觀教學(xué),引導(dǎo)合作遷移。

  數(shù)學(xué)理論的表述往往是抽象的,它影響了學(xué)生數(shù)學(xué)思維的發(fā)展,而引導(dǎo)學(xué)生從觀察和分析有關(guān)具體實物入手,就比較容易理解概念的本質(zhì)特征。所以,教學(xué)中不但設(shè)計了通過排水法理解圓柱體積的實驗,而且還借助教具演示、課件演示等直觀教學(xué)手段幫助學(xué)生推導(dǎo)出圓柱體積的計算公式,使學(xué)生從感性認識上升到理性認識,體會到知識的由來。

  3.滲透數(shù)學(xué)思想,發(fā)展數(shù)學(xué)思考。

  在本節(jié)課的教學(xué)中,充分利用教材內(nèi)容,對學(xué)生有效地進行轉(zhuǎn)化思想的滲透,使學(xué)生在體會運用轉(zhuǎn)化思想可以化難為易、化復(fù)雜為簡單、化生疏為熟悉等作用的同時,參與數(shù)學(xué)活動,提高解決問題的能力。

  課前準備

  教師準備 PPT課件

  學(xué)生準備 圓柱形實物

  教學(xué)過程

  ⊙情境引入

  1.操作感知體積的意義。

  通過出示一個裝了半杯水的燒杯,引導(dǎo)學(xué)生猜測:在燒杯中投入一個圓柱形物體,會有什么現(xiàn)象發(fā)生?

  (水面升高或者水會溢出來)

  師:為什么會有這種現(xiàn)象發(fā)生?

  預(yù)設(shè)

  生1:圓柱占有一定的'空間。

  生2:圓柱占據(jù)了原來水占有的空間。

  生3:圓柱是立體圖形,它具有一定的體積。

  2.討論、概括圓柱的體積的意義。

  師:你認為什么是圓柱的體積?

  (圓柱所占空間的大小,叫做圓柱的體積)

  3.引入:這節(jié)課我們就一起來探究圓柱體積的計算方法。

  (板書課題:圓柱的體積)

  設(shè)計意圖:通過操作、演示,使學(xué)生在猜測、觀察、討論中加深對抽象的“體積”概念的理解,自主概括出圓柱的體積的意義,為下面的探究活動做好充分的準備。

  ⊙自主探究

  1.探究影響圓柱的體積大小的相關(guān)因素。

  (1)課件出示兩個大小不等的圓柱。

  師:哪個圓柱的體積比較大?為什么?

  預(yù)設(shè)

  生1:左面的圓柱的體積比較大,因為它高一些。

  生2:右面的圓柱的體積比較大,因為它粗一些。

  生3:不好比較。因為左面的圓柱雖然高,但比較細;右面的圓柱雖然粗,但比較矮。

  (2)討論、概括。

  師:圓柱的體積的大小與哪些因素有關(guān)?

  (圓柱的體積的大小與圓柱的高及圓柱的底面積的大小有關(guān))

數(shù)學(xué)圓柱的體積教案11

  教學(xué)內(nèi)容:

  教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習(xí)二第1~5題。

  教學(xué)要求:

  1.使學(xué)生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。

  2.培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認識轉(zhuǎn)化的思考方法。

  教具準備:

  圓柱體積演示教具。

  教學(xué)重點:

  理解和掌握圓柱的體積計算公式。

  教學(xué)難點:

  圓柱體積計算公式的推導(dǎo)。

  教學(xué)過程:

  一、鋪墊孕伏:

  1.求下面各圓的面積(回答)。

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  要求說出解題思路。

  2.想一想:學(xué)習(xí)計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。

  3.提問:什么叫體積?常用的體積單位有哪些?

  4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積高)

  二、自主研究:

  1.根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)

  2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學(xué)過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。

  3.公式推導(dǎo)。(可分小組進行)

  (1)請同學(xué)指出圓柱體的底面積和高。

  (2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)

  (3)探索求圓柱體積的公式。

  根據(jù)圓面積剪、拼轉(zhuǎn)化成長方形的思路,我們也可以運用切拼轉(zhuǎn)化的方法把圓柱體變成學(xué)過的幾何形體來推導(dǎo)出圓柱的體積計算公式。你能想出怎樣切、拼轉(zhuǎn)化嗎?請同學(xué)們仔細觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關(guān)系。教師演示圓柱體積公式推導(dǎo)演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體。可以想象,分成的扇形越多,拼成的立體圖形就越接近于長方體。

  (4)討論并得出結(jié)果。

  你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的體。這個長方體的.底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是:。(板書:圓柱的體積=底面積高)用字母表示:。(板書:V=Sh)

  (5)小結(jié)。

  圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?

  4.教學(xué)例1。

  出示例1,審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位)

  0.9米=90厘米2490=2160(立方厘米)

  5.做練習(xí)二第1題。

  讓學(xué)生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?

  6.教學(xué)試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學(xué)生做在練習(xí)本上。評講試一試小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

  7.教學(xué)例2。

  出示例2,審題。小組討論計算方法,然后學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位,結(jié)果保留整數(shù)。)

  三、鞏固練習(xí)

  第12頁,練一練。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。

  五、布置作業(yè)

  練習(xí)二第2,3,4,5題及數(shù)訓(xùn)。

  六、板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積高

  圓柱的體積=底面積高

  V=Sh

數(shù)學(xué)圓柱的體積教案12

  教學(xué)內(nèi)容:P19-20頁例5、例6及補充例題,完成“做一做”及練習(xí)三第1~4題。

  教學(xué)目標:

  1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:掌握圓柱體積的計算公式。

  教學(xué)難點:圓柱體積的計算公式的推導(dǎo)。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的`計算公式導(dǎo)出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導(dǎo)。

 。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。

數(shù)學(xué)圓柱的體積教案13

  教學(xué)內(nèi)容:

  九年義務(wù)教育六年制第十二冊第36~37頁例4、例5及做一做,練習(xí)八的第1、2題。

  教學(xué)目標:

  1、理解圓柱體體積公式的推導(dǎo)過程,并會正確地計算出圓柱的體積。

  2、培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進一步發(fā)展空間觀念。

  3、引導(dǎo)學(xué)生探索和解決問題,體驗轉(zhuǎn)化及極限的思想方法。

  教學(xué)重點:圓柱體體積的計算.

  教學(xué)難點:理解圓柱體體積公式的推導(dǎo)過程.

  教具:多媒體課件、圓柱形容器、水、橡皮泥。

  教學(xué)過程:

  一、激凝導(dǎo)入

  師: 大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習(xí)慣。可前兩天,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)

 。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?

 。2)生回答。

  2、出示橡皮泥捏成的圓柱體。

  那你有辦法求出這個圓柱體橡皮泥的體積嗎?

  生(熱情的.):老師將它捏成長方體或正方體就可以了!

  3、創(chuàng)設(shè)問題情境。

  師小結(jié):這么說同學(xué)們都有辦法將一些圓柱形的物體轉(zhuǎn)化為長方形或正方體來求它們的體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學(xué)們想出來的辦法嗎?(不能)

  那怎么辦?

  學(xué)生試說出自己的辦法。

  師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

  二、經(jīng)歷體驗、探究新知

  1、推導(dǎo)圓柱的體積公式。

  師:你們打算怎么去研究圓柱的體積?

  小組同學(xué)討論研究的方法。

  2、學(xué)生動手操作感知

 。1)學(xué)生以小組為單位操作體驗。(操作學(xué)具,進行拼組)。

  (2)學(xué)生小組匯報交流:

  近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。

 。3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)

  3、教師課件演示圓柱轉(zhuǎn)化成長方體的過程。

  4、師生共同推導(dǎo)出圓柱的體積公式:

  長方體的體積=底面積高

  圓柱的體積=底圓柱面積高

  V = Sh

  5、鞏固公式

 、賄、S、h各表示什么?

  ②知道哪些條件就可以求圓柱的體積?

  а、知道底面積和高可以直接用公式計算圓柱的體積;

  b、知道底面半徑和高,可以先計算出底面積,再計算體積;

  c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。

  學(xué)生回答后師板書。

  6、教學(xué)例4、例5。

  課件分別出示例4、例5,讓學(xué)生找出題中的條件和問題,然后獨立完成,集體訂正。

  三、實踐練習(xí)

  1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關(guān)數(shù)據(jù)求出它的體積。

  2、拓展延伸:同學(xué)們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學(xué)們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應(yīng)是多少?小林想了想說:我知道了。

  同學(xué)們,你們知道小林是怎樣想的嗎?

  四、課堂總結(jié);

  通過本節(jié)課的學(xué)習(xí),你有什么收獲?

數(shù)學(xué)圓柱的體積教案14

  教學(xué)目標

  圓柱的體積(1)

  圓柱的體積(教材第25頁例5)。

  探索并掌握圓柱的體積計算公式,會運用公式計算圓柱的體積,體會轉(zhuǎn)化的思想方法。

  教學(xué)重難點

  1.掌握圓柱的體積公式,并能運用其解決簡單實際問題。

  2.理解圓柱體積公式的推導(dǎo)過程。

  教學(xué)工具

  推導(dǎo)圓柱體積公式的圓柱教具一套。

  教學(xué)過程

  復(fù)習(xí)導(dǎo)入

  1、口頭回答。

  (1)什么叫體積?怎樣求長方體的體積?

  (2)怎樣求圓的面積?圓的面積公式是什么?

  (3)圓的面積公式是怎樣推導(dǎo)的?在學(xué)生回憶的基礎(chǔ)上,概括出“轉(zhuǎn)化圖形——建立聯(lián)系——推導(dǎo)公式”的方法。

  2、引入新課。

  我們在推導(dǎo)圓的面積公式時,是把它轉(zhuǎn)化成近似的長方形,找到這個長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導(dǎo)出了圓的面積公式。今天,我們能不能也用這個思路研究圓柱體積的計算問題呢?

  教師板書:圓柱的體積(1)。

  新課講授

  1、教學(xué)圓柱體積公式的推導(dǎo)。

  (1)教師演示。

  把圓柱的底面分成16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。

  (2)學(xué)生利用學(xué)具操作。

  (3)啟發(fā)學(xué)生思考、討論:

 、賵A柱切開后可以拼成一個什么立體圖形?

  學(xué)生:近似的長方體。

 、谕ㄟ^剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?

  教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?

  學(xué)生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。

  (4)學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進行猜想:

 、偃绻褕A柱的底面平均分成32份,拼成的形狀是怎樣的?

 、谌绻褕A柱的底面平均分成64份,拼成的形狀是怎樣的?

 、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?

  (5)啟發(fā)學(xué)生說出:通過以上的觀察,發(fā)現(xiàn)了什么?

 、倨骄值姆輸(shù)越多,拼起來的形狀越接近長方體。

 、谄骄值姆輸(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體形狀就越接近長方體。

  (6)推導(dǎo)圓柱的'體積公式。

 、賹W(xué)生分組討論:圓柱的體積怎樣計算?

 、趯W(xué)生匯報討論結(jié)果,并說明理由。

  教師:因為長方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。

  2、教學(xué)補充例題。

  (1)出示補充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?

  (2)指名學(xué)生分別回答下面的問題:

 、龠@道題已知什么?求什么?

 、谀懿荒芨鶕(jù)公式直接計算?

 、塾嬎阒耙⒁馐裁?

  學(xué)生:計算時既要分析已知條件和問題,還要注意先統(tǒng)一計量單位。

  (3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的。

  ①50×2.1=105(cm3)答:它的體積是2625px3。

 、2.1m=5250px 50×210=10500(cm3)

  答:它的體積是262500px3。

 、1250px2=0.5m2 0.5×2.1=1.05(m3)

  答:它的體積是1.05m3。

  ④1250px2=0.005m2

  0.005×2.1=0.0105(m3)

  答:它的體積是0.0105m3。

  先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的第①、③種解答要說說錯在什么地方。

  (4)引導(dǎo)思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?

  教師板書:V=πr2h。

  課堂作業(yè)

  教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨立做在練習(xí)本上,做完后集體訂正。

  答案:“做一做”:1. 6750(cm3)

  2. 7.85m3

  第1題:(從左往右)

  3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

  課堂小結(jié)

  通過這節(jié)課的學(xué)習(xí),你有什么收獲?你有什么感受?

  課后作業(yè)

  完成練習(xí)冊中本課時的練習(xí)。

  第4課時圓柱的體積(1)

  課后小結(jié)

  1.“圓柱的體積”是學(xué)生在掌握了圓柱的基本特征以及長方體、正方體體積計算方法等基礎(chǔ)上學(xué)習(xí)的。它是今后學(xué)習(xí)圓錐體積計算的基礎(chǔ)。

  2.采用小組合作學(xué)習(xí),從而引發(fā)自主探究,最后獲取知識的新方式來代替教師講授的老模式,能取得事半功倍的效果。

  3.推導(dǎo)公式時間過長,可能導(dǎo)致練習(xí)時間少,練習(xí)量少,要注意把控。

  課后習(xí)題

  教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨立做在練習(xí)本上,做完后集體訂正。

  答案:“做一做”:1. 6750(cm3)

  2. 7.85m3

  第1題:(從左往右)

  3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

數(shù)學(xué)圓柱的體積教案15

  教學(xué)內(nèi)容:

  北師大版教學(xué)六年級《圓柱的體積》

  教學(xué)目標:

  1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。

  2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;

  教學(xué)重點:

  理解和掌握圓柱的體積計算公式,會求圓柱的體積。

  教學(xué)難點:

  理解圓柱體積計算公式的推導(dǎo)過程。

  教具準備:

  圓柱體積演示教具。

  教學(xué)過程:

  一、舊知鋪墊

  1、談話引入

  最近我們認識了圓柱和圓錐,還學(xué)會了計算圓柱的表面積,F(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)

  2、提出問題:什么叫體積?我們學(xué)過那些圖形的體積?怎么算的?(生答師隨之板書)

  這節(jié)課我們就來學(xué)習(xí)圓柱的體積。

  二、自主探究,解決問題

  (一)認識圓柱體積的意義。

  圓柱的體積到底是指什么?誰能舉例說呢?

 。ǘ﹫A柱體積的`計算公式的推導(dǎo)。

  1、我們學(xué)過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)

  2、回憶圓面積的推導(dǎo)過程。

  3、教具演示。

  (1)取圓柱體模型。

 。2)將圓柱體切成兩半。

 。3)分別將兩半均分成若干小塊。

  (4)動手拼成一個近似的長方體。

 。ㄈw納公式。

 。ò鍟簣A柱的體積=底面積高)

  用字母表示:(板書:V=Sh)

  三、鞏固新知

  1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?

  審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。

  現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?

  2、完成試一試

  3、跳一跳:統(tǒng)一直柱體的體積的計算方法。

  四、課堂總結(jié)、拓展延伸

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?

  五、布置作業(yè)

  練一練1-5題。

【數(shù)學(xué)圓柱的體積教案】相關(guān)文章:

數(shù)學(xué)圓柱的體積教案02-10

數(shù)學(xué)教案:圓柱的體積02-11

《圓柱的體積》數(shù)學(xué)教案12-17

數(shù)學(xué)圓柱的體積教案15篇02-10

數(shù)學(xué)教案:圓柱的體積(11篇)02-11

數(shù)學(xué)教案:圓柱的體積11篇02-11

圓柱的體積說課稿05-09

《圓柱的體積》說課稿01-16

圓柱的體積說課稿11-05