- 相關(guān)推薦
高中數(shù)學(xué)必修5優(yōu)秀教案
作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。那么問題來了,教案應(yīng)該怎么寫?以下是小編精心整理的高中數(shù)學(xué)必修5優(yōu)秀教案,僅供參考,歡迎大家閱讀。
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
教學(xué)重難點(diǎn)
解三角形及應(yīng)用舉例
教學(xué)過程
一、基礎(chǔ)知識(shí)精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類問題:
。1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
。1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題。
二、問題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論。
思維點(diǎn)撥:三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測,當(dāng)前臺(tái)
風(fēng)中心位于城市O(如圖)的東偏南方向
300 km的海面P處,并以20 km / h的速度向西偏北的
方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時(shí)后該城市開始受到
臺(tái)風(fēng)的侵襲。
一、小結(jié):
1、利用正弦定理,可以解決以下兩類問題:
。1)已知兩角和任一邊,求其他兩邊和一角;
。2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
2、利用余弦定理,可以解決以下兩類問題:
。1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3、邊角互化是解三角形問題常用的手段。
三。作業(yè):P80闖關(guān)訓(xùn)練
【高中數(shù)學(xué)必修5優(yōu)秀教案】相關(guān)文章:
高中數(shù)學(xué)必修5教案11-15
高中數(shù)學(xué)必修五教案優(yōu)秀10-14
高中數(shù)學(xué)必修教案03-01
高中數(shù)學(xué)必修教學(xué)反思06-02
高一數(shù)學(xué)必修一優(yōu)秀教案5篇12-30
高一數(shù)學(xué)必修一優(yōu)秀教案(5篇)12-31