- 相關(guān)推薦
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì)(精選14篇)
作為一位優(yōu)秀的人民教師,常常要寫(xiě)一份優(yōu)秀的教案,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫(xiě)?以下是小編整理的數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì),僅供參考,希望能夠幫助到大家。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 1
教學(xué)目標(biāo)
1、知識(shí)目標(biāo):借助生活中的實(shí)例理解有理數(shù)的意義,體會(huì)負(fù)數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會(huì)判斷一個(gè)數(shù)是正數(shù)還是負(fù)數(shù)。
2、能力目標(biāo):能應(yīng)用正負(fù)數(shù)表示生活中具有相反意義的量。
3、情感態(tài)度:讓學(xué)生了解有關(guān)負(fù)數(shù)的歷史、體會(huì)負(fù)數(shù)與實(shí)際生活的聯(lián)系。
教學(xué)重難點(diǎn)
重點(diǎn):理解有理數(shù)的意義。
難點(diǎn):能用正負(fù)數(shù)表示生活中具有相反意義的量。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境、提出問(wèn)題
某班舉行知識(shí)競(jìng)賽,評(píng)分標(biāo)準(zhǔn)是:答對(duì)一題加1分,答錯(cuò)一題扣1分,不回答得0分;每個(gè)隊(duì)的基礎(chǔ)分均為0分。兩個(gè)隊(duì)答題情況見(jiàn)書(shū)上第23頁(yè)。
二、分析探索、問(wèn)題解決
分組討論扣的分怎樣表示?
用前面學(xué)的數(shù)能表示嗎?
數(shù)怎么不夠用了?
引出課題。
講授正數(shù)、負(fù)數(shù)、有理數(shù)的定義。
用負(fù)數(shù)表示比“0”低的數(shù),如:-10,讀作負(fù)10,表示比0低10分的數(shù)。啟發(fā)學(xué)生再?gòu)纳钪欣e出用負(fù)數(shù)表示具有相反意義的數(shù)。
三、鞏固練習(xí)
1、用正數(shù)或負(fù)數(shù)表示下列各題中的.數(shù)量:
(1)如果火車(chē)向東開(kāi)出400千米記作+400千米,那么火車(chē)向西開(kāi)出4000千米,記作______;
。2)球賽時(shí),如果勝2局記作+2,那么-2表示______;
。3)若-4萬(wàn)表示虧損4萬(wàn)元,那么盈余3萬(wàn)元記作______;
(4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作_____。
分析:用正、負(fù)數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負(fù)數(shù)表示;完全相反的兩個(gè)方向,一個(gè)方向定為用正數(shù)表示,則另一個(gè)方向用負(fù)數(shù)表示;如運(yùn)進(jìn)與運(yùn)出,收入與支出,盈利與虧損,買(mǎi)進(jìn)與賣(mài)出,勝與負(fù)等都是具有相反意義的量、
2、下面說(shuō)法中正確的是()。
a、“向東5米”與“向西10米”不是相反意義的量;
b、如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
c、如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;
d、若將高1米設(shè)為標(biāo)準(zhǔn)0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米、
三、小結(jié)回顧、納入體系
學(xué)生交流回顧、討論總結(jié),教師補(bǔ)充如下:
概念:正數(shù)、負(fù)數(shù)、有理數(shù)。
分類(lèi):有理數(shù)的分類(lèi):兩種分法。
應(yīng)用:有理數(shù)可以用來(lái)表示具有相反意義的量。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 2
教學(xué)目標(biāo)
1、會(huì)把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算;
2、會(huì)把省略加號(hào)和括號(hào)的有理數(shù)加減混合運(yùn)算看成幾個(gè)有理數(shù)的加法運(yùn)算;
3、進(jìn)一步感悟“轉(zhuǎn)化”的'思想。
教學(xué)重點(diǎn)
把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算
教學(xué)難點(diǎn)
省略負(fù)數(shù)前面的加號(hào)的有理數(shù)加法,運(yùn)用運(yùn)算律交換加數(shù)位置時(shí),符號(hào)不變
教學(xué)過(guò)程
根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運(yùn)算可以統(tǒng)一為加法運(yùn)算
1、完成下列計(jì)算:
。1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)
歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的加減混合運(yùn)算可以統(tǒng)一為運(yùn)算;
。2)式統(tǒng)一成加法是________________________________;
省略負(fù)數(shù)前面的加號(hào)和()后的形式是______________________;
讀作____________________或_______________________
展示交流
1、把下列運(yùn)算統(tǒng)一成加法運(yùn)算:
。1)(-12)+(-5)-(-8)-(+9)=_____________________________;
。2)(-9)-(+5)-(-15)-(+9)=_____________________________;
。3)2+5-8=_________________________________;
。4)14-(-12)+(-25)-17=_____________________________________
2、將下列有理數(shù)加法運(yùn)算中,加號(hào)省略:
。1)12+(-8)=________________;
。2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)=____________________________
3、將下列運(yùn)算先統(tǒng)一成加法,再省略加號(hào):
。-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________
4、仿照本P37例6,完成下列計(jì)算:
。1)-4-5+6;
(2)-23+41-24+12-46
5、仿照本P38例7,巡道員沿東西方向的鐵路巡視維護(hù),從住地出發(fā),他先向東巡視了6km,休息之后,繼續(xù)向東維護(hù)了4km;然后折返向西巡視了12.5km,此時(shí)他在住地的什么方向?與駐地的距離是多少?
盤(pán)點(diǎn)收獲
個(gè)案補(bǔ)充
課堂反饋
1、計(jì)算:
2、早晨6:00的氣溫為℃,到中午2:00氣溫上升了8℃,到晚上10:00氣溫又下降了9℃、晚上10:00的氣溫是多少?
遷移創(chuàng)新
一架飛機(jī)做特技表演,它起飛后的高度變化情況為:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此時(shí)飛機(jī)比起飛點(diǎn)高了多少千米?
課堂作業(yè)
本P39習(xí)題2。5第6題(1)、(3)、(5),第7題。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 3
教學(xué)目標(biāo)
1、知識(shí)與技能
使學(xué)生經(jīng)歷探索有理數(shù)乘法的交換律、結(jié)合律和分配律,并能靈活運(yùn)用乘法運(yùn)算律進(jìn)行有理數(shù)的乘法運(yùn)算,使之計(jì)算簡(jiǎn)便。
2、過(guò)程與方法
通過(guò)對(duì)問(wèn)題的探索,培養(yǎng)觀察、分析和概括的能力。
3、情感、態(tài)度與價(jià)值觀
能面對(duì)數(shù)學(xué)活動(dòng)中的困難,有學(xué)好數(shù)學(xué)的`自信心。
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):熟練運(yùn)用運(yùn)算律進(jìn)行計(jì)算。
難點(diǎn):靈活運(yùn)用運(yùn)算律。
教與學(xué)互動(dòng)設(shè)計(jì)
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
想一想上一節(jié)課大家一起學(xué)習(xí)了有理數(shù)的乘法運(yùn)算法則,掌握得較好。那在學(xué)習(xí)過(guò)程中,大家有沒(méi)有思考多個(gè)有理數(shù)相乘該如何來(lái)計(jì)算?
做一做(出示膠片)你能運(yùn)算嗎?
(1)234(-5)
(2)23(-4)(-5)
(3)2(-3)(-4)(-5)
(4)(-2)(-3)(-4)(-5)
(5)-1302(-20xx)0
由此我們可總結(jié)得到什么?
(二)合作交流,解讀探究
交流討論不難得到結(jié)論:幾個(gè)不為0的數(shù)乘,積的符號(hào)由負(fù)因數(shù)這個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積為正;負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積為負(fù),并把絕對(duì)值相乘。
注意只要有一個(gè)因數(shù)為0,則積為0。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 4
一、教材分析
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運(yùn)算。它既是有理數(shù)運(yùn)算的深入,又是進(jìn)一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ)。對(duì)后續(xù)知識(shí)的學(xué)習(xí)也是至關(guān)重要的。
二、學(xué)情分析
對(duì)于初一學(xué)生來(lái)說(shuō),他們雖已通過(guò)學(xué)習(xí)有理數(shù)的加減法具備了初步探究問(wèn)題的能力,對(duì)符號(hào)問(wèn)題也有了一定的認(rèn)識(shí),但是對(duì)知識(shí)的主動(dòng)遷移能力還比較弱,因此,只要引導(dǎo)學(xué)生確定了“積”的符號(hào),實(shí)質(zhì)上就是小學(xué)算術(shù)中數(shù)的乘法運(yùn)算了,突破了有理數(shù)乘法的符號(hào)法則這個(gè)難點(diǎn),則對(duì)于有理數(shù)乘法的運(yùn)算學(xué)生就不難掌握了。
三、教學(xué)目標(biāo)(核心素養(yǎng)立意)
1、使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的乘法運(yùn)算。
2、初步培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、和解決問(wèn)題的能力。
3、通過(guò)教學(xué),滲透化歸、分類(lèi)討論等數(shù)學(xué)思想方法,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、傳授知識(shí)的同時(shí),注意培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和勇于探索的精神。
四、教學(xué)重、難點(diǎn)
重點(diǎn):有理數(shù)的乘法法則。
難點(diǎn):有理數(shù)乘法的符號(hào)法則
五、教學(xué)策略
我在本節(jié)課的教學(xué)中采用誘思探究式教學(xué)法,并應(yīng)用多媒體現(xiàn)代教學(xué)手段,以學(xué)生為主體,通過(guò)引導(dǎo)啟發(fā)、自主探究、點(diǎn)撥歸納完成教學(xué)任務(wù),實(shí)現(xiàn)教學(xué)目標(biāo)。
六、教學(xué)過(guò)程(設(shè)計(jì)為七個(gè)環(huán)節(jié))
1、復(fù)習(xí)導(dǎo)入創(chuàng)設(shè)情境
我首先出示幾個(gè)相同負(fù)數(shù)和的計(jì)算題,利用乘法的意義很自然地引出負(fù)數(shù)與正數(shù)相乘的新內(nèi)容,以形成知識(shí)的遷移。進(jìn)而引入本節(jié)課題,以問(wèn)題引領(lǐng)來(lái)激發(fā)學(xué)生求知欲。
2、師生互動(dòng)探究新知
要求學(xué)生自主學(xué)習(xí)課本內(nèi)容,完成課文中的填空。我給與學(xué)生充足的時(shí)間和空間。通過(guò)自主學(xué)習(xí),小組合作,教師點(diǎn)撥引導(dǎo)學(xué)生從有理數(shù)分為正數(shù)、零、負(fù)數(shù)三類(lèi)的角度,區(qū)分出有理數(shù)乘法的情況有五種:(正×正、正×0、正×負(fù)、負(fù)×0、負(fù)×負(fù))引導(dǎo)學(xué)生根據(jù)以上實(shí)例的運(yùn)算結(jié)果,從積的符號(hào)和絕對(duì)值兩方面準(zhǔn)確地歸納出有理數(shù)的乘法的符號(hào)法則和有理數(shù)乘法的運(yùn)算法則。(板書(shū):法則)(確定有理數(shù)乘法運(yùn)算的兩步模型:先定符號(hào),在求絕對(duì)值)
這樣設(shè)計(jì)的目的是
1、構(gòu)造這組有規(guī)律的算式讓學(xué)生通過(guò)觀察,來(lái)發(fā)現(xiàn)算式和結(jié)果在符號(hào)、絕對(duì)值方面的關(guān)系,找到乘法結(jié)果的符號(hào)規(guī)律,突破本節(jié)課的難點(diǎn)。同時(shí)又突出了本節(jié)課的教學(xué)重點(diǎn)。
2、通過(guò)比較、分析、概括、討論、展示,滲透分類(lèi)討論和從特殊歸納一般的數(shù)學(xué)思想和方法,提高學(xué)生整合知識(shí)的'能力。使學(xué)生知道”如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
3、分析法則掌握實(shí)質(zhì)
。ㄓ辛艘陨系恼J(rèn)識(shí))通過(guò)設(shè)置問(wèn)題4,讓學(xué)生帶著以上的結(jié)論,認(rèn)真觀察(—5)×(—3)這個(gè)算式,首先確定積的符號(hào)(同號(hào)得正,先定號(hào)),再確定積的絕對(duì)值(5×3=15,再求值)。第二小題讓學(xué)生仿照第一小題填空、解答,理解法則的實(shí)質(zhì),真正掌握本節(jié)課的重點(diǎn)。這樣設(shè)計(jì)是為了再現(xiàn)知識(shí)的形成過(guò)程,避免單純的記憶,使學(xué)習(xí)過(guò)程成為一種再創(chuàng)造的過(guò)程。
4、解決問(wèn)題綜合運(yùn)用
通過(guò)習(xí)題(小試牛刀)的計(jì)算,既鞏固了有理數(shù)乘法的法則,又明確了倒數(shù)的定義,(板書(shū):倒數(shù)-乘積是1的兩個(gè)數(shù)互為倒數(shù))。在有理數(shù)范圍內(nèi)仍有意義。本環(huán)節(jié)通過(guò)讓學(xué)生獨(dú)立思考、分組討論,完成填空,使學(xué)生有效的鞏固重點(diǎn)化解難點(diǎn)。
5、體驗(yàn)成功享受快樂(lè)
利用摸牌游戲,抓住學(xué)生對(duì)競(jìng)爭(zhēng)充滿(mǎn)興趣的心理特征,激發(fā)學(xué)生的學(xué)習(xí)興趣,用搶答題的形式,使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并讓學(xué)生在搶答中體驗(yàn)成功,享受快樂(lè)。通過(guò)學(xué)生參與活動(dòng),調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。同時(shí)讓學(xué)生通過(guò)本環(huán)節(jié)進(jìn)一步理解有理數(shù)乘法法則,并在實(shí)際問(wèn)題中進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。這也是數(shù)學(xué)核心素養(yǎng)的要求。
6、總結(jié)收獲暢談體會(huì)
在課堂臨近尾聲時(shí),我鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。讓學(xué)生充分發(fā)表自己的感受,并相互補(bǔ)充。及時(shí)有效的回顧小結(jié),進(jìn)一步明確本節(jié)課的主要內(nèi)容、思想和方法。這樣設(shè)計(jì)的目的是培養(yǎng)學(xué)生的歸納能力和語(yǔ)言表達(dá)能力,以及善于反思的好習(xí)慣。讓學(xué)生品嘗收獲的喜悅,堅(jiān)定今后學(xué)習(xí)數(shù)學(xué)的信心。
7、布置作業(yè)鞏固深化
七、課后反思
在課堂教學(xué)過(guò)程中,我始終堅(jiān)持以觀察為起點(diǎn),以問(wèn)題為主線,以能力培養(yǎng)為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循由已知到未知、由淺入深、由易到難的認(rèn)知規(guī)律;采用誘思探究教學(xué)法,把課堂還給學(xué)生,讓他們主動(dòng)去參與,去探究,去分析。通過(guò)創(chuàng)設(shè)、引導(dǎo)、滲透、歸納等活動(dòng)讓學(xué)生在不知不覺(jué)中掌握重點(diǎn),突破難點(diǎn),發(fā)展能力,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。更好的促進(jìn)學(xué)生全面、持續(xù)、和諧的發(fā)展。本節(jié)課的設(shè)計(jì)一定還存在不少的紕漏和缺陷,敬請(qǐng)各位同仁批評(píng)指正。謝謝大家!
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 5
一、學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗(yàn),多數(shù)學(xué)生能在教師指導(dǎo)下探索問(wèn)題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過(guò)程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過(guò)程。
二、課前準(zhǔn)備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個(gè)小組,以便組內(nèi)合作學(xué)習(xí)、組間競(jìng)爭(zhēng)學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。
三、教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、能力與過(guò)程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、情感與態(tài)度目標(biāo)
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。
五、教學(xué)過(guò)程
1、創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫(xiě)出算式嗎?
學(xué)生:
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題(教師板書(shū)課題)
2、小組探索、歸納法則
教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较,向西的方向(yàn)樨?fù)方向。
3、運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本P75例1板書(shū),要求學(xué)生述說(shuō)每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為。
(3)學(xué)生做P76練習(xí)1(1)(3),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。多個(gè)因數(shù)相乘,積的符號(hào)由決定,當(dāng)負(fù)因數(shù)個(gè)數(shù)有,積為;當(dāng)負(fù)因數(shù)個(gè)數(shù)有,積為;只要有一個(gè)因數(shù)為零,積就為。
4、討論對(duì)比,使學(xué)生知識(shí)系統(tǒng)化。
有理數(shù)乘法
有理數(shù)加法
同號(hào)
得正
取相同的符號(hào)
把絕對(duì)值相乘
(-2)(-3)=6
把絕對(duì)值相加
(-2)+(-3)=-5
異號(hào)
得負(fù)
取絕對(duì)值大的加數(shù)的符號(hào)
把絕對(duì)值相乘
(-2)3=-6
(-2)+3=1
用較大的絕對(duì)值減小的絕對(duì)值
任何數(shù)與零
得零
得任何數(shù)
5、分層作業(yè),鞏固提高。
六、教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來(lái),提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實(shí)施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過(guò)程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿(mǎn)意。如果是在法則運(yùn)用時(shí),編制一些訓(xùn)練符號(hào)法則的口算題,把例2放在下一課時(shí)處理,效果可能更好。
【點(diǎn)評(píng)】:本節(jié)課張老師首先創(chuàng)設(shè)了一個(gè)密切社會(huì)生活的問(wèn)題情景抗旱,由此引入新課,并利用學(xué)生熟悉的數(shù)軸去探究有理數(shù)的乘法法則,充分體現(xiàn)了課程源于生活,服務(wù)于生活,學(xué)生的學(xué)習(xí)是在原有知識(shí)上的自我建構(gòu)的過(guò)程等理念,教學(xué)要面向?qū)W生的生活世界和社會(huì)實(shí)踐,教學(xué)活動(dòng)必須尊重學(xué)生已有的知識(shí)與經(jīng)驗(yàn),學(xué)生原有的知識(shí)和經(jīng)驗(yàn)是學(xué)習(xí)的基礎(chǔ),學(xué)生的學(xué)習(xí)是在原有知識(shí)和經(jīng)驗(yàn)基礎(chǔ)上的自我生成的'過(guò)程。
探索有理數(shù)乘法法則是本節(jié)課的重點(diǎn),同時(shí)它又是一個(gè)具有探索性又有挑戰(zhàn)性的問(wèn)題,因此張老師在這一教學(xué)環(huán)節(jié)花了大量的時(shí)間,精心設(shè)計(jì)了問(wèn)題訓(xùn)練單,將學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)的原則分學(xué)習(xí)小組開(kāi)展學(xué)習(xí)合作學(xué)習(xí),使學(xué)生經(jīng)歷了法則的探索過(guò)程,獲得了深層次的情感體驗(yàn),建構(gòu)知識(shí),獲得了解決問(wèn)題的方法,培養(yǎng)了學(xué)生的探索精神和創(chuàng)新能力。
為了讓學(xué)生將獲得的新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取,在教學(xué)的最后環(huán)節(jié),張老師組織學(xué)生對(duì)有理數(shù)的乘法和有理數(shù)的加法進(jìn)行對(duì)比,通過(guò)討論、比較使知識(shí)系統(tǒng)化、條理化,從而使自己的認(rèn)知結(jié)構(gòu)不斷地得以?xún)?yōu)化。學(xué)生自己建構(gòu)知識(shí),是建構(gòu)主義學(xué)習(xí)觀的基本觀點(diǎn),當(dāng)新知識(shí)獲得之后,必須按一定方式加以組織,為新知識(shí)找到家,并為新知識(shí)安家落戶(hù)。
學(xué)生是一個(gè)活生生的人,是一個(gè)發(fā)展中的人,學(xué)生間的發(fā)展是極不平衡的,為了尊重學(xué)生的差異,以學(xué)生個(gè)體發(fā)展為本,張老師在教學(xué)中利用學(xué)生的個(gè)人性格不同,采用異質(zhì)分組,使不同性格的學(xué)生組對(duì)交流、互換角色,達(dá)到了性格互補(bǔ)的目的。采取分層作業(yè)的方式,讓不同的人在數(shù)學(xué)學(xué)習(xí)中得到了不同的發(fā)展,使每個(gè)人的認(rèn)識(shí)都得到完善,這正是新課程發(fā)展的核心理念──為了每一位學(xué)生的發(fā)展的具體體現(xiàn)。
本節(jié)課我們也同時(shí)看到在新課引入和法則探究?jī)蓚(gè)教學(xué)環(huán)節(jié)中,張老師的設(shè)計(jì)與教材完全不同,充分體現(xiàn)了教師是用教材,而不是教教材,這也是新課程所倡導(dǎo)的教學(xué)理念。教師教教科書(shū)是傳統(tǒng)的教書(shū)匠的表現(xiàn),用教科書(shū)教才是現(xiàn)代教師應(yīng)有的姿態(tài)。我們教師應(yīng)從學(xué)生實(shí)際出發(fā),因材施教,創(chuàng)造性地使用教材,大膽對(duì)教材內(nèi)容進(jìn)行取舍、深加工、再創(chuàng)造,設(shè)計(jì)出活生生的、豐富多彩的課來(lái),充分有效地將教材的知識(shí)激活,形成有教師個(gè)性的教材知識(shí)。既要有能力把問(wèn)題簡(jiǎn)明地闡述清楚,同時(shí)也要有能力引導(dǎo)學(xué)生去探索、去自主學(xué)習(xí)。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 6
一、課題
2.4有理數(shù)的減法
二、教學(xué)目標(biāo)
1、使學(xué)生掌握有理數(shù)減法法則并熟練地進(jìn)行有理數(shù)減法運(yùn)算;
2、培養(yǎng)學(xué)生觀察、分析、歸納及運(yùn)算能力、
三、教學(xué)重點(diǎn)
有理數(shù)減法法則
四、教學(xué)難點(diǎn)
有理數(shù)減法法則
五、教學(xué)用具
三角尺、小黑板、小卡片
六、課時(shí)安排
1課時(shí)
七、教學(xué)過(guò)程
。ㄒ唬、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題
1、計(jì)算:
。1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0、
2、化簡(jiǎn)下列各式符號(hào):
(1)-(-6);(2)-(+8);(3)+(-7);
。4)+(+4);(5)-(-9);(6)-(+3)、
3、填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6、
在第3題中,已知一個(gè)加數(shù)與和,求另一個(gè)加數(shù),在小學(xué)里就是減法運(yùn)算、如______+6=20,就是求20-6=14,所以14+6=20、那么(2),(3),(4)是怎樣算出來(lái)的?這就是有理數(shù)的減法,減法是加法的逆運(yùn)算、
(二)、師生共同研究有理數(shù)減法法則
問(wèn)題1(1)(+10)-(+3)=______;
。2)(+10)+(-3)=______、
教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,即(+10)-(+3)=(+10)+(-3)、
教師啟發(fā)學(xué)生思考:減法可以轉(zhuǎn)化成加法運(yùn)算、但是,這是否具有一般性?問(wèn)題2(1)(+10)-(-3)=______;
。2)(+10)+(+3)=______、
對(duì)于(1),根據(jù)減法意義,這就是要求一個(gè)數(shù),使它與-3相加等于+10,這個(gè)數(shù)是多少?
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3)、
至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)、
教師強(qiáng)調(diào)運(yùn)用此法則時(shí)注意“兩變”:一是減法變?yōu)榧臃;二是減數(shù)變?yōu)槠湎喾磾?shù)、減數(shù)變號(hào)(減法============加法)
(三)、運(yùn)用舉例變式練習(xí)
例1計(jì)算:
。1)(-3)-(-5);(2)0-7、
例2計(jì)算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18)、
通過(guò)計(jì)算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
在小學(xué)里學(xué)習(xí)的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個(gè)負(fù)數(shù),其差就大于被減數(shù)、
例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?
閱讀課本63頁(yè)例3
(四)、小結(jié)
1、教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法、有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來(lái)解決、
2、不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則、在使用法則時(shí),注意被減數(shù)是永不變的.、
。ㄎ澹、課堂練習(xí)
1、計(jì)算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2、計(jì)算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249、
3、計(jì)算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
。4)(-5.9)-(-6.1);
。5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93)、
利用有理數(shù)減法解下列問(wèn)題
4、世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392m、兩處高度相差多少?
八、布置課后作業(yè)
課本習(xí)題2.6知識(shí)技能的2、3、4和問(wèn)題解決1
九、板書(shū)設(shè)計(jì)
2、5有理數(shù)的減法
(一)知識(shí)回顧(三)例題解析(五)課堂小結(jié)
例1、例2、例3
。ǘ┯^察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計(jì)
十、課后反思
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 7
教材分析
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容。有理數(shù)的乘法運(yùn)算是加法運(yùn)算的另一種運(yùn)算形式,它也是今后學(xué)習(xí)有理數(shù)的除法、乘方及混合運(yùn)算的基礎(chǔ)。因此本節(jié)內(nèi)容具有承前啟后的重要作用。
學(xué)情分析
1、讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程,增加他們對(duì)問(wèn)題的感性認(rèn)識(shí)。
2、通過(guò)觀察、歸納,提高學(xué)生的理性認(rèn)識(shí)。
3、培養(yǎng)學(xué)生學(xué)會(huì)表達(dá)、學(xué)會(huì)傾聽(tīng)的良好品質(zhì)。
教學(xué)目標(biāo)
1、知識(shí)技能:
(1)經(jīng)歷探索有理數(shù)乘法運(yùn)算的過(guò)程,歸納有理數(shù)乘法運(yùn)算法則。
。2)掌握有理數(shù)乘法法則,能解決簡(jiǎn)單的的實(shí)際問(wèn)題。
2、數(shù)學(xué)思考:
通過(guò)自主合作探究經(jīng)歷探索有理數(shù)運(yùn)算的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜想等能力。
3、問(wèn)題解決:
通過(guò)自主探索和合作交流,發(fā)展學(xué)生逆向思維及化歸思想。
4、情感態(tài)度價(jià)值觀:
通過(guò)經(jīng)歷探索有理數(shù)乘法運(yùn)算的過(guò)程感受數(shù)學(xué)與生活的'緊密聯(lián)系,提高學(xué)生對(duì)知識(shí)的應(yīng)用能力以及勇于探索、敢于發(fā)言的個(gè)性品質(zhì)。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn)是:有理數(shù)的乘法法則的理解和運(yùn)用、
教學(xué)難點(diǎn)是:使學(xué)生體會(huì)有理數(shù)乘法法則規(guī)定的合理性;探究出確定兩個(gè)負(fù)數(shù)相乘和多個(gè)有理數(shù)相乘的符號(hào)符號(hào)規(guī)律。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 8
一、教學(xué)目標(biāo)
1、使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2、培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力
3、使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):有理數(shù)乘法的運(yùn)算。
難點(diǎn):有理數(shù)乘法中的符號(hào)法則。
三、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
四、教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過(guò)程
(一)、研究有理數(shù)乘法法則
問(wèn)題1水庫(kù)的水位每小時(shí)上升3厘米,2小時(shí)上升了多少厘米?
解①32=6
答:上升了6厘米。
問(wèn)題2水庫(kù)的水位平均每小時(shí)上升-3厘米,2小時(shí)上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)
把3(-2)和①式對(duì)比,這里把一個(gè)因數(shù)2換成了它的`相反數(shù)-2,所得的積應(yīng)是原來(lái)的積6的相反數(shù)-6,即3(-2)=-6。
把(-3)(-2)和②式對(duì)比,這里把一個(gè)因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來(lái)的積-6的相反數(shù)6,即(-3)(-2)=6。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 9
教學(xué)目標(biāo)
1.知識(shí)與技能
、俳(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證的能力。
、跁(huì)進(jìn)行有理數(shù)的乘法運(yùn)算。
2.過(guò)程與方法
通過(guò)對(duì)問(wèn)題的變式探索,培養(yǎng)觀察、分析、抽象的能力。
3.情感、態(tài)度與價(jià)值觀
通過(guò)觀察、歸納、類(lèi)比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)中的探索性和創(chuàng)造性。
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):能按有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運(yùn)算。
難點(diǎn):含有負(fù)因數(shù)的乘法。
教與學(xué)互動(dòng)設(shè)計(jì)
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做出示一組算式,請(qǐng)同學(xué)們用計(jì)算器計(jì)算并找出它們的.規(guī)律。
例1(1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2(1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想你們發(fā)現(xiàn)積的符號(hào)與因數(shù)的符號(hào)之間的關(guān)系如何?
學(xué)生活動(dòng):計(jì)算、討論。
總結(jié)一正一負(fù)的兩個(gè)數(shù)的乘積為負(fù);兩正或兩負(fù)的乘積是正數(shù)。
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)。
想一想兩數(shù)相乘,積的絕對(duì)值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對(duì)值的積。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 10
一、學(xué)情分析:
1、學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過(guò)非負(fù)有理數(shù)的四則運(yùn)算以及運(yùn)算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對(duì)值的有關(guān)概念,并掌握了有理數(shù)的加減運(yùn)算法則及其混和運(yùn)算的方法,學(xué)會(huì)了由運(yùn)算解決簡(jiǎn)單的實(shí)際問(wèn)題,具備了學(xué)習(xí)有理數(shù)乘法的知識(shí)技能基礎(chǔ)。
2、學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)歷了探索加法運(yùn)算法則的活動(dòng),并且通過(guò)觀察"水位的變化",運(yùn)用有理數(shù)的加法法則解決了一些實(shí)際問(wèn)題,從而獲得了較為豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),同時(shí)在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過(guò)程,具有了合作和探索的意識(shí)。
二、教材分析:
教科書(shū)基于學(xué)生已掌握了有理數(shù)加法、減法運(yùn)算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會(huì)進(jìn)行有理數(shù)的運(yùn)算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
1、經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力;
。、學(xué)會(huì)進(jìn)行有理數(shù)的乘法運(yùn)算,掌握確定多個(gè)不等于零的有理數(shù)相乘的積的符號(hào)方法以及有一個(gè)數(shù)為零積是零的情況:
三、教學(xué)過(guò)程設(shè)計(jì):
本節(jié)課設(shè)計(jì)了六個(gè)環(huán)節(jié):第一環(huán)節(jié):?jiǎn)栴}情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):?jiǎn)栴}情境,引入新課
問(wèn)題:(1)觀察教科書(shū)給出的圖片,分析教科書(shū)提出的問(wèn)題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
。ǎ玻┤绻谜(hào)表示水位上升,用負(fù)號(hào)表示水位下降,討論四天后,甲水庫(kù)水位的變化量的表示法和乙水庫(kù)水位變化量的表示法。
設(shè)計(jì)意圖:培養(yǎng)學(xué)生從圖形語(yǔ)言和文字語(yǔ)言中獲取信息的能力,感受用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,體驗(yàn)算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問(wèn)題:(1)由課題引入中知道:4個(gè)-3相加等于-12,可以寫(xiě)成算式
(-3×4)=-12,那么下列一組算式的結(jié)果應(yīng)該如何計(jì)算?請(qǐng)同學(xué)們思考:
。ǎ常粒常剑撸撸撸撸撸
。ǎ常粒玻剑撸撸撸撸;
。ǎ常粒保剑撸撸撸撸;
(-3)×0=_____。
。ǎ玻┊(dāng)同學(xué)們寫(xiě)出結(jié)果并說(shuō)明道理時(shí),讓學(xué)生通過(guò)觀察這組算式等號(hào)兩邊的特點(diǎn)去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
。ǎ常粒ǎ保剑撸撸撸撸;
。ǎ常粒ǎ玻剑撸撸撸撸;
。ǎ常粒ǎ常剑撸撸撸撸撸
。ǎ常粒ǎ矗剑撸撸撸撸。
教前設(shè)計(jì)意圖:以算式求解和探究問(wèn)題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的'一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過(guò)對(duì)兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語(yǔ)言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項(xiàng):(1)本環(huán)節(jié)的設(shè)計(jì)理念是學(xué)生通過(guò)觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過(guò)程,并在合作交流中互相補(bǔ)充,完善結(jié)論。但在實(shí)際過(guò)程中,學(xué)生對(duì)結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對(duì)于這些問(wèn)題,不能求全責(zé)備,而應(yīng)循循善誘,順勢(shì)引導(dǎo),幫助學(xué)生盡可能簡(jiǎn)練準(zhǔn)確的表述,也不要擔(dān)心時(shí)間不足而代替學(xué)生直接表述法則。
。ǎ玻┱故緝山M算式時(shí),注意板書(shū)藝術(shù),把算式豎排,并對(duì)齊書(shū)寫(xiě),這樣易于學(xué)生觀察特點(diǎn),發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗(yàn)證明確結(jié)論
問(wèn)題:針對(duì)上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘,任何數(shù)與零相乘,積仍為零。進(jìn)行驗(yàn)證活動(dòng),出示一組算式由學(xué)生完成。
。础粒ǎ矗剑撸撸撸撸撸
。础粒ǎ常剑撸撸撸撸;
。础粒ǎ玻剑撸撸撸撸;
。础粒ǎ保剑撸撸撸撸;
。ā矗粒埃剑撸撸撸撸;
。ā矗粒保剑撸撸撸撸;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)的設(shè)計(jì)一方面是因?yàn)樗呛锨橥评淼谋匾h(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗(yàn)證和證明它的正確性。同時(shí),驗(yàn)證的過(guò)程本身就是對(duì)有理數(shù)乘法法則的練習(xí)和熟悉過(guò)程。
教后反思事項(xiàng):(1)教科書(shū)中沒(méi)有這個(gè)環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計(jì)這個(gè)環(huán)節(jié),確實(shí)讓學(xué)生體驗(yàn)經(jīng)歷驗(yàn)證過(guò)程。
。ǎ玻┍经h(huán)節(jié)的重點(diǎn)是驗(yàn)證乘法法則的正確性而不是運(yùn)用乘法法則計(jì)算。所以在驗(yàn)證過(guò)程中,既要用乘法法則計(jì)算,又要加法法則計(jì)算,真正體現(xiàn)驗(yàn)證的作用和過(guò)程。
(3)在用乘法法則計(jì)算時(shí),要注意其運(yùn)算步驟與加法運(yùn)算一樣,都是先確定結(jié)果的符號(hào),再進(jìn)行絕對(duì)值的運(yùn)算。另外還應(yīng)注意:法則中的“同號(hào)得正,異號(hào)得負(fù)”是專(zhuān)指“兩數(shù)相乘而言的,”不可以運(yùn)用到加法運(yùn)算中去。
第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高
活動(dòng)內(nèi)容:
。ǎ保。計(jì)算:
⑴(-4)×5;⑵(5-)×(-7);
、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);
。ǎ玻病S(jì)算:
、牛ǎ矗粒怠粒ǎ。25);⑵(-3÷5)×(-5÷6)×(-2);
3!白h一議”:幾個(gè)有理數(shù)相乘,因數(shù)都不為零時(shí),積的符號(hào)怎樣確定?有一個(gè)因數(shù)為零時(shí),積是多少?
(4)計(jì)算:
、牛ǎ8)×21÷4;⑵4÷5×(-25÷6)×(-7÷10);
、2÷3×(-5÷4);⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1.2)×(-1÷9);⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計(jì)意圖:對(duì)有理數(shù)乘法法則的鞏固和運(yùn)用,練習(xí)和提高。
教后反思事項(xiàng):(1)學(xué)生先自主嘗試解決,全班交流,教師點(diǎn)撥要注意格式規(guī)范,一開(kāi)始對(duì)每一步運(yùn)算應(yīng)注明理由,運(yùn)算熟練后,可不要求書(shū)寫(xiě)每一步的理由;
。2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵(lì)學(xué)生通過(guò)對(duì)例2的運(yùn)算結(jié)果觀察分析,用自己的語(yǔ)言表達(dá)所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時(shí),教師可設(shè)置如下一組算式讓學(xué)生計(jì)算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個(gè)任務(wù)。
。ǎ保粒病粒场粒矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒场粒矗剑撸撸撸撸;
。ǎ保粒ǎ玻粒ǎ常粒矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸摺
通過(guò)對(duì)以上算式的計(jì)算和觀察,學(xué)生不難得出結(jié)論:多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。當(dāng)然這段語(yǔ)言,不需要讓學(xué)習(xí)背誦,只要理解會(huì)用即可。
第五環(huán)節(jié):感悟反思課堂
問(wèn)題:
1、本節(jié)課大家學(xué)會(huì)了什么?
2、有理數(shù)乘法法則如何敘述?”
3、有理數(shù)乘法法則的探索采用了什么方法?
4、你的困惑是什么。
教前設(shè)計(jì)意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識(shí)。激勵(lì)學(xué)生展示自我。
教后反思事項(xiàng):學(xué)生時(shí),可能會(huì)有語(yǔ)言表達(dá)障礙或表達(dá)不流暢,但只要不影響運(yùn)算的正確性,則不必強(qiáng)調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵(lì)學(xué)生大膽發(fā)言,同時(shí)教師可用準(zhǔn)確的語(yǔ)言適時(shí)的加以點(diǎn)撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書(shū)知識(shí)技能1、2;問(wèn)題解決1;聯(lián)系擴(kuò)廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計(jì)條理的問(wèn)題串,使觀察、猜想、驗(yàn)證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。场⒑侠硎褂枚嗝襟w教學(xué)手段可以彌補(bǔ)課堂時(shí)間的不足,但絕不能代替必要的板書(shū)。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 11
一、教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、能力與過(guò)程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、情感與態(tài)度目標(biāo)
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的`理解。
三、教學(xué)過(guò)程
1、創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫(xiě)出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題
2、小組探索、歸納法則
。1)教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯姆较驗(yàn)樨?fù)方向。
①2×3
2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向運(yùn)動(dòng)米
2×3=
、-2×3
-2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向運(yùn)動(dòng)米
-2×3=
③2×(-3)
2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向運(yùn)動(dòng)米
2×(-3)=
、埽-2)×(-3)
-2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向運(yùn)動(dòng)米
。-2)×(-3)=
。2)學(xué)生歸納法則
①符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
。+)×(+)=()同號(hào)得
。-)×(+)=()異號(hào)得
(+)×(-)=()異號(hào)得
。-)×(-)=()同號(hào)得
、诜e的絕對(duì)值等于。
、廴魏螖(shù)與零相乘,積仍為。
。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、運(yùn)用法則計(jì)算,鞏固法則。
。1)教師按課本P75例1板書(shū),要求學(xué)生述說(shuō)每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為。
。3)學(xué)生做練習(xí),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 12
教學(xué)目的:
1、知識(shí)與技能
體會(huì)有理數(shù)乘法的實(shí)際意義;
掌握有理數(shù)乘法的運(yùn)算法則和乘法法則,靈活地運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算。
2、過(guò)程與方法
經(jīng)歷有理數(shù)乘法的推導(dǎo)過(guò)程,用分類(lèi)討論的思想歸納出兩數(shù)相乘的法則,感悟中、小學(xué)數(shù)學(xué)中的乘法運(yùn)算的重要區(qū)別。
通過(guò)體驗(yàn)有理數(shù)的乘法運(yùn)算,感悟和歸納出進(jìn)行乘法運(yùn)算的一般步驟。
3、情感、態(tài)度與價(jià)值觀
通過(guò)類(lèi)比和分類(lèi)的思想歸納乘法法則,發(fā)展舉一反三的能力。
教學(xué)重點(diǎn):
應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
教學(xué)難點(diǎn):
兩負(fù)數(shù)相乘,積的符號(hào)為正。
教具準(zhǔn)備:
多媒體。
教學(xué)過(guò)程:
一、引入
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加法運(yùn)算和減法運(yùn)算,今天,我們開(kāi)始研究有理數(shù)的乘法運(yùn)算。
問(wèn)題一:有理數(shù)包括哪些數(shù)?
回答:有理數(shù)包括正整數(shù)、正分?jǐn)?shù)、負(fù)整數(shù)、負(fù)分?jǐn)?shù)和零。
問(wèn)題二:小學(xué)已經(jīng)學(xué)過(guò)的乘法運(yùn)算,屬于有理數(shù)中哪些數(shù)的運(yùn)算?
回答:屬于正有理數(shù)和零的乘法運(yùn)算;虼穑簩儆谡麛(shù)、正分?jǐn)?shù)和零的`乘法運(yùn)算。
計(jì)算下列各題;
以上這些題,都是對(duì)正有理數(shù)與正有理數(shù)、正有理數(shù)與零、零與零的乘法,方法與小學(xué)學(xué)過(guò)的相同,今天我們要研究的有理數(shù)的乘法運(yùn)算,重點(diǎn)就是要解決引入負(fù)有理數(shù)之后,怎樣進(jìn)行乘法運(yùn)算的問(wèn)題。
二、新課
我們以蝸牛爬行距離為例,為區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正,為區(qū)分時(shí)間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正。
如圖,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點(diǎn)O。
1、正數(shù)與正數(shù)相乘
問(wèn)題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結(jié)果向東運(yùn)動(dòng)了6米。
2、負(fù)數(shù)與正數(shù)相乘
問(wèn)題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3、正數(shù)與負(fù)數(shù)相乘
問(wèn)題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應(yīng)為l上點(diǎn)O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4、負(fù)數(shù)與負(fù)數(shù)相乘
問(wèn)題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應(yīng)為l上點(diǎn)O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5、零與任何數(shù)相乘或任何數(shù)與零相乘
問(wèn)題五:原地不動(dòng)或運(yùn)動(dòng)了零次,結(jié)果是什么?
答:結(jié)果都是仍在原處,即結(jié)果都是零,若用式子表達(dá):
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0。
綜合上述五個(gè)問(wèn)題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6。
(5)任何數(shù)與零相乘都得零。
觀察上述(1)~(4)回答:
1、積的符號(hào)與因數(shù)的符號(hào)有什么關(guān)系?
2、積的絕對(duì)值與因數(shù)的絕對(duì)值有什么關(guān)系?
答:
1、若兩個(gè)因數(shù)的符號(hào)相同,則積的符號(hào)為正;若兩個(gè)因數(shù)的符號(hào)相反,則積的符號(hào)為負(fù)。
2、積的絕對(duì)值等于兩個(gè)因數(shù)的絕對(duì)值的積。
由此我們可以得到:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
(1)~(5)包括了兩個(gè)有理數(shù)相乘的所有情況,綜合上述各種情況,得到有理數(shù)乘法的法則:
口答:確定下列兩數(shù)積的符號(hào):
例題:計(jì)算下列各題:
解題步驟:
1、認(rèn)清題目類(lèi)型。
2、根據(jù)法則確定積的符號(hào)。
3、絕對(duì)值相乘。
練習(xí):
1、口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個(gè)數(shù)與1相乘得原數(shù),一個(gè)數(shù)與-1相乘,得原數(shù)的相反數(shù)。
2、在表中的各個(gè)小方格里,填寫(xiě)所在的橫行的第一個(gè)數(shù)與所在直列的第一個(gè)數(shù)的積:
3、計(jì)算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4、填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
。瓅-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____。
三、小結(jié)
(1)指導(dǎo)學(xué)生看書(shū),精讀乘法法則。
(2)強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟。
(3)比較有理數(shù)乘法的符號(hào)法則與有理數(shù)加法的符號(hào)法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的。
四、作業(yè)
1、計(jì)算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16)。
2、計(jì)算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32)。
3、計(jì)算:
4、填空:(用“>”或“<”號(hào)連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當(dāng)a>0時(shí),a____2a;
(4)當(dāng)a<0時(shí),a____2a。
板書(shū)設(shè)計(jì)
1.4有理數(shù)的乘法
法則:練習(xí)
教學(xué)設(shè)計(jì)思路
本節(jié)課是在小學(xué)已接觸到的乘法、初中剛學(xué)習(xí)過(guò)的有理數(shù)的加減法基礎(chǔ)上進(jìn)行的。通過(guò)對(duì)實(shí)際問(wèn)題的解決,引入有理數(shù)的乘法法則。在講解運(yùn)動(dòng)的例子時(shí)運(yùn)用現(xiàn)代化教學(xué)手段,把圖形中的“靜”變“動(dòng)”,增強(qiáng)了直觀性,初步培養(yǎng)想象能力。
教學(xué)反思
強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動(dòng),我們堅(jiān)持把教學(xué)活動(dòng)過(guò)程體現(xiàn)在教學(xué)中,又激發(fā)學(xué)生的思維積極性,讓學(xué)生學(xué)會(huì)分析問(wèn)題和解決問(wèn)題。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 13
教學(xué)目的:
(一)知識(shí)點(diǎn)目標(biāo):有理數(shù)的乘法運(yùn)算律。
。ǘ┠芰τ(xùn)練目標(biāo):
1、經(jīng)歷探索有理數(shù)乘法的運(yùn)算律的過(guò)程,發(fā)展觀察、歸納的能力。
2、能運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算。
。ㄈ┣楦信c價(jià)值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過(guò)程中分享成功的喜悅。
2、在討論的過(guò)程中,使學(xué)生感受集體的`力量,培養(yǎng)團(tuán)隊(duì)意識(shí)。
教學(xué)重點(diǎn):
乘法運(yùn)算律的運(yùn)用。
教學(xué)難點(diǎn):
乘法運(yùn)算律的運(yùn)用。
教學(xué)方法:
探究交流相結(jié)合。
創(chuàng)設(shè)問(wèn)題情境,引入新課
[活動(dòng)1]
問(wèn)題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過(guò)的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對(duì)加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運(yùn)算律成立嗎?
問(wèn)題2:計(jì)算下列各題:
(1)(—7)×8;
(2)8×(—7);
。5)[3×(—4)]×(—5);
(6)3×[(—4)×(—5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過(guò)問(wèn)題2來(lái)檢驗(yàn)。(略)
[師]同學(xué)們自己采用上面的方法來(lái)探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(—7)]和5×3十5×(—7);(略)
[師](—5)×(3—7)和(—5)×3—5×7的結(jié)果相等嗎?
。ㄗ⒁猓海ā5)×(3—7)中的3—7應(yīng)看作3與(—7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因?yàn)闇p法沒(méi)有分配律。)
講授新課:
[活動(dòng)2]用文字語(yǔ)言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來(lái)。
應(yīng)得出:
1、一般地,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
3、一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
[活動(dòng)3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會(huì)學(xué)習(xí)的快樂(lè)。
用簡(jiǎn)便方法計(jì)算。
[活動(dòng)4]
練習(xí)(教科書(shū)第42頁(yè))
課時(shí)小結(jié):
這節(jié)課我們學(xué)習(xí)乘法的運(yùn)算律及它們的運(yùn)用,使我們體驗(yàn)到了掌握一般的正常運(yùn)算外,還要靈活運(yùn)用運(yùn)算律,能簡(jiǎn)便的一定要簡(jiǎn)便,這樣做既快又準(zhǔn)。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
活動(dòng)與探究:
用簡(jiǎn)便方法計(jì)算:
(1)6.868×(—5)+6.868×(一12)+6.868×(+17)
。2)[(4×8)×25一8]×125
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì) 14
學(xué)習(xí)目標(biāo):
1、知識(shí)目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運(yùn)用有理數(shù)的法則進(jìn)行準(zhǔn)確運(yùn)算。
2、能力目標(biāo):通過(guò)對(duì)問(wèn)題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。
學(xué)習(xí)重點(diǎn)、難點(diǎn)
重點(diǎn):有理數(shù)乘法運(yùn)算法則的推導(dǎo)及熟練運(yùn)用。
難點(diǎn):有理數(shù)乘法運(yùn)算中積的符號(hào)的確定。
學(xué)習(xí)過(guò)程
一、預(yù)習(xí)導(dǎo)航
1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?
求幾個(gè)的運(yùn)算,叫乘法。
一個(gè)數(shù)同0相乘,得0。
2、請(qǐng)你列舉幾道小學(xué)學(xué)過(guò)的`乘法算式。
二、合作探究、展示交流
1、問(wèn)題1:森林里住著一只蝸牛,每天都要離開(kāi)家去尋找食物,如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以列式為:(+2)(+3)=
問(wèn)題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以列式為:
問(wèn)題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以表示為:
問(wèn)題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以表示為:
2、觀察這四個(gè)式子:
。+2)(+3)=+6(—2)(—3)=+6
(—2)(+3)=—6(+2)(—3)=—6
根據(jù)你對(duì)有理數(shù)乘法的思考,總結(jié)填空:
正數(shù)乘正數(shù)積為_(kāi)_數(shù):負(fù)數(shù)乘負(fù)數(shù)積為_(kāi)_數(shù):
負(fù)數(shù)乘正數(shù)積為_(kāi)_數(shù):正數(shù)乘負(fù)數(shù)積為_(kāi)_數(shù):
乘積的絕對(duì)值等于各乘數(shù)絕對(duì)值的_____。
思考:當(dāng)一個(gè)因數(shù)為0時(shí),積是多少?
3、試著總結(jié)一下有理數(shù)乘法法則吧:
兩數(shù)相乘,同號(hào)得,異號(hào)得,并把絕對(duì)值。
任何數(shù)同0相乘,都得。
三、小試牛刀。
1、你能確定下列乘積的符號(hào)嗎?
37積的符號(hào)為;(—3)7積的符號(hào)為;
3(—7)積的符號(hào)為;(—3)(—7)積的符號(hào)為。
2先閱讀,再填空:
。ā5)x(—3)。同號(hào)兩數(shù)相乘
。ā5)x(—3)=+()得正
5x3=15把絕對(duì)值相乘
所以(—5)x(—3)=15
填空:(—7)x4____________________
。ā7)x4=—()___________
7x4=28_____________
所以(—7)x4=____________
[例1]計(jì)算:
。1)(—5)(2)(—5)
。3)(—6)(—0.45)(4)(—7)0=
解:(1)(—5)(—6)=+(56)=+30=30
請(qǐng)同學(xué)們仿照上述步驟計(jì)算(2)(3)(4)。
。2)(—5)6==
(3)(—6)(—0.45)==
。4)(—7)0=
讓我們來(lái)總結(jié)求解步驟:
兩個(gè)數(shù)相乘,應(yīng)先確定積的,再確定積的。
四、鞏固練習(xí)
1、小組口算比賽,看誰(shuí)更棒
。1)3(—4)(2)2(—6)(3)(—6)2
。4)6(—2)(5)(—6)0(6)0(—6)
2、仔細(xì)計(jì)算。,注意積的符號(hào)和絕對(duì)值。
。1)(—4)0.25(2)(—0.5)(—2)(3)(—)
。4)(—2)(—)(5)(—)(—)(6)(—)5
3、用正負(fù)數(shù)表示氣溫的變化量,上升為正,下降為負(fù)。登山隊(duì)攀登一座山峰,每登高1千米,氣溫的變化量為—6℃,攀登3千米后,氣溫有什么變化?
五、一分鐘過(guò)關(guān)檢測(cè)
1、下列說(shuō)法錯(cuò)誤的是()
A、一個(gè)數(shù)同0相乘,仍得0
B、一個(gè)數(shù)同1相乘,仍得原數(shù)
C、如果兩個(gè)數(shù)的乘積等于1,那么這兩個(gè)數(shù)互為相反數(shù)
D、一個(gè)數(shù)同—1相乘,得原數(shù)的相反數(shù)
2、在—2,3,4,—5這四個(gè)數(shù)中,任意兩個(gè)數(shù)相乘,所得的積最大的是()
A、10B、12C、—20D、不是以上的答案
3、計(jì)算下列各題:
。1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9=;
。5)(—6)(—5)=;(6)(—5)(—6)=
六、體會(huì)聯(lián)想:
1、有理數(shù)的乘法的計(jì)算步驟分哪兩步?
2、有理數(shù)的乘法法則是什么?
【數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì)】相關(guān)文章:
《有理數(shù)的乘法》數(shù)學(xué)教案09-19
有理數(shù)的乘法數(shù)學(xué)教案07-07
有理數(shù)的乘法數(shù)學(xué)教案優(yōu)秀03-26
有理數(shù)乘法說(shuō)課稿11-21
有理數(shù)的乘法數(shù)學(xué)教案(通用8篇)07-11
有理數(shù)的乘法數(shù)學(xué)教案通用(6篇)07-07