天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>函數(shù)數(shù)學(xué)教案

函數(shù)數(shù)學(xué)教案

時(shí)間:2023-09-20 06:58:38 數(shù)學(xué)教案 我要投稿

函數(shù)數(shù)學(xué)教案

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,就有可能用到教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。來(lái)參考自己需要的教案吧!下面是小編為大家收集的函數(shù)數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

函數(shù)數(shù)學(xué)教案

函數(shù)數(shù)學(xué)教案1

  學(xué)習(xí)目標(biāo):

  (1)理解函數(shù)的概念

  (2)會(huì)用集合與對(duì)應(yīng)語(yǔ)言來(lái)刻畫(huà)函數(shù),

  (3)了解構(gòu)成函數(shù)的要素。

  重點(diǎn):

  函數(shù)概念的理解

  難點(diǎn)

  函數(shù)符號(hào)y=f(x)的理解

  知識(shí)梳理:

  自學(xué)課本P29—P31,填充以下空格。

  1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。

  2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫(xiě)為 。

  3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要

  。

  4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):

 、 ;② 。

  5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a

  (1)滿(mǎn)足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。

  (2)滿(mǎn)足不等式a

  (3)滿(mǎn)足不等式 或 的實(shí)數(shù)x的集合叫做半開(kāi)半閉區(qū)間,分別表示為 ;

  分別滿(mǎn)足x≥a,x>a,x≤a,x

  其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。

  完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。

  例題解析

  題型一:函數(shù)的概念

  例1:下圖中可表示函數(shù)y=f(x)的'圖像的只可能是( )

  練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。

  題型二:相同函數(shù)的判斷問(wèn)題

  例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

 、 與 其中表示同一函數(shù)的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數(shù)的定義域和值域問(wèn)題

  例3:求函數(shù)f(x)= 的定義域

  練習(xí):課本P33練習(xí)A組 4.

  例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

  當(dāng)堂檢測(cè)

  1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( A )

  A、 B、

  C、 D、

  2、已知函數(shù) 滿(mǎn)足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個(gè)命題:

  ① 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;

 、 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;

 、 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

 、 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.

  其中正確的有( B )

  A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)

  4、下列函數(shù)完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )

  6、設(shè) ,則 等于 ( D )

  A. B. C. 1 D.0

  7、已知函數(shù) ,求 的值.( )

函數(shù)數(shù)學(xué)教案2

  I.定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的`互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

函數(shù)數(shù)學(xué)教案3

  一、知識(shí)與技能

  1. 會(huì)用三角函數(shù)線(xiàn)分別表示任意角的正弦、余弦、正切函數(shù)值

  2.借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;

  3.能利用三角函數(shù)線(xiàn)解決一些簡(jiǎn)單的三角函數(shù)問(wèn)題

  二、過(guò)程與方法

  1.借助幾何畫(huà)板讓學(xué)生經(jīng)歷概念的形成過(guò)程,提高學(xué)生觀察、發(fā)現(xiàn)、類(lèi)比、猜想和實(shí)驗(yàn)探索的能力;

  2.讓學(xué)生從所學(xué)知識(shí)基礎(chǔ)上發(fā)現(xiàn)新問(wèn)題,并加以解決,提高學(xué)生抽象概括、分析歸納、數(shù)學(xué)表述等基本數(shù)學(xué)思維能力.

  三、情感、態(tài)度與價(jià)值觀

  1.通過(guò)學(xué)生之間、師生之間的交流合作,實(shí)現(xiàn)共同探究獲取知識(shí).

  2.通過(guò)三角函數(shù)線(xiàn)學(xué)習(xí),使學(xué)生進(jìn)一步加深對(duì)數(shù)形結(jié)合思想的理解,培養(yǎng)良好的'思維習(xí)慣,拓展思維空間

  教學(xué)重點(diǎn):三角函數(shù)線(xiàn)的作法及其簡(jiǎn)單應(yīng)用

  教學(xué)難點(diǎn):利用與單位圓有關(guān)的有向線(xiàn)段,將任意角的正弦、余弦、正切函數(shù)值分別用它們的幾何形式表示出來(lái).

函數(shù)數(shù)學(xué)教案4

  一、教學(xué)目的

  1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。

  2、使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):

  1、理解與認(rèn)識(shí)函數(shù)圖象的意義。

  2、培養(yǎng)學(xué)生的看圖、識(shí)圖能力。

  難點(diǎn):在畫(huà)圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1、函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法。)

  2、結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?

  3、說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:

  新課

  1、畫(huà)函數(shù)圖象的方法是描點(diǎn)法。其步驟:

 。1)列表。要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值。什么叫“適當(dāng)”?這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn)。比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了。

  一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái)。

  (2)描點(diǎn)。我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn)。

 。3)用光滑曲線(xiàn)連線(xiàn)。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線(xiàn)。

  一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(xiàn)(或直線(xiàn))。

  2、講解畫(huà)函數(shù)圖象的三個(gè)步驟和例。畫(huà)出函數(shù)y=x+0。5的圖象。

  小結(jié)

  本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖。

  練習(xí)

 、龠x用課本練習(xí)

  (前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線(xiàn))

  ②補(bǔ)充題:畫(huà)出函數(shù)y=5x-2的.圖象。

  作業(yè):選用課本習(xí)題。

  四、教學(xué)注意問(wèn)題

  1、注意滲透數(shù)形結(jié)合思想。通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí)。把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征。

  2、注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性。

  3、認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力。

函數(shù)數(shù)學(xué)教案5

  一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析

  普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點(diǎn),正是在這種建立和運(yùn)用函數(shù)模型的大背景下展開(kāi)的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點(diǎn)的定義和函數(shù)零點(diǎn)存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時(shí)也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見(jiàn),它起著承上啟下的作用,與整章、整冊(cè)綜合成一個(gè)整體,學(xué)好本節(jié)意義重大。

  函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識(shí)具有廣泛的聯(lián)系,而函數(shù)的零點(diǎn)就是其中的一個(gè)鏈結(jié)點(diǎn),它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點(diǎn)來(lái)研究方程,就是將局部放入整體中研究,進(jìn)而對(duì)整體和局部都有一個(gè)更深層次的理解,并學(xué)會(huì)用聯(lián)系的觀點(diǎn)解決問(wèn)題,為后面函數(shù)與不等式和數(shù)列等其他知識(shí)的聯(lián)系奠定基礎(chǔ)。

  二、教學(xué)目標(biāo)分析

  本節(jié)內(nèi)容包含三大知識(shí)點(diǎn):

  一、函數(shù)零點(diǎn)的定義;

  二、方程的根與函數(shù)零點(diǎn)的等價(jià)關(guān)系;

  三、零點(diǎn)存在性定理。

  結(jié)合本節(jié)課引入三大知識(shí)點(diǎn)的方法,設(shè)定本節(jié)課的知識(shí)與技能目標(biāo)如下:

  1.結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;

  2.結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;

  3.結(jié)合幾類(lèi)基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法.

  本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識(shí)的基礎(chǔ)上,通過(guò)對(duì)特殊函數(shù)圖象的分析進(jìn)行展開(kāi)的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。

  結(jié)合本節(jié)課教學(xué)主線(xiàn)的設(shè)計(jì),設(shè)定本節(jié)課的過(guò)程與方法目標(biāo)如下:

  1.通過(guò)化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),尋求解決棘手問(wèn)題方法的習(xí)慣;

  2.通過(guò)數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí);

  3.通過(guò)習(xí)題與探究知識(shí)的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法;

  4.通過(guò)對(duì)函數(shù)與方程思想的不斷剖析,促進(jìn)學(xué)生對(duì)知識(shí)靈活應(yīng)用的能力。

  由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的'情感、態(tài)度與價(jià)值觀目標(biāo)如下:

  1.讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問(wèn)題時(shí)的意義與價(jià)值;

  2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣。

  3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂(lè)趣與成功感。

  三、教學(xué)問(wèn)題診斷

  學(xué)生具備的認(rèn)知基礎(chǔ):

  1.基本初等函數(shù)的圖象和性質(zhì);

  2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;

  3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識(shí)。

  學(xué)生欠缺的實(shí)際能力:

  1.主動(dòng)應(yīng)用數(shù)形結(jié)合思想解決問(wèn)題的意識(shí)還不強(qiáng);

  2.將未知問(wèn)題已知化,將復(fù)雜問(wèn)題簡(jiǎn)單化的化歸意識(shí)淡薄;

  3.從直觀到抽象的概括總結(jié)能力還不夠;

  4.概念的內(nèi)涵與外延的探究意識(shí)有待提高。

  對(duì)本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來(lái)引入函數(shù)零點(diǎn)的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡(jiǎn)單的函數(shù)零點(diǎn),再來(lái)理解其他復(fù)雜的函數(shù)零點(diǎn)就會(huì)容易一些。但學(xué)生對(duì)如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過(guò)程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對(duì)零點(diǎn)的理解也只會(huì)浮于表面,也無(wú)法使其體會(huì)引入函數(shù)零點(diǎn)的必要性,理解不了方程根存在的本質(zhì)原因是零點(diǎn)的存在。

  教材是通過(guò)由直觀到抽象的過(guò)程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件的,如果不能有效地對(duì)該過(guò)程進(jìn)行引導(dǎo),容易出現(xiàn)學(xué)生被動(dòng)接受,盲目記憶的結(jié)果,而喪失了對(duì)學(xué)生應(yīng)用數(shù)學(xué)思想方法的意識(shí)進(jìn)行培養(yǎng)的機(jī)會(huì)。

  教材中零點(diǎn)存在性定理只表述了存在零點(diǎn)的條件,但對(duì)存在零點(diǎn)的個(gè)數(shù)并未多做說(shuō)明,這就要求教師對(duì)該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學(xué)生探究出只存在一個(gè)零點(diǎn)的條件,否則學(xué)生對(duì)定理的內(nèi)容很容易心存疑慮。

  四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析

  本節(jié)課教法的幾大特點(diǎn)總結(jié)如下:

  1.以問(wèn)題為主線(xiàn)貫穿始終;

  2.精心設(shè)置引導(dǎo)性的語(yǔ)言放手讓學(xué)生探究;

  3.注重在引導(dǎo)學(xué)生探究問(wèn)題解法的過(guò)程中滲透數(shù)學(xué)思想;

  4.在探究過(guò)程中引入新知識(shí)點(diǎn),在引入新知識(shí)點(diǎn)后適時(shí)歸納總結(jié),進(jìn)行探究階段性成果的應(yīng)用。

  由于所設(shè)置的主線(xiàn)問(wèn)題具有很高的探究?jī)r(jià)值,所以預(yù)期學(xué)生熱情會(huì)很高,積極性調(diào)動(dòng)起來(lái),那整節(jié)課才能活起來(lái);

  由于為了更好地組織學(xué)生探究所設(shè)置的引導(dǎo)性語(yǔ)言,重在去挖掘?qū)W生內(nèi)心真實(shí)的想法和他們最真實(shí)體會(huì)到的困難,所以通過(guò)學(xué)生活動(dòng)會(huì)更多地暴露他們?cè)诨A(chǔ)知識(shí)掌握方面的缺憾,免不了要隨時(shí)糾正對(duì)過(guò)往知識(shí)的錯(cuò)誤理解;

  因?yàn)樵谔骄窟^(guò)程中不斷滲透數(shù)學(xué)思想,學(xué)生對(duì)親身經(jīng)歷的解題方法就會(huì)有更深的體會(huì),主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí)在上升,對(duì)于主線(xiàn)問(wèn)題也應(yīng)該可以迎刃而解;

  因?yàn)樵谔骄窟^(guò)程中引入新知識(shí)點(diǎn),學(xué)生對(duì)新知識(shí)產(chǎn)生的必要性會(huì)有更深刻的體會(huì)和認(rèn)識(shí),同時(shí)在新知識(shí)產(chǎn)生后,又適時(shí)地加以應(yīng)用,學(xué)生對(duì)新知識(shí)的應(yīng)用能力不斷提高。

函數(shù)數(shù)學(xué)教案6

  教學(xué)目標(biāo):

 、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。

 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。

  ③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想的滲透,提高解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):

  對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  教學(xué)過(guò)程設(shè)計(jì):

  ⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

  ⒉開(kāi)始正課

  1 比較數(shù)的大小

  例 1 比較下列各組數(shù)的大小。

 、舕oga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logл0.5 ,lnл

  師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

  生:這兩個(gè)對(duì)數(shù)底相等。

  師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大?

  生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

  師:對(duì),請(qǐng)敘述一下這道題的.解題過(guò)程。

  生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0

  調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

  增,所以loga5.1

  板書(shū):

  解:。┊(dāng)0

  ∵5.1<5.9 loga5.1="">loga5.9

 、ⅲ┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

  ∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

  生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

  師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大?

  生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,

  log0.50.6<1,所以logл0.5< log0.50.6< lnл。

  板書(shū):略。

  師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函

  數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)

  函數(shù)圖象的位置關(guān)系來(lái)比大小。

  2 函數(shù)的定義域, 值 域及單調(diào)性。

  例 2 ⑴求函數(shù)y=的定義域。

 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3)

  師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要

  使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,

  被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于

  零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求

  它們共同作用的結(jié)果。)

  生:分母2x-1≠0且偶次根式的被開(kāi)方式log0.8x-1≥0,且真數(shù)x>0。

  板書(shū):

  解:∵ 2x-1≠0 x≠0.5

  log0.8x-1≥0 , x≤0.8

  x>0 x>0

  ∴x(0,0.5)∪(0.5,0.8〕

  師:接下來(lái)我們一起來(lái)解這個(gè)不等式。

  分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,

  再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。

  師:請(qǐng)你寫(xiě)一下這道題的解題過(guò)程。

  生:<板書(shū)>

  解: x2+2x-3>0 x<-3 x="">1

  (3x+3)>0 , x>-1

  x2+2x-3<(3x+3) -2

  不等式的解為:1

  例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。

 、舮=log0.5(x- x2)

  ⑵y=loga(x2+2x-3)(a>0,a≠1)

  師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。

  下面請(qǐng)同學(xué)們來(lái)解⑴。

  生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。

函數(shù)數(shù)學(xué)教案7

  二次函數(shù)的性質(zhì)與圖像

  【學(xué)習(xí)目標(biāo)】

  1、使學(xué)生掌握研究二次函數(shù)的一般方法——配方法;

  2、應(yīng)“描點(diǎn)法”畫(huà)出二次函數(shù) ( 的圖像,通過(guò)圖像總結(jié)二次函數(shù)的性質(zhì);

  3、通過(guò)研究二次函數(shù)和圖像的性質(zhì),能進(jìn)一步體會(huì)研究一般函數(shù)的方法,能由特殊到一般地研究問(wèn)題。

  【自主學(xué)習(xí)】

  二次函數(shù)的性質(zhì)與圖像

  1)定義:函數(shù) 叫二次函數(shù),它的定義域是 。特別地,當(dāng) 時(shí),二次函數(shù)變?yōu)?( 。

  2)函數(shù) 的圖像和性質(zhì):

 。1)函數(shù) 的圖像是一條頂點(diǎn)為原點(diǎn)的拋物線(xiàn),當(dāng) 時(shí),拋物線(xiàn)開(kāi)口 ,當(dāng) 時(shí),拋物線(xiàn)開(kāi)口 。

 。2)函數(shù) 為 (填“奇函數(shù)”或“偶函數(shù)”)。

 。3)函數(shù) 的圖像的對(duì)稱(chēng)軸為 。

  3)二次函數(shù) 的性質(zhì)

  (1)函數(shù)的圖像是 ,拋物線(xiàn)的頂點(diǎn)坐標(biāo)是 ,拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn) 。

  (2)當(dāng) 時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在 處取得最小值 ;在區(qū)間 上是減函數(shù),在 上是增函數(shù)。

 。3)當(dāng) 時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在 處取得最大值 ;在區(qū)間 上是增函數(shù),在 上是減函數(shù)。

  跟蹤1、試述二次函數(shù) 的性質(zhì),并作出它的圖像。

  跟蹤2、研討二次函數(shù) 的性質(zhì)和圖像。

  跟蹤3、求函數(shù) 的值域和它的圖像的`對(duì)稱(chēng)軸,并說(shuō)出它在那個(gè)區(qū)間上是增函數(shù)?在那個(gè)區(qū)間上是減函數(shù)?

  跟蹤4、課本P60練習(xí)B

  1、

  【歸納總結(jié)】

  研究二次函數(shù)的圖像與性質(zhì)的思路是什么?

  函數(shù)二次函數(shù) (a、b、c是常數(shù),a≠0)

  圖像a>0 a<0

  性質(zhì)

  【典例示范】

  例1:將函數(shù) 配方,確定其對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo),求出 它的單調(diào)區(qū)間及最大值或最小值,并畫(huà)出它的圖像。

  例2:二次函數(shù) 與 的圖像開(kāi)口大小相同,開(kāi)口方向也相同。已知函數(shù) 的解析式和 的頂點(diǎn),寫(xiě)出符合下列條件的函數(shù) 的解析式。

  (1)函數(shù) , 的圖像的頂點(diǎn)是(4, );

 。2)函數(shù) , 圖像的頂點(diǎn)是 。

函數(shù)數(shù)學(xué)教案8

  1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。

 。1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。

 。2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。

  2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類(lèi)討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。

  3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱(chēng)美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

  高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教材分析

 。1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。

  (2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的.定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。

 。3) 本節(jié)課的主線(xiàn)是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線(xiàn)展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。

  高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教法建議

 。1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

  (2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線(xiàn)引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。

函數(shù)數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

  重 點(diǎn)

  函數(shù)單調(diào)性的證明及判斷。

  難 點(diǎn)

  函數(shù)單調(diào)性證明及其應(yīng)用。

  一、復(fù)習(xí)引入

  1、函數(shù)的定義域、值域、圖象、表示方法

  2、函數(shù)單調(diào)性

  (1)單調(diào)增函數(shù)

  (2)單調(diào)減函數(shù)

  (3)單調(diào)區(qū)間

  二、例題分析

  例1、畫(huà)出下列函數(shù)圖象,并寫(xiě)出單調(diào)區(qū)間:

  (1) (2) (2)

  例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。

  例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論

  變(2)討論函數(shù) 的單調(diào)性,并證明你的'結(jié)論。

  例4、試判斷函數(shù) 在 上的單調(diào)性。

  三、隨堂練習(xí)

  1、判斷下列說(shuō)法正確的是 。

  (1)若定義在 上的函數(shù) 滿(mǎn)足 ,則函數(shù) 是 上的單調(diào)增函數(shù);

  (2)若定義在 上的函數(shù) 滿(mǎn)足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);

  (3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);

  (4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。

  2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點(diǎn) 在直角坐標(biāo)平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。

  3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。

  4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。

  四、回顧小結(jié)

  1、函數(shù)單調(diào)性的判斷及證明。

  課后作業(yè)

  一、基礎(chǔ)題

  1、求下列函數(shù)的單調(diào)區(qū)間

  (1) (2)

  2、畫(huà)函數(shù) 的圖象,并寫(xiě)出單調(diào)區(qū)間。

  二、提高題

  3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。

  4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。

  5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。

  三、能力題

  6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

函數(shù)數(shù)學(xué)教案10

  教學(xué)設(shè)計(jì)思路

  由對(duì)現(xiàn)實(shí)問(wèn)題的討論抽象出反比例函數(shù)的概念,通過(guò)對(duì)問(wèn)題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。

  2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,表述反比例函數(shù)的概念。

  過(guò)程與方法

  1.經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點(diǎn)。

  2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識(shí)。

  情感態(tài)度與價(jià)值觀

  1.認(rèn)識(shí)到數(shù)學(xué)知識(shí)是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的'系統(tǒng)性;

  2.通過(guò)分組討論,培養(yǎng)合作交流意識(shí)和探索精神。

  教學(xué)重點(diǎn)和難點(diǎn)

  理解和領(lǐng)會(huì)反比例函數(shù)的概念。

  教學(xué)難點(diǎn)

  領(lǐng)悟反比例函數(shù)的概念。

  教學(xué)方法

  啟發(fā)引導(dǎo)、分組討論

  課時(shí)安排

  1課時(shí)

  教學(xué)媒體

  課件

  教學(xué)過(guò)程設(shè)計(jì)

  復(fù)習(xí)引入

  1.什么叫一次函數(shù)?一次函數(shù)的一般形式是怎樣的?什么叫正比例函數(shù)?它與算術(shù)中的正比例有怎樣的關(guān)系?

  2.在上一學(xué)段,我們研究了現(xiàn)實(shí)生活中成反比例的兩個(gè)量

函數(shù)數(shù)學(xué)教案11

  教學(xué)目標(biāo):

 、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。

 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。

 、圩⒅睾瘮(shù)思想、等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想的滲透,提高

  解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  教學(xué)過(guò)程設(shè)計(jì):

  ⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

 、查_(kāi)始正課

  1比較數(shù)的大小

  例1比較下列各組數(shù)的大小。

 、舕oga5.1,loga5.9 (a>0,a≠1)

 、苐og0.50.6,logЛ0.5,lnЛ

  師:請(qǐng)同學(xué)們觀察一下

  ⑴中這兩個(gè)對(duì)數(shù)有何特征?

  生:這兩個(gè)對(duì)數(shù)底相等。

  師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大。

  生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

  師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

  生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0調(diào)遞減,所以loga5.1>loga5.9;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1

  板書(shū):

  解:

 、瘢┊(dāng)0∵5.1<5.9 1="">loga5.9

 、颍┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請(qǐng)同學(xué)們觀察一下

  ⑵中這三個(gè)對(duì)數(shù)有何特征?

  生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

  師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大。

  生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書(shū):略。

  師:比較對(duì)數(shù)值的大小常用方法:

 、贅(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù)的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)函數(shù)圖象的位置關(guān)系來(lái)比大小。

  2函數(shù)的定義域,值域及單調(diào)性。

  例2 ⑴求函數(shù)y=的定義域。

 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3)

  師:如何來(lái)求

 、胖泻瘮(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的`形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)

  生:分母2x-1≠0且偶次根式的被開(kāi)方式log0.8x-1≥0,且真數(shù)x>0。

  板書(shū):

  解:∵ 2x-1≠0 x≠0.5

  log0.8x-1≥0,x≤0.8

  x>0 x>0

  ∴x(0,0.5)∪(0.5,0.8〕

  師:接下來(lái)我們一起來(lái)解這個(gè)不等式。

  分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。

  師:請(qǐng)你寫(xiě)一下這道題的解題過(guò)程。

  生:<板書(shū)>

  解:x2+2x-3>0 x<-3 x="">1

  (3x+3)>0,x>-1

  x2+2x-3<(3x+3) -2

  不等式的解為:1

  ⒊小結(jié)

  這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問(wèn)題,希望能通過(guò)這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想加以應(yīng)用,提高解題能力。

  ⒋作業(yè)

 、沤獠坏仁

 、賚g(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

 、埔阎瘮(shù)y=loga(x2-2x),(a>0,a≠1)

  ①求它的單調(diào)區(qū)間;

 、诋(dāng)0

 、且阎瘮(shù)y=loga (a>0,b>0,且a≠1)

  ①求它的定義域;

  ②討論它的奇偶性;

 、塾懻撍膯握{(diào)性。

  ⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),①求它的定義域;

 、诋(dāng)x為何值時(shí),函數(shù)值大于1;

  ③討論它的單調(diào)性。

函數(shù)數(shù)學(xué)教案12

  教學(xué)目標(biāo)

  1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.

  2.通過(guò)反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力及抽象概括的能力.

  3.通過(guò)反函數(shù)的學(xué)習(xí),幫助學(xué)生樹(shù)立辨證唯物主義的世界觀.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)是反函數(shù)概念的形成與認(rèn)識(shí).

  難點(diǎn)是掌握求反函數(shù)的方法.

  教學(xué)用具

  投影儀

  教學(xué)方法

  自主學(xué)習(xí)與啟發(fā)結(jié)合法

  教學(xué)過(guò)程

  一. 揭示課題

  今天我們將學(xué)習(xí)函數(shù)中一個(gè)重要的概念----反函數(shù).

  1.4. 反函數(shù)(板書(shū))

  (一)反函數(shù)的概念(板書(shū))

  二.講解新課

  教師首先提出這樣一個(gè)問(wèn)題:在函數(shù) 中,如果把 當(dāng)作因變量,把 當(dāng)作自變量,能否構(gòu)成一個(gè)函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在 的允許取值范圍內(nèi)的任一值,按照法則 都有唯一的 與之相對(duì)應(yīng).(還可以讓學(xué)生畫(huà)出函數(shù)的圖象,從形的角度解釋“任一 對(duì)唯一 ”)

  學(xué)生解釋后教師指出不管從哪個(gè)角度,它都是一個(gè)函數(shù),即 有反函數(shù),而且把這個(gè)函數(shù)稱(chēng)為 的反函數(shù).那么這個(gè)反函數(shù)的解析式是什么呢?

  由學(xué)生回答出應(yīng)為 .教師再提出 它作為函數(shù)是沒(méi)有問(wèn)題的,但不太符合我們的表示習(xí)慣,按習(xí)慣用 表示自變量,用 表示因變量,故它又可以改寫(xiě)成 ,改動(dòng)之后帶來(lái)一個(gè)新問(wèn)題: 和 是同一函數(shù)嗎?

  由學(xué)生討論,并說(shuō)明理由,要求學(xué)生能從函數(shù)三要素的角度去認(rèn)識(shí),并給出解釋,讓學(xué)生真正承認(rèn)它們是同一函數(shù).并把 叫做 的反函數(shù).繼而再提出: 有反函數(shù)嗎?是哪個(gè)函數(shù)?

  學(xué)生很快會(huì)意識(shí)到 是 的反函數(shù),教師可再引申為 與 是互為反函數(shù)的.然后利用問(wèn)題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請(qǐng)舉出例子.在教師啟發(fā)下學(xué)生可以舉出象 這樣的函數(shù),若將 當(dāng)自變量, 當(dāng)作因變量,在 允許取值范圍內(nèi)一個(gè) 可能對(duì)兩個(gè) (可畫(huà)圖輔助說(shuō)明,當(dāng) 時(shí),對(duì)應(yīng) ),不能構(gòu)成函數(shù),說(shuō)明此函數(shù)沒(méi)有反函數(shù).

  通過(guò)剛才的例子,了解了什么是反函數(shù),把對(duì) 的反函數(shù)的研究過(guò)程一般化,概括起來(lái)就可以得到反函數(shù)的定義,但這個(gè)數(shù)學(xué)的'抽象概括,要求比較高,因此我們一起閱讀書(shū)上相關(guān)的內(nèi)容.

  1. 反函數(shù)的定義:(板書(shū))(用投影儀打出反函數(shù)的定義)

  為了幫助學(xué)生理解,還可以把定義中的 換成某個(gè)具體簡(jiǎn)單的函數(shù)如 解釋每一步驟,如得 ,再判斷它是個(gè)函數(shù),最后改寫(xiě)為 .給出定義后,再對(duì)概念作點(diǎn)深入研究.

  2.對(duì)概念得理解(板書(shū))

  教師先提出問(wèn)題:反函數(shù)的“反”字應(yīng)當(dāng)是相對(duì)原來(lái)給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以 與 為例來(lái)說(shuō))

  學(xué)生很容易先想到對(duì)應(yīng)法則是“反”過(guò)來(lái)的,把 與 的位置換位了,教師再追問(wèn)它們的互換還會(huì)帶來(lái)什么變化?啟發(fā)學(xué)生找出另兩個(gè)要素之間的關(guān)系.最后得出結(jié)論: 的定義域和值域分別由 的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來(lái)函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡(jiǎn)記為“三定”.

  (1)“三定”(板書(shū))

  然后要求學(xué)生把剛才的三定具體化,也就是“反”字的具體體現(xiàn).由學(xué)生一一說(shuō)出反函數(shù)的定義域是原來(lái)函數(shù)的值域,反函數(shù)的值域是原來(lái)函數(shù)的定義域,反函數(shù)的對(duì)應(yīng)法則就是把原來(lái)函數(shù)對(duì)應(yīng)法則中 與 的位置互換.(用投影儀打出互換過(guò)程)如圖

  最后教師進(jìn)一步明確“反”實(shí)際體現(xiàn)為“三反”, “三反”中起決定作用的是 與 的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.

  (2)“三反”(板書(shū))

  此時(shí)教師可把問(wèn)題再次引向深入,提出:如果一個(gè)函數(shù)存在反函數(shù),應(yīng)怎樣求這個(gè)反函數(shù)呢?下面我給出兩個(gè)函數(shù),請(qǐng)同學(xué)們根據(jù)自己對(duì)概念的理解來(lái)求一下它們的反函數(shù).

  例1. 求 的反函數(shù).(板書(shū))

  (由學(xué)生說(shuō)求解過(guò)程,有錯(cuò)或不規(guī)范之處,暫時(shí)不追究,待例2解完之后再一起講評(píng))

  解:由 得 , 所求反函數(shù)為 .(板書(shū))

  例2. 求 , 的反函數(shù).(板書(shū))

  解:由 得 ,又 得 ,

  故所求反函數(shù)為 .(板書(shū))

  求完后教師請(qǐng)同學(xué)們作評(píng)價(jià),學(xué)生之間可以討論,充分暴露表述中得問(wèn)題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見(jiàn),指出例2中問(wèn)題,結(jié)果應(yīng)為 , .

  教師可先明知故問(wèn) ,與 , 有什么不同?讓學(xué)生明確指出兩個(gè)函數(shù)定義域分別是 和 ,所以它們是不同的函數(shù).再追問(wèn) 從何而來(lái)呢?讓學(xué)生能從三定和三反中找出理由,是從原來(lái)函數(shù)的值域而來(lái).

  在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來(lái)函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿(mǎn)足的條件,所以求反函數(shù),就必須先求出原來(lái)函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過(guò)程.

  解: 由 得 ,又 得 ,

  又 的值域是 ,

  故所求反函數(shù)為 , .

  (可能有的學(xué)生會(huì)提出例1中為什么不求原來(lái)函數(shù)的值域的問(wèn)題,此時(shí)不妨讓學(xué)生去具體算一算,會(huì)發(fā)現(xiàn)原來(lái)函數(shù)的值域域求出的函數(shù)解析式中所求定義域時(shí)一致的,所以使得最后結(jié)果沒(méi)有出錯(cuò).但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過(guò)程要求大家一定先求原來(lái)函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時(shí)讓學(xué)生調(diào)整例的表述,將過(guò)程補(bǔ)充完整)

  最后讓學(xué)生一起概括求反函數(shù)的步驟.

  3.求反函數(shù)的步驟(板書(shū))

  (1) 反解:

  (2) 互換

  (3) 改寫(xiě):

  對(duì)以上環(huán)節(jié)教師可稍作解釋,然后提出再通過(guò)下面的練習(xí)來(lái)檢驗(yàn)是否真正理解了.

  三.鞏固練習(xí)

  練習(xí):求下列函數(shù)的反函數(shù).

  (1) (2) .(由兩名學(xué)生上黑板寫(xiě))

  解答過(guò)程略.

  教師可針對(duì)學(xué)生解答中出現(xiàn)的問(wèn)題,進(jìn)行講評(píng).(如正負(fù)的選取,值域的計(jì)算,符號(hào)的使用)

  四.小結(jié)

  1. 對(duì)反函數(shù)概念的認(rèn)識(shí):

  2. 求反函數(shù)的基本步驟:

  五.作業(yè)

  課本第68頁(yè)習(xí)題2.4第1題中4,6,8,第2題.

  六.板書(shū)設(shè)計(jì)

  2.4反函數(shù) 例1. 練習(xí).

  一. 反函數(shù)的概念 (1) (2)

  1. 定義

  2. 對(duì)概念的理解 例2.

  (1) 三定(2)三反

  3. 求反函數(shù)的步驟

  (1)反解(2)互換(3)改寫(xiě)

函數(shù)數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.

  2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.

  教學(xué)重點(diǎn):

  對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.

  教學(xué)難點(diǎn):

  對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).

  2.回答下列問(wèn)題.

  (1)函數(shù)y=log2x的值域是 ;

  (2)函數(shù)y=log2x(x≥1)的值域是 ;

  (3)函數(shù)y=log2x(0

  3.情境問(wèn)題.

  函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

  二、學(xué)生活動(dòng)

  探究完成情境問(wèn)題.

  三、數(shù)學(xué)運(yùn)用

  例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.

  練習(xí):

  (1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.

  (2)函數(shù) ,x(0,8]的值域是 .

  (3)函數(shù)y=log (x2-6x+17)的值域 .

  (4)函數(shù) 的值域是_______________.

  例2 判斷下列函數(shù)的奇偶性:

  (1)f (x)=lg (2)f (x)=ln( -x)

  例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.

  例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).

  (1)求函數(shù)的定義域與值域;

  (2)求函數(shù)的單調(diào)區(qū)間.

  練習(xí):

  1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的`有 (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).

  2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱(chēng).

  3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),那么實(shí)數(shù)m= .

  4.求函數(shù) ,其中x [ ,9]的值域.

  四、要點(diǎn)歸納與方法小結(jié)

  (1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;

  (2)換元法;

  (3)能畫(huà)出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).

  五、作業(yè)

  課本P70~71-4,5,10,11.

函數(shù)數(shù)學(xué)教案14

  課型:

  復(fù)習(xí)課

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1. 針對(duì)函數(shù)及其圖象一章,查漏補(bǔ)缺,答疑解惑;

  2. 一次函數(shù)應(yīng)用的復(fù)習(xí).

  補(bǔ)充例題:

  例1.如圖,lA lB分別表示A步行與B騎車(chē)在同一路上行駛的路程S與時(shí)間t的關(guān)系

  (1)B出發(fā)時(shí)與A相距 千米;

  (2)走了一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí);

  (3)B出發(fā)后 小時(shí)與A相遇;

  (4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式;

  (5)若B的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米,在圖中表示出這個(gè)相遇點(diǎn)C.

  例2.在平面直角坐標(biāo)系中,過(guò)一點(diǎn)分別作坐標(biāo)軸的垂線(xiàn),若與坐標(biāo)軸圍成矩形的周長(zhǎng)與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過(guò)點(diǎn)P分別作x軸, y的垂線(xiàn),與坐標(biāo)軸圍成矩形OAPB的周長(zhǎng)與面積相等,則點(diǎn)P是和諧點(diǎn).

  (1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說(shuō)明理由;

  (2)若和諧點(diǎn)P(a,3)在直線(xiàn)y=-x+b(b為常數(shù))上,求點(diǎn)a, b的值.

  例3.在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的.正方形邊線(xiàn)(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間 (秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的函數(shù)圖象的一部分.

  (1)求s與t之間的函數(shù)關(guān)系式.

  (2)與圖③相對(duì)應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是: ;P點(diǎn)出發(fā) 秒首次到達(dá)點(diǎn)B;

  (3)寫(xiě)出當(dāng)38時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

  課后續(xù)助:

  1.某市自來(lái)水公司為限制單位用水,每月只給某單位計(jì)劃內(nèi)用水3000噸,計(jì)劃內(nèi)用水每噸收費(fèi)0.5元,超計(jì)劃部分每噸按0.8元收費(fèi).

  (1)寫(xiě)出該單位水費(fèi)y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

 、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .

  (2)某月該單位用水3200噸,水費(fèi)是 元;若用水2800噸,水費(fèi) 元.

  (3)若某月該單位繳納水費(fèi)1540元,則該單位用水多少?lài)?

  2.某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶(hù)選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

  (1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;

  (2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;

  (3)請(qǐng)你根據(jù)用戶(hù)通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

  3.某氣象研究中心觀測(cè)一場(chǎng)沙塵暴從發(fā)生到結(jié)束全過(guò)程, 開(kāi)始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過(guò)開(kāi)闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止。 結(jié)合風(fēng)速與時(shí)間的圖像,回答下列問(wèn)題:

  (1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;

  (2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過(guò)多少小時(shí)?

  (3)求出當(dāng)x25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.

  (4)若風(fēng)速達(dá)到或超過(guò)20千米/時(shí),稱(chēng)為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長(zhǎng)時(shí)間?

函數(shù)數(shù)學(xué)教案15

  一、教學(xué)目的

  1.使學(xué)生初步理解二次函數(shù)的概念。

  2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)二次函數(shù)y=ax2的圖象。

  3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線(xiàn)及其有關(guān)的概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):對(duì)二次函數(shù)概念的初步理解。

  難點(diǎn):會(huì)用描點(diǎn)法畫(huà)二次函數(shù)y=ax2的圖象。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

 。1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。

  2.什么是一無(wú)二次方程?

  3.怎樣用找點(diǎn)法畫(huà)函數(shù)的圖象?

  新課

  1.由具體問(wèn)題引出二次函數(shù)的定義。

 。1)已知圓的面積是Scm2,圓的半徑是Rcm,寫(xiě)出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

 。2)已知一個(gè)矩形的周長(zhǎng)是60m,一邊長(zhǎng)是Lm,寫(xiě)出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長(zhǎng)L之間的`函數(shù)關(guān)系式。

 。3)農(nóng)機(jī)廠(chǎng)第一個(gè)月水泵的產(chǎn)量為50臺(tái),第三個(gè)月的產(chǎn)量y(臺(tái))與月平均增長(zhǎng)率x之間的函數(shù)關(guān)系如何表示?

  解:(1)函數(shù)解析式是S=πR2;

 。2)函數(shù)析式是S=30L—L2;

 。3)函數(shù)解析式是y=50(1+x)2,即

  y=50x2+100x+50。

  由以上三例啟發(fā)學(xué)生歸納出:

 。1)函數(shù)解析式均為整式;

 。2)處變量的最高次數(shù)是2。

  我們說(shuō)三個(gè)式子都表示的是二次函數(shù)。

  一般地,如果y=ax2+bx+c(a,b,c沒(méi)有限制而a≠0),那么y叫做x的二次函數(shù),請(qǐng)注意這里b,c沒(méi)有限制,而a≠0。

  2.畫(huà)二次函數(shù)y=x2的圖象。

【函數(shù)數(shù)學(xué)教案】相關(guān)文章:

數(shù)學(xué)教案:函數(shù)與方程02-25

函數(shù)的概念的數(shù)學(xué)教案02-07

函數(shù)數(shù)學(xué)教案06-22

高一數(shù)學(xué)教案函數(shù)12-28

函數(shù)的概念的數(shù)學(xué)教案5篇02-07

二次函數(shù)數(shù)學(xué)教案02-07

高一數(shù)學(xué)教案《函數(shù)概念》06-18

高二數(shù)學(xué)教案《函數(shù)單調(diào)性》06-06

函數(shù)解析式的求法數(shù)學(xué)教案06-06