數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案(通用8篇)
作為一位杰出的教職工,通常需要準(zhǔn)備好一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。怎樣寫教案才更能起到其作用呢?下面是小編幫大家整理的數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 1
一、教材分析
本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對(duì)二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進(jìn)行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會(huì)知識(shí)之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質(zhì)。
二、學(xué)情分析
本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對(duì)一般式向頂點(diǎn)式的轉(zhuǎn)化,讓學(xué)上體會(huì)化歸思想,分析這兩個(gè)式子的區(qū)別。
三、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與能力目標(biāo)
1、 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程;
2、 能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸。
。ǘ┻^程與方法目標(biāo)
通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會(huì)探索新知的方式和方法。
。ㄈ┣楦袘B(tài)度與價(jià)值觀目標(biāo)
1、 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程,滲透配方和化歸的思想方法;
2、 在運(yùn)用二次函數(shù)的知識(shí)解決問題的過程中,親自體會(huì)到學(xué)習(xí)數(shù)學(xué)知識(shí)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣并獲得成功的體驗(yàn)。
四、教學(xué)重難點(diǎn)
1、重點(diǎn)
通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)。
2、難點(diǎn)
二次函數(shù)y=ax2+bx+c(a≠0)的`圖像的性質(zhì)。
五、教學(xué)策略與 設(shè)計(jì)說明
本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對(duì)比一般式和頂點(diǎn)式的區(qū)別和聯(lián)系;體會(huì)式子的恒等變形的重要意義。
六、教學(xué)過程
教學(xué)環(huán)節(jié)(注明每個(gè)環(huán)節(jié)預(yù)設(shè)的時(shí)間)
。ㄒ)提出問題(約1分鐘)
教師活動(dòng):形如y=a(x-h)2+k(a≠0)的拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)分別是什么?那么對(duì)于一般式y(tǒng)=ax2+bx+c(a≠0)頂點(diǎn)坐標(biāo)和對(duì)稱軸又怎樣呢?圖像又如何?
學(xué)生活動(dòng):學(xué)生快速回答出第一個(gè)問題,第二個(gè)問題引起學(xué)生的思考。
目的:由舊有的知識(shí)引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。
。ǘ┨骄啃轮
1、探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)
教師活動(dòng):教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點(diǎn)式?然后結(jié)合頂點(diǎn)式確定其頂點(diǎn)和對(duì)稱軸。
學(xué)生活動(dòng):討論解決
目的:激發(fā)興趣
2、配方求解頂點(diǎn)坐標(biāo)和對(duì)稱軸(約5分鐘)
教師活動(dòng):教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教師還應(yīng)強(qiáng)調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。
學(xué)生活動(dòng):學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯(cuò)的地方。
目的:即加深對(duì)本課知識(shí)的認(rèn)知有增強(qiáng)了配方法的應(yīng)用意識(shí)。
3、畫出該二次函數(shù)圖像(約5分鐘)
教師活動(dòng):提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的平移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時(shí)是否用平滑的曲線,對(duì)稱性如何。
學(xué)生活動(dòng):學(xué)生通過列表、描點(diǎn)、連線結(jié)合二次函數(shù)圖像的對(duì)稱性完成作圖。
目的:強(qiáng)化二次函數(shù)圖像的畫法。即確定開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸結(jié)合圖像的對(duì)稱性完成圖像。
4、探究y=-2x2-4x+1的函數(shù)圖像特點(diǎn)(約3分鐘)
教師活動(dòng):教師提出問題。找學(xué)生板演拋物線的開口方向、頂點(diǎn)和對(duì)稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。
學(xué)生活動(dòng):學(xué)生獨(dú)立完成。
目的:研究a<0時(shí)一個(gè)具體函數(shù)的圖像和性質(zhì),體會(huì)研究二次函數(shù)圖像的一般方法。
5、結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)
教師活動(dòng):教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點(diǎn)、對(duì)稱軸和開口方向并著重討論分析a>0和a<0時(shí),y隨x的變化情況、拋物線與y的交點(diǎn)以及函數(shù)的最值如何。
學(xué)生活動(dòng):仔細(xì)理解記憶一般式中的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開口方向;理解y隨x的變化情況。
目的:體會(huì)由特殊到一般的過程。體驗(yàn)、觀察、分析二次函數(shù)圖像和性質(zhì)。
6、簡(jiǎn)單應(yīng)用(約11分鐘)
教師活動(dòng):教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸圖像和y軸的交點(diǎn)坐標(biāo)并確定y隨x的變化情況和最值。
教師巡視,個(gè)別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對(duì)稱軸,然后將對(duì)稱軸代入到原函數(shù)解析式求其函數(shù)值,此時(shí)對(duì)稱軸數(shù)值和所求出的函數(shù)值即為頂點(diǎn)的橫、縱坐標(biāo)。
學(xué)生活動(dòng):學(xué)生先獨(dú)立完成,約3分鐘后討論交流,最后形成結(jié)論。
目的:鞏固新知
課堂小結(jié)(2分鐘)
1、 本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識(shí)上的問題?
2、 你對(duì)本節(jié)課有什么感想或疑惑?
布置作業(yè)(1分鐘)
1、 教科書習(xí)題22.1第6,7兩題;
2、 《課時(shí)練》本節(jié)內(nèi)容。
板書設(shè)計(jì)
提出問題 畫函數(shù)圖像 學(xué)生板演練習(xí)
例題配方過程
到頂點(diǎn)式的配方過程 一般式相關(guān)知識(shí)點(diǎn)
教學(xué)反思
在教學(xué)中我采用了合作、體驗(yàn)、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗(yàn)知識(shí)的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個(gè)教學(xué)過程主要分為三部分:第一部分是知識(shí)回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識(shí),達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
我認(rèn)為優(yōu)點(diǎn)主要包括:
1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2、教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。
3、板書字體端正,格式清晰明了,突出重點(diǎn)、難點(diǎn)。
4、我覺的精彩之處是求一般式的頂點(diǎn)坐標(biāo)時(shí)的第二種方法,給學(xué)生減輕了一些負(fù)擔(dān),不一定非得配方或運(yùn)用公式求頂點(diǎn)坐標(biāo)。
所以我對(duì)于本節(jié)課基本上是滿意的。但也有很多需要改進(jìn)的地方主要表現(xiàn)在:
1、知識(shí)的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動(dòng)中自己引導(dǎo)的較少,時(shí)間較短,討論的不夠積極;
2、一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識(shí)完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會(huì)更深刻;
3、學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個(gè)問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時(shí)候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
4、合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光。”只有真正把自主、探究、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會(huì)發(fā)展的公民。
重新去解讀這節(jié)課的話我會(huì)注意以上一些問題,再多一些時(shí)間給學(xué)生,讓他們?nèi)ンw驗(yàn),探究而后形成自己的知識(shí)。
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 2
一、教材分析
1、教材的地位及作用
函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對(duì)已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對(duì)二次函數(shù)知識(shí)的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。
2.教學(xué)目標(biāo)
(1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識(shí)與技能目標(biāo)]
(2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]
(3) 讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價(jià)值觀目標(biāo)]
3、教學(xué)的重、難點(diǎn)
重點(diǎn):二次函數(shù)的概念和解析式
難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力
4、 學(xué)情分析
、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學(xué)生個(gè)性活潑,積極性高,初步具有對(duì)數(shù)學(xué)問題進(jìn)行合作探究的意識(shí)與 能力。
、鄢跞龑W(xué)生程度參差不齊,兩極分化已形成。
二、教法學(xué)法分析
1、教法(關(guān)鍵詞:情境、探究、分層)
基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成和應(yīng)用過程,加深對(duì)數(shù)學(xué)知識(shí)的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教。
2、學(xué)法(關(guān)鍵詞:類比、自主、合作)
根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個(gè)學(xué)生自主參與整堂課的知識(shí)構(gòu)建。在各個(gè)環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對(duì)照學(xué)習(xí)。以自主探索為主,學(xué)會(huì)合作交流,在師生互動(dòng)、生生互動(dòng)中讓每個(gè)學(xué)生動(dòng)口,動(dòng)手,動(dòng)腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,使學(xué)生由“學(xué)會(huì)”變“會(huì)學(xué)”和“樂學(xué)”。
3、教學(xué)手段
采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對(duì)稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。
三、教學(xué)過程
完整的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:
(一)創(chuàng)設(shè)情境,溫故引新
以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:
(1)你們喜歡打籃球嗎?
(2)你們知道:投籃時(shí),籃球運(yùn)動(dòng)的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時(shí)的高度?
從而引出課題《二次函數(shù)》,導(dǎo)入新課
(二)合作學(xué)習(xí),探索新知
為了更貼近生活,我先設(shè)計(jì)了兩個(gè)和實(shí)際生活有關(guān)的練習(xí)題。鼓勵(lì)學(xué)生積極發(fā)言,充分調(diào)動(dòng)學(xué)生的主動(dòng)性。然后出示課本上的兩個(gè)問題,在這個(gè)環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個(gè)解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。
學(xué)生在學(xué)習(xí)二次函數(shù)的概念時(shí)要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個(gè)函數(shù)是不是二次函數(shù)
(三)當(dāng)堂訓(xùn)練,鞏固提高
由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個(gè)體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個(gè)學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對(duì)所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡(jiǎn)的必須化簡(jiǎn)后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對(duì)二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。
(四).小結(jié)歸納,拓展轉(zhuǎn)化
讓學(xué)生用自己的`語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識(shí)條理化,進(jìn)一步掌握二次函數(shù)的概念。
(五)布置作業(yè),學(xué)以致用
作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識(shí),檢驗(yàn)學(xué)生掌握知識(shí)的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時(shí),選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.
四、評(píng)價(jià)分析
本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,加深對(duì)所學(xué)知識(shí)的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個(gè)學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢(shì)利導(dǎo),隨機(jī)應(yīng)變,適時(shí)調(diào)整教學(xué)環(huán)節(jié),實(shí)現(xiàn)評(píng)價(jià)主體和形式的多樣化,把握評(píng)價(jià)的時(shí)機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。
五、教學(xué)反思
1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。
2.本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時(shí)不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 3
【教學(xué)目標(biāo)】
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c的圖象.
2.會(huì)用配方法求拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對(duì)稱軸、y隨x的增減性.
3.能通過配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會(huì)建立二次函數(shù)y=ax2+bx+c(a≠0)對(duì)稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會(huì)由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).
【教學(xué)重點(diǎn)】
、儆门浞椒ㄇ髖=ax2+bx+c的頂點(diǎn)坐標(biāo);②會(huì)用描點(diǎn)法畫y=ax2+bx+c的圖象并能說出圖象的性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對(duì)稱性畫出二次函數(shù)y=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識(shí)
請(qǐng)同學(xué)們完成下列問題.
1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數(shù)y=-2x2+6x-1的開口方向,對(duì)稱軸及頂點(diǎn)坐標(biāo).
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的`圖象.
5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會(huì)y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對(duì)稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對(duì)稱軸右邊的部分圖象.
3.利用對(duì)稱點(diǎn),畫出對(duì)稱軸左邊的部分圖象.
探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 4
【教學(xué)目標(biāo)】
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認(rèn)識(shí)、理解和掌握其性質(zhì).
2.體會(huì)數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡(jiǎn)單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動(dòng)手畫圖,同學(xué)之間交流討論,達(dá)到對(duì)二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對(duì)數(shù)學(xué)的興趣,調(diào)動(dòng)學(xué)生的積極性.
【教學(xué)重點(diǎn)】
1.會(huì)畫y=ax2(a>0)的'圖象.
2.理解,掌握?qǐng)D象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會(huì)。
【教學(xué)過程】
一、情境導(dǎo)入,初步認(rèn)識(shí)
問題1 請(qǐng)同學(xué)們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點(diǎn)法畫一個(gè)函數(shù)圖象呢?
【教學(xué)說明】
、俾裕
、诹斜怼⒚椟c(diǎn)、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學(xué)說明】
①要求同學(xué)們?nèi)巳藙?dòng)手,按“列表、描點(diǎn)、連線”的步驟畫圖y=x2的圖象,同學(xué)們畫好后相互交流、展示,表揚(yáng)畫得比較規(guī)范的同學(xué).
、趶牧斜砗兔椟c(diǎn)中,體會(huì)圖象關(guān)于y軸對(duì)稱的特征.
、蹚(qiáng)調(diào)畫拋物線的三個(gè)誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢(shì).
誤區(qū)二:并非對(duì)稱點(diǎn),存在漏點(diǎn)現(xiàn)象,導(dǎo)致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點(diǎn)的同時(shí),還需要向兩旁無限延伸,而并非到某些點(diǎn)停止.
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 5
教學(xué)目標(biāo)
知識(shí)與技能
1.總結(jié)出二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間 的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
2.會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解.
過程與方法
經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
情感態(tài)度價(jià)值觀
通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步體會(huì)數(shù)形結(jié)合思想.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):方程與函數(shù)之間的聯(lián)系,會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解.
難點(diǎn):二次函數(shù)與x軸交 點(diǎn)的個(gè)數(shù)與一元二次方程的根的 個(gè)數(shù)之間的關(guān)系.
教學(xué)過程設(shè)計(jì)
。ㄒ唬﹩栴}的'提出與解決
問題 如圖,以40m/s的速度將 小球沿與地面成30°角的方向擊出時(shí),球的飛行路線將是一條拋物線. 如果不考慮空氣阻力,球的飛行高度h( 單位:m)與飛行時(shí)間t(單位:s)之間具有關(guān)系
h=20t—5t2
考慮以下問題
。1)球的飛行高度能否達(dá)到15m?如能,需要多少飛行時(shí)間?
。2)球 的飛行高度能否達(dá)到20m?如能,需要多少飛行時(shí)間?
。3)球的飛行高度能否達(dá)到20.5m?為什么?
。4)球從飛出到落地要用多 少時(shí)間?
分析:由于球的飛行高度h與飛行時(shí)間t的關(guān)系是二次函數(shù)
h=20t-5t2.
所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實(shí)際的解,則說明球的飛行高度可以達(dá)到問題中h的值:否則,說明球的飛行高度不能達(dá)到問題中h的值.
解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2= 3.
當(dāng)球飛行1s和3s時(shí),它的高度為15m.
。2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.
當(dāng)球飛行2s時(shí),它的高度為20m.
。3)解方程 20.5=20t-5t2. t2-4t+4.1=0
因?yàn)椋ǎ?)2-4×4.1<0>(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.
當(dāng)球飛行0s和4s時(shí),它的高度為0m,即0s時(shí)球從地面飛出.4s時(shí)球落回地面
播放課件:函數(shù)的圖像,畫出二次函數(shù)h=20t-5t2的圖象,觀察圖象,體會(huì)以上問題的答案.
從上面可以看出.二次函數(shù)與一元二次方程關(guān)系 密切.
由學(xué)生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?
例如:已知二次函數(shù)y =-x2+4x的值為3.求自變量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值.
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0.
。ǘ﹩栴}的討論
二次函數(shù)(1)y=x2+x-2;
。2) y=x2-6x+9;
(3) y=x2-x+0.
的圖象如圖26.2-2所示.
。1) 以上二次函數(shù)的圖象與x軸有公共點(diǎn)嗎?如果有,公共點(diǎn)的橫坐標(biāo)是多少?
。2)當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是多少?由 此,你能得出相應(yīng)的一元二次方程的根嗎?
先畫出以上二次函數(shù)的圖象,由圖像學(xué)生展開討論,
在老師的引導(dǎo)下回答以上的問題.
可播放課件:函數(shù)的圖像, 輸入a,b,c的值,劃出對(duì)應(yīng)的函數(shù)的圖像,觀察圖像,說出函數(shù)對(duì)應(yīng)方程的解.
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)是-2,1.當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是0 .由此得出方程x2+x-2=0的根是-2,1.
(2)拋物線y=x2-6x+9與x軸有一個(gè)公共點(diǎn),這點(diǎn)的橫坐標(biāo)是3.當(dāng)x=3時(shí),函數(shù)的值是0.由此得出方程x2-6x+9=0有兩個(gè)相等的實(shí)數(shù)根3.
。3)拋物線y=x2-x+1與x軸沒有公共點(diǎn), 由此可知,方程x 2-x+1=0沒有實(shí)數(shù)根.
總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根.
。ㄈw納
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,(1)如果拋物線y=ax2+bx+c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是 x0,那么當(dāng)x=x0時(shí),函數(shù)的值是0,因此x=x0就是方程ax 2+bx+c=0的一個(gè)根.
。2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn).這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根.
由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根.由 于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的
(四)例題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
解:作y=x2-2x-2的圖象(圖26.2-3),它與x軸的公共點(diǎn)的橫坐標(biāo)大約是-0.7,2.7.
所以方程x2-2x-2=0的實(shí)數(shù)根為x1≈-0.7,x2≈2.7.
播放課件:函數(shù)的圖象與求解一元二次方程的解,前一個(gè)課件用來畫圖,可根據(jù)圖像估計(jì)出方程x2-2x-2=0實(shí)數(shù)根的近似解,后一個(gè)課件可以準(zhǔn)確的求出方程的解,體會(huì)其中的差異.
。ㄎ澹┬〗Y(jié)
總結(jié)本節(jié)的知 識(shí)點(diǎn).
(六)板書設(shè)計(jì)
二次函數(shù)與一元二次方程
拋物線y=ax2+bx+c與方程a x2+bx +c=0的解之間的關(guān)系
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 6
教學(xué)目標(biāo):
1、使學(xué)生能利用描點(diǎn)法正確作出函數(shù)y=ax2+b的圖象。
2、讓學(xué)生經(jīng)歷二次函數(shù)y=ax2+b性質(zhì)探究的過程,理解二次函數(shù)y=ax2+b的性質(zhì)及它與函數(shù)y=ax2的關(guān)系。
教學(xué)重點(diǎn):
會(huì)用描點(diǎn)法畫出二次函數(shù)y=ax2+b的圖象,理解二次函數(shù)y=ax2+b的性質(zhì),理解函數(shù)y=ax2+b與函數(shù)y=ax2的相互關(guān)系。
教學(xué)難點(diǎn):
正確理解二次函數(shù)y=ax2+b的性質(zhì),理解拋物線y=ax2+b與拋物線y=ax2的關(guān)系。
教學(xué)過程:
一、提出問題導(dǎo)入新課
1.二次函數(shù)y=2x2的圖象具有哪些性質(zhì)?
2.猜想二次函數(shù)y=2x2+1的圖象與二次函數(shù)y=2x2的圖象開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)是否相同?
二、學(xué)習(xí)新知
1、問題1:畫出函數(shù)y=2x2和函數(shù)y=2x2+1的圖象,并加以比較
問題2,你能在同一直角坐標(biāo)系中,畫出函數(shù)y=2x2與y=2x2+1的圖象嗎?
同學(xué)試一試,教師點(diǎn)評(píng)。
問題3:當(dāng)自變量x取同一數(shù)值時(shí),這兩個(gè)函數(shù)的函數(shù)值(既y)之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個(gè)點(diǎn)之間的`位置又有什么關(guān)系?
讓學(xué)生觀察兩個(gè)函數(shù)圖象,說出函數(shù)y=2x2+1與y=2x2的圖象開口方向、對(duì)稱軸相同,頂點(diǎn)坐標(biāo),函數(shù)y=2x2的圖象的頂點(diǎn)坐標(biāo)是(0,0),而函數(shù)y=2x2+1的圖象的頂點(diǎn)坐標(biāo)是(0,1)。
師:你能由函數(shù)y=2x2的性質(zhì),得到函數(shù)y=2x2+1的一些性質(zhì)嗎?
小組相互說說(一人記錄,其余組員補(bǔ)充)
2、小組匯報(bào):分組討論這個(gè)函數(shù)的性質(zhì)并歸納:當(dāng)x<0時(shí),函數(shù)值y隨x的增大而減;當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大,當(dāng)x=0時(shí),函數(shù)取得最小值,最小值y=1。
3、做一做
在同一直角坐標(biāo)系中畫出函數(shù)y=2x2-2與函數(shù)y=2x2的圖象,再作比較,說說它們有什么聯(lián)系和區(qū)別?
三、小結(jié)
1、在同一直角坐標(biāo)系中,函數(shù)y=ax2+k的圖象與函數(shù)y=ax2的圖象具有什么關(guān)系?
2、你能說出函數(shù)y=ax2+k具有哪些性質(zhì)?
四、作業(yè): 在同一直角坐標(biāo)系中,畫出 (1)y=-2x2與y=-2x2-2;的圖像
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 7
教學(xué)目標(biāo):
會(huì)用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識(shí)相結(jié)合的綜合題。
重點(diǎn)難點(diǎn):
重點(diǎn);用待定系數(shù)法求函數(shù)的解析式、運(yùn)用配方法確定二次函數(shù)的特征。
難點(diǎn):會(huì)運(yùn)用二次函數(shù)知識(shí)解決有關(guān)綜合問題。
教學(xué)過程:
一、例題精析,強(qiáng)化練習(xí),剖析知識(shí)點(diǎn)
用待定系數(shù)法確定二次函數(shù)解析式.
例:根據(jù)下列條件,求出二次函數(shù)的解析式。
。1)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(0,1),(1,3),(-1,1)三點(diǎn)。
。2)拋物線頂點(diǎn)P(-1,-8),且過點(diǎn)A(0,-6)。
(3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點(diǎn),并且以x=1為對(duì)稱軸。
(4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點(diǎn);且過(1,1),求這個(gè)二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。
學(xué)生活動(dòng):學(xué)生小組討論,題目中的四個(gè)小題應(yīng)選擇什么樣的函數(shù)解析式?并讓學(xué)生闡述解題方法。
教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)
。2)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)
當(dāng)已知拋物線上任意三點(diǎn)時(shí),通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。
當(dāng)已知拋物線的頂點(diǎn)與拋物線上另一點(diǎn)時(shí),通常設(shè)為頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k形式。
當(dāng)已知拋物線與x軸的`交點(diǎn)或交點(diǎn)橫坐標(biāo)時(shí),通常設(shè)為兩根式y(tǒng)=a(x-x1)(x-x2)
強(qiáng)化練習(xí):已知二次函數(shù)的圖象過點(diǎn)A(1,0)和B(2,1),且與y軸交點(diǎn)縱坐標(biāo)為m。
。1)若m為定值,求此二次函數(shù)的解析式;
。2)若二次函數(shù)的圖象與x軸還有異于點(diǎn)A的另一個(gè)交點(diǎn),求m的取值范圍。
二、知識(shí)點(diǎn)串聯(lián),綜合應(yīng)用
例:如圖,拋物線y=ax2+bx+c過點(diǎn)A(-1,0),且經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 8
一、教材分析
1、教材的地位和作用
二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式——定義域——圖象——性質(zhì)的方法進(jìn)行的,基于這種情況,我認(rèn)為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來進(jìn)一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來推斷函數(shù)圖象。它可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。
2、教學(xué)的重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、性質(zhì)和圖象;從函數(shù)的性質(zhì)推斷圖象的方法。
教學(xué)難點(diǎn):掌握從函數(shù)的性質(zhì)推斷圖象的方法。
二、目標(biāo)分析
按照新課標(biāo)指出三維目標(biāo),根據(jù)任教班級(jí)學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:
1、知識(shí)與技能:掌握二次函數(shù)的性質(zhì)與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。
2、過程與方法:通過老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識(shí)函數(shù)圖象的高度理解和研究函數(shù)的方法。
3、情感、態(tài)度、價(jià)值觀:讓學(xué)生感受數(shù)學(xué)思想方法之美、體會(huì)數(shù)學(xué)思想方法之重要;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識(shí)等。
三、教法學(xué)法分析
遵循“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,從教師的角色突出體現(xiàn)教師是設(shè)計(jì)者、組織者、引導(dǎo)者、合作者,經(jīng)過教師對(duì)教材的分析理解,在教師的組織引導(dǎo)和師生互動(dòng)過程中以問題為載體實(shí)施整個(gè)教學(xué)過程;在學(xué)生這方面,通過自主探索、合作交流、歸納方法等一系列活動(dòng)為主線,感受知識(shí)的形成過程,拓展和完善自己的認(rèn)知結(jié)構(gòu),進(jìn)而體現(xiàn)出教學(xué)過程中教師與學(xué)生的雙主體作用。
四、教學(xué)過程分析
根據(jù)新課標(biāo)的理念,我把整個(gè)的教學(xué)過程分為六個(gè)階段,即:創(chuàng)設(shè)情景、提出問題;師生互動(dòng)、探究新知;獨(dú)立探究,鞏固方法;強(qiáng)化訓(xùn)練,加深理解;小結(jié)歸納,拓展深化;布置作業(yè),提高升華。
環(huán)節(jié)1本節(jié)課一開始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象形狀,在學(xué)生回答后,以有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?的設(shè)問來激發(fā)學(xué)生的求知欲,在學(xué)生感覺很疑惑的時(shí)候馬上進(jìn)入環(huán)節(jié)2:試作出二次函數(shù)
的圖象。目的是充分暴露學(xué)生在作圖時(shí)不能很好的結(jié)合函數(shù)的性質(zhì)而出現(xiàn)的錯(cuò)誤或偏差問題,突出本節(jié)課的重要性。在學(xué)生總結(jié)交流的基礎(chǔ)上教師指出學(xué)生的錯(cuò)誤并以設(shè)問的方式提出本節(jié)課的目標(biāo):如何利用函數(shù)性質(zhì)的'研究來推斷出較為準(zhǔn)確的函數(shù)圖象,進(jìn)而引導(dǎo)學(xué)生進(jìn)入師生互動(dòng)、探究新知階段。
在這個(gè)階段,我引用課本所給的例題1請(qǐng)同學(xué)們以學(xué)習(xí)小組為單位嘗試完成并作出總結(jié)發(fā)言。目的是:讓學(xué)生充分參與,在合作探究中讓學(xué)生最大限度地突破目標(biāo)或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質(zhì)對(duì)圖象的影響,不能把抽象的性質(zhì)與直觀的圖象融會(huì)貫通,這樣便于教師在與學(xué)生互動(dòng)的過程中準(zhǔn)確把握難點(diǎn),各個(gè)擊破,最終形成知識(shí)的遷移。在學(xué)生探討后,教師選小組代表做總結(jié)發(fā)言,其他小組作出補(bǔ)充,教師引導(dǎo)從逐步完善函數(shù)性質(zhì)的分析。其中,學(xué)生對(duì)于對(duì)稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時(shí)教師可以利用對(duì)解析式的分析結(jié)合多媒體演示引導(dǎo)學(xué)生得到分析的思路和解決的方法,在師生互動(dòng)的過程中把函數(shù)的性質(zhì)完善。之后進(jìn)入環(huán)節(jié)3:再次讓學(xué)生利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象,強(qiáng)化用二次函數(shù)的性質(zhì)推斷圖象的關(guān)鍵。進(jìn)而突破教學(xué)難點(diǎn)。讓學(xué)生真正實(shí)現(xiàn)知識(shí)的遷移,完成整個(gè)探究過程,形成較為完整的新的認(rèn)知體系.當(dāng)然,在這個(gè)過程中可能會(huì)有學(xué)生提出圖象為什么是曲線而不是直線等問題,為了消除學(xué)生的疑惑,進(jìn)入第4個(gè)環(huán)節(jié):教師要簡(jiǎn)單說明這是研究函數(shù)要考慮的一個(gè)重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,同學(xué)們可以閱讀課本第110頁的探索與研究。這樣也給學(xué)生留下一個(gè)思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
在以上環(huán)節(jié)完成后,進(jìn)入第5個(gè)環(huán)節(jié):讓學(xué)生對(duì)利用解析式分析性質(zhì)然后推斷函數(shù)圖象的研究過程進(jìn)行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學(xué)生的思維,將新知識(shí)內(nèi)化到自己的認(rèn)知結(jié)構(gòu)中去.最終尋求到解決問題的方法。
教學(xué)的最終目標(biāo)應(yīng)該落實(shí)到每一個(gè)學(xué)生個(gè)體的內(nèi)化與發(fā)展,由此讓引導(dǎo)學(xué)生進(jìn)入獨(dú)立探究,鞏固方法的階段。例2在題目的設(shè)置上變換二次函數(shù)的開口方向,目的是一方面使學(xué)生加深對(duì)知識(shí)的理解,完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.學(xué)生在例1的基礎(chǔ)上將會(huì)目標(biāo)明確地進(jìn)行函數(shù)性質(zhì)的研究,然后推斷出比較準(zhǔn)確的函數(shù)圖象,使新知得到有效鞏固.
通過前面三個(gè)階段的學(xué)習(xí),學(xué)生應(yīng)該基本掌握了本節(jié)課的相關(guān)知識(shí)。但對(duì)二次函數(shù)中系數(shù)a、b、c的對(duì)二次函數(shù)的影響還有待提高,為此我把課本中的例3進(jìn)行改編,引導(dǎo)學(xué)生進(jìn)入強(qiáng)化訓(xùn)練,加深理解階段。一方面可以解決學(xué)生對(duì)奇偶性的質(zhì)疑,另一方面也可以把學(xué)生對(duì)二次函數(shù)的認(rèn)識(shí)提到新的高度。
第五個(gè)階段:小結(jié)歸納,拓展深化。為了讓學(xué)生能夠站在更高的角度認(rèn)識(shí)二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導(dǎo)學(xué)生從兩個(gè)方面總結(jié)。在你對(duì)函數(shù)圖象與性質(zhì)的關(guān)系有怎樣的理解方面教師要引導(dǎo)、拓展,明確今天所學(xué)習(xí)的方法實(shí)際上是研究函數(shù)性質(zhì)圖象的一般方法,對(duì)于一些陌生的或較為復(fù)雜的函數(shù)只要借助于適當(dāng)?shù)姆椒ǖ玫较嚓P(guān)的性質(zhì)就可以推斷出函數(shù)的圖象,從而把學(xué)生的認(rèn)知水平定格在一個(gè)新的高度去理解和認(rèn)識(shí)函數(shù)問題。
最后一個(gè)階段是布置作業(yè),提高升華,作業(yè)的設(shè)置是分層落實(shí).鞏固題讓學(xué)生復(fù)習(xí)解題思路,準(zhǔn)確應(yīng)用,以便舉一反三.探究題通過對(duì)教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問題、解決問題的能力.
以上六個(gè)階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)手操作,動(dòng)眼觀察,動(dòng)腦思考,親身經(jīng)歷了知識(shí)的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學(xué)生興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)二次函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸?傊@節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設(shè)計(jì)的。
【數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案】相關(guān)文章:
二次函數(shù)數(shù)學(xué)教案[優(yōu)秀]06-30
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案(通用11篇)11-11
二次函數(shù)數(shù)學(xué)教案(薦)06-30
(優(yōu)選)二次函數(shù)數(shù)學(xué)教案06-30
二次函數(shù)數(shù)學(xué)教案(15篇)03-01