(集合)初中數(shù)學(xué)設(shè)計(jì)教案
作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。我們應(yīng)該怎么寫(xiě)教案呢?以下是小編為大家整理的初中數(shù)學(xué)設(shè)計(jì)教案,歡迎閱讀與收藏。
初中數(shù)學(xué)設(shè)計(jì)教案1
[教學(xué)目標(biāo)]
1. 認(rèn)識(shí)平面直角坐標(biāo)系,了解點(diǎn)的坐標(biāo)的意義,會(huì)用坐標(biāo)表示點(diǎn),能畫(huà)出點(diǎn)的坐標(biāo)位
2. 滲透對(duì)應(yīng)關(guān)系,提高學(xué)生的數(shù)感.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):平面直角坐標(biāo)系和點(diǎn)的坐標(biāo).
難點(diǎn):正確畫(huà)坐標(biāo)和找對(duì)應(yīng)點(diǎn).
[教學(xué)設(shè)計(jì)]
[設(shè)計(jì)說(shuō)明]
一.利用已有知識(shí),引入
1.如圖,怎樣說(shuō)明數(shù)軸上點(diǎn)A和點(diǎn)B的位置,
2.根據(jù)下圖,你能正確說(shuō)出各個(gè)象棋子的位置嗎?
二.明確概念
平面直角坐標(biāo)系:平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系(rectangular coordinate system).水平的數(shù)軸稱(chēng)為x軸(x-axis)或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸為y軸(y-axis)或縱軸,取向上方向?yàn)?/p>
由數(shù)軸的表示引入,到兩個(gè)數(shù)軸和有序數(shù)對(duì)。
從學(xué)生熟悉的物品入手,引申到平面直角坐標(biāo)系。
描述平面直角坐標(biāo)系特征和畫(huà)法
正方向;兩個(gè)坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的`坐標(biāo):我們用一對(duì)有序數(shù)對(duì)表示平面上的點(diǎn),這對(duì)數(shù)叫坐標(biāo)。表示方法為(a,b).a是點(diǎn)對(duì)應(yīng)橫軸上的數(shù)值,b是點(diǎn)在縱軸上對(duì)應(yīng)的數(shù)值。
例1 寫(xiě)出圖中A、B、C、D點(diǎn)的坐標(biāo)。
建立平面直角坐標(biāo)系后,平面被坐標(biāo)軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
你能說(shuō)出例1中各點(diǎn)在第幾象限嗎?
例2 在平面直角坐標(biāo)系中描出下列各點(diǎn)。
。ǎ〢(3,4);B(-1,2);C(-3,-2);D(2,-2)
問(wèn)題1:各象限點(diǎn)的坐標(biāo)有什么特征?
練習(xí):教材49頁(yè):練習(xí)1,2。
三.深入探索
教材48頁(yè):探索:
識(shí)別坐標(biāo)和點(diǎn)的位置關(guān)系,以及由坐標(biāo)判斷兩點(diǎn)的關(guān)系以及兩點(diǎn)所確定的直線的位置關(guān)系。
[鞏固練習(xí)]
1. 教材49頁(yè)習(xí)題6.1——第1題
2. 教材50頁(yè)——第2,4,5,6。
[小結(jié)]
1. 平面直角坐標(biāo)系;
2. 點(diǎn)的坐標(biāo)及其表示
3. 各象限內(nèi)點(diǎn)的坐標(biāo)的特征
4. 坐標(biāo)的簡(jiǎn)單應(yīng)用
[作業(yè)]
必做題:教科書(shū)50頁(yè):3題
。ń滩51頁(yè)綜合運(yùn)用7,8,9,10為練習(xí)課內(nèi)容)
明確點(diǎn)的坐標(biāo)的表示法
仿照例題,畫(huà)坐標(biāo)軸,描點(diǎn),要求能正確畫(huà)平面直角坐標(biāo)系
通過(guò)探究,發(fā)現(xiàn)坐標(biāo)不但能代表點(diǎn)的位置,而且能反映他所在的直線的特征
初中數(shù)學(xué)設(shè)計(jì)教案2
一、教學(xué)目的
1.通過(guò)對(duì)多個(gè)實(shí)際問(wèn)題的分析,使學(xué)生體會(huì)到一元一次方程作為實(shí)際問(wèn)題的數(shù)學(xué)模型的作用。
2.使學(xué)生會(huì)列一元一次方程解決一些簡(jiǎn)單的應(yīng)用題。
3.會(huì)判斷一個(gè)數(shù)是不是某個(gè)方程的解。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):會(huì)列一元一次方程解決一些簡(jiǎn)單的應(yīng)用題。
2.難點(diǎn):弄清題意,找出“相等關(guān)系”。
三、教學(xué)過(guò)程
(一)復(fù)習(xí)提問(wèn)
一本筆記本1.2元。小紅有6元錢(qián),那么她最多能買(mǎi)到幾本這樣的筆記本呢?
解:設(shè)小紅能買(mǎi)到工本筆記本,那么根據(jù)題意,得1.2x=6。
因?yàn)?.2×5=6,所以小紅能買(mǎi)到5本筆記本。
(二)新授
問(wèn)題1:某校初中一年級(jí)328名師生乘車(chē)外出春游,已有2輛校車(chē)可以乘坐64人,還需租用44座的`客車(chē)多少輛?(讓學(xué)生思考后,回答,教師再作講評(píng))
算術(shù)法:(328-64)÷44=264÷44=6(輛)。
列方程:設(shè)需要租用x輛客車(chē),可得解這個(gè)方程,就能得到所求的結(jié)果。
問(wèn):你會(huì)解這個(gè)方程嗎?試試看?
問(wèn)題2:在課外活動(dòng)中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問(wèn)同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過(guò)分析,列出方程:13+x=(45+x)。
問(wèn):你會(huì)解這個(gè)方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,因?yàn)樽筮?右邊,所以x=3就是這個(gè)方程的解。
這種通過(guò)試驗(yàn)的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗(yàn)一下一個(gè)數(shù)是不是方程的解。
問(wèn):若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動(dòng)手試一試,大家發(fā)現(xiàn)了什么問(wèn)題?
同樣,用檢驗(yàn)的方法也很難得到方程的解,因?yàn)檫@里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗(yàn)根本無(wú)法人手,又該怎么辦?
四、鞏固練習(xí)
教科書(shū)習(xí)題
五、小結(jié)
本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實(shí)際問(wèn)題。談?wù)勀愕膶W(xué)習(xí)體會(huì)。
初中數(shù)學(xué)設(shè)計(jì)教案3
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問(wèn)題解決問(wèn)題。
利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問(wèn)題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
在探索中體驗(yàn)數(shù)學(xué)來(lái)源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過(guò)合作學(xué)習(xí)獲得成功,樹(shù)立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。
教學(xué)過(guò)程:
(一)引入:
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:
。1)如何畫(huà)圖
。2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)
(3)所形成的三角形以及四邊形的面積
。4)對(duì)稱(chēng)軸
從上面的問(wèn)題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。
。ㄈ┨岣呔毩(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
讓班級(jí)中的上科院小院士來(lái)簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W(xué)生討論小結(jié)(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標(biāo)平面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
。1)求二次函數(shù)的解析式;
。2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求 POC的面積。
2、如圖,一個(gè)二次函數(shù)的.圖象與直線y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個(gè)二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長(zhǎng),DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱(chēng)軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系,如圖2。
(1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫(xiě)出函數(shù)定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米)
初中數(shù)學(xué)設(shè)計(jì)教案4
教學(xué)目標(biāo):
知識(shí)與技能:經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,體會(huì)出從不同方向看同一物體,可能看到不同的結(jié)果;能識(shí)別從不同方向看幾何體得到相應(yīng)的平面圖形。
過(guò)程與方 法:通過(guò)觀察能畫(huà)出不同角度看到的平面圖形(三視圖)。
情感態(tài)度與價(jià)值觀:體會(huì)視圖是描述幾何體的重要工具,使學(xué)生明白看待事物時(shí),要從多個(gè)方面進(jìn)行。
教學(xué)重點(diǎn):學(xué)會(huì)從不同方向看實(shí)物的方法,畫(huà)出三視圖。
教學(xué)難點(diǎn):畫(huà)出三視圖,由三 視圖判斷幾何體。
教材分析:本節(jié)內(nèi)容是研究立體圖形的又一重要手 段,是一種獨(dú)立的研究方法,與前后知識(shí)聯(lián)系不大,學(xué)好本課的關(guān)鍵是尊重視覺(jué)效果,把立體圖形映射成平面圖形,其間要進(jìn)行三維到二維這一實(shí)質(zhì)性的變化。在由三視圖還原立體圖形時(shí),更需要一個(gè)較長(zhǎng)過(guò)程,所以本節(jié)用學(xué)生比較熟悉的幾何體來(lái)降低難度。
教學(xué)方法:情境引入 合作 探究
教學(xué)準(zhǔn)備:課件,多組簡(jiǎn)單實(shí)物、模型。
課時(shí)安排:1課時(shí)
環(huán)節(jié) 教 師 活 動(dòng) 學(xué)生活動(dòng) 設(shè) 計(jì) 意 圖
創(chuàng)
設(shè)
情
境 教師播放多媒體課件,演示廬山景觀,請(qǐng)學(xué)生背誦蘇東坡《題西林壁》, 并說(shuō)說(shuō)詩(shī)中意境。
并出現(xiàn):橫看成嶺側(cè)成峰,
遠(yuǎn)近高低各不同。
不識(shí)廬山真面目,
只緣身在此山中。
觀賞美景
思考“嶺”與“峰”的區(qū)別。 跨越學(xué)科界限,營(yíng)造一個(gè)嶄新的教學(xué)學(xué)習(xí)氛圍,并從中挖掘蘊(yùn)含的數(shù)學(xué)道理。
新
課
探
究
一
1、教師出示事先準(zhǔn)備好的實(shí)物組合體,請(qǐng)三名學(xué)生分別站在講臺(tái)的左側(cè)、右側(cè)和正前方觀察,并讓他們畫(huà)出草圖,其他學(xué)生分成三組,分別對(duì)應(yīng)三個(gè)同學(xué),也分別畫(huà)出 所見(jiàn)圖形的草圖。
2、看課本13頁(yè)“觀察與思考”。
圖:
你能說(shuō)出情景的先后順序嗎?你是通過(guò)哪些特征得出這個(gè)結(jié)論的?
總結(jié):通過(guò)以前經(jīng)驗(yàn),我們可知,從不同的方向看物體,可能看到不同圖形。
3、從實(shí)際生活中舉例。
觀察,動(dòng)手畫(huà)圖。
學(xué)生觀察圖片,把圖片按時(shí)間先后排序。
利用身邊的事物,有助于學(xué)生積極主動(dòng)參與,激發(fā)學(xué)生潛能,感受新知。
讓學(xué)生感知文本提高自學(xué)能力。
利于拓寬學(xué)生思維。
新
課
探
究
二 1、感知文本。學(xué)生閱讀13頁(yè)“觀察與思考2”,
圖:
2、上升到理性知識(shí):
。1)從上面看到的圖形叫俯視圖;
。2)從左面看到的圖形叫左視圖;
(3)右正面看到的圖形叫主視圖;
3、練一練:分別畫(huà)出14頁(yè)三種立體圖形的三視圖,并回答課本上 三個(gè)問(wèn)題。(強(qiáng)調(diào)上下左右的方位不要出錯(cuò)) 學(xué)生閱讀,想象。
學(xué)生分組練習(xí),合作交流。 把已有經(jīng)驗(yàn)重新建構(gòu)。
感性知識(shí)上升到理性知識(shí) 。
體會(huì)學(xué)習(xí)成果,使學(xué)生產(chǎn)生成功的喜 悅。
新課探究三 1、連線,把左面的`三視圖與右邊的立體圖形連接起來(lái)。
主視圖 俯視圖 左視圖 立體圖形
2、歸納:多媒體課件演示
先由其中的兩個(gè)圖為依據(jù),進(jìn)行組合,用第三個(gè)圖進(jìn)行檢驗(yàn)。
學(xué)生自己先獨(dú)立思考,得出答案后,小組之間合作交流,互相評(píng)價(jià)。
以小組為單位討論思考問(wèn)題的方法。
把由空間到平面的轉(zhuǎn)化過(guò)程逆轉(zhuǎn)回去,充分利用本課前階段的感知,可以降低難度。
課堂反饋
1、考查學(xué)生的基礎(chǔ)題。
2、用小立方體搭成一個(gè)幾何體,使它的主視圖和俯視圖如圖所示, 搭建這樣的幾何體,最多需要幾個(gè)小立方體?至少需要幾個(gè)小立方體?
主視圖 俯視圖 學(xué)生獨(dú)立自檢
學(xué)生總結(jié)出以俯視圖為基礎(chǔ) ,在方格上標(biāo)出數(shù)字。
簡(jiǎn)單知識(shí),基本方法的綜合
課堂總結(jié)
1、學(xué)習(xí)到什么知識(shí)?
2、學(xué)習(xí)到什么方法?
3、哪些知識(shí)是自己發(fā)現(xiàn)的?
4、哪些知識(shí)是討論得出的?
學(xué)生反思
歸納 讓學(xué)生有成功喜悅,重視與他人合作。
附:板書(shū)設(shè)計(jì)
1.4 從不同方向看幾何體
教學(xué)反思:
從 蘇東坡的詩(shī)詞《題西林壁》引,配以多彩的畫(huà)面,為學(xué)生營(yíng)造一個(gè)寬松、生動(dòng)的教學(xué)環(huán)境。通過(guò)學(xué)生分組討論,動(dòng)手操作,師生、學(xué)生之間的合作交流,并輔以多媒體課件的合理應(yīng)用,讓學(xué)生完全處于一種高參與狀態(tài)。最終實(shí)現(xiàn) 了素材與實(shí)際相結(jié)合,經(jīng)驗(yàn)與挑戰(zhàn)相作用,立體與平面相轉(zhuǎn)換。本課中引入了課本中沒(méi)有而學(xué)生也能接受的三個(gè)概念:主視圖、俯視圖、左視圖。教者很難把握學(xué)生的
初中數(shù)學(xué)設(shè)計(jì)教案5
一、內(nèi)容和內(nèi)容解析
。ㄒ唬﹥(nèi)容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡(jiǎn)單不等式的解集.
(二)內(nèi)容解析
現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見(jiàn)行程問(wèn)題的不等關(guān)系,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過(guò)對(duì)實(shí)例的進(jìn)一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個(gè)概念.前面學(xué)過(guò)方程、方程的解、解方程的概念.通過(guò)類(lèi)比教學(xué)、不等式、不等式的解、解不等式幾個(gè)概念不難理解.但是對(duì)于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進(jìn)行數(shù)形結(jié)合,用數(shù)軸來(lái)表示不等式的解集,這樣直觀形象的表示不等式的解集,對(duì)理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學(xué)重點(diǎn)是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標(biāo)和目標(biāo)解析
。ㄒ唬┙虒W(xué)目標(biāo)
1.理解不等式的概念
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系
3.了解解不等式的概念
4.用數(shù)軸來(lái)表示簡(jiǎn)單不等式的解集
(二)目標(biāo)解析
1.達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達(dá)成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個(gè)元素,而解集是所有解組成的一個(gè)集合.
3.達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過(guò)程.
4、達(dá)成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個(gè)重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時(shí),要掌握好“兩定”:一是定界點(diǎn),一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可,邊界點(diǎn)含于解集中用實(shí)心圓點(diǎn),或者用空心圓點(diǎn);二是定方向,小于向左,大于向右.
三、教學(xué)問(wèn)題診斷分析
本節(jié)課實(shí)質(zhì)是一節(jié)概念課,對(duì)于不等式、不等式的解以及解不等式可通過(guò)類(lèi)比方程、方程的解、解方程類(lèi)比教學(xué),學(xué)生不難理解,但是對(duì)不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學(xué)支持條件分析
利用多媒體直觀演示課前引入問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣.
五、教學(xué)過(guò)程設(shè)計(jì)
(一)動(dòng)畫(huà)演示情景激趣多媒體演示:兩個(gè)體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個(gè)大人上去,蹺蹺板發(fā)生了傾斜,游戲無(wú)法繼續(xù)進(jìn)行下去了,這是什么原因呢?設(shè)計(jì)意圖:通過(guò)實(shí)例創(chuàng)設(shè)情境,從“等”過(guò)渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.
。ǘ┝⒆銓(shí)際引出新知
問(wèn)題一輛勻速行駛的汽車(chē)在11︰20距離a地50km,要在12︰00之前駛過(guò)a地,車(chē)速應(yīng)滿(mǎn)足什么條件?
小組討論,合作交流,然后小組反饋交流結(jié)果.最后,老師將小組反饋意見(jiàn)進(jìn)行整理(學(xué)生沒(méi)有討論出來(lái)的思路老師進(jìn)行補(bǔ)充)
1.從時(shí)間方面慮:
2.從行程方面:<>50 3.從速度方面考慮:x>50÷
設(shè)計(jì)意圖:培養(yǎng)學(xué)生合作、交流的意識(shí)習(xí)慣,使他們積極參與問(wèn)題的討論,并敢于發(fā)表自己的見(jiàn)解.老師對(duì)問(wèn)題解決方法的梳理與補(bǔ)充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
。ㄈ┚o扣問(wèn)題概念辨析
1.不等式
設(shè)問(wèn)1:什么是不等式?
設(shè)問(wèn)2:能否舉例說(shuō)明?由學(xué)生自學(xué),老師可作適當(dāng)補(bǔ)充.比如:是不等式.
2.不等式的解
設(shè)問(wèn)1:什么是不等式的解?設(shè)問(wèn)
2:不等式的解是唯一的嗎?由學(xué)生自學(xué)再討論.
老師點(diǎn)撥:由x>50÷得x>75說(shuō)明x任意取一個(gè)大于75的數(shù)都是不等式
3.不等式的解集
設(shè)問(wèn)1:什么是不等式的解集?<,>50的.解.<,>50,x>50÷都設(shè)問(wèn)
2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學(xué)生自學(xué)后再小組合作交流.
老師點(diǎn)撥:不等式的解是不等式解集中的一個(gè)元素,而不等式的解集是不等式所有解組成的一個(gè)集合.
4.解不等式
設(shè)問(wèn)1:什么是解不等式?由學(xué)生回答.
老師強(qiáng)調(diào):解不等式是一個(gè)過(guò)程.
設(shè)計(jì)意圖:培養(yǎng)學(xué)生的自學(xué)能力,進(jìn)一步培養(yǎng)學(xué)生合作交流的意識(shí).遵循學(xué)生的認(rèn)知規(guī)律,有意識(shí)、有計(jì)劃、有條理地設(shè)計(jì)一些問(wèn)題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺(jué)中接受了新知識(shí).老師再適當(dāng)點(diǎn)撥,加深理解.
。ㄋ模⿺(shù)形結(jié)合,深化認(rèn)識(shí)
問(wèn)題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問(wèn)題
2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準(zhǔn)確性.老師適當(dāng)補(bǔ)充:“≥”與“≤”的意義,并強(qiáng)調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式.
設(shè)計(jì)意圖:通過(guò)數(shù)軸的直觀讓學(xué)生對(duì)不等式的解集進(jìn)一步加深理解,滲透數(shù)形結(jié)合思想.
。ㄎ澹w納小結(jié),反思
提高教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答如下問(wèn)題
1、什么是不等式?
。嫉慕饧,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?
4、用數(shù)軸表示不等式的解集要注意哪些方面?
設(shè)計(jì)意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗(yàn).
(六)布置作業(yè),課外反饋
教科書(shū)第119頁(yè)第1題,第120頁(yè)第2,3題.
設(shè)計(jì)意圖:通過(guò)課后作業(yè),教師及時(shí)了解學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,以便對(duì)教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整.
六、目標(biāo)檢測(cè)設(shè)計(jì)1.填空
下列式子中屬于不等式的有___________________________
、賦 +7>
、冖趚≥ y + 2 = 0④ 5x + 7設(shè)計(jì)意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進(jìn)一步鞏固不等式的概念.
2.用不等式表示① a與5的和小于7 ② a的與b的3倍的和是非負(fù)數(shù)
、壅叫蔚倪呴L(zhǎng)為xcm,它的周長(zhǎng)不超過(guò)160cm,求x滿(mǎn)足的條件設(shè)計(jì)意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負(fù)數(shù)(正數(shù)或負(fù)數(shù))、不超過(guò)(不低于)”等等,正確選擇不等號(hào),又要注意實(shí)際問(wèn)題中的數(shù)量的實(shí)際意義.
初中數(shù)學(xué)設(shè)計(jì)教案6
教材分析
1.本節(jié)在引言中的方程基礎(chǔ)上,首先通過(guò)兩個(gè)實(shí)際問(wèn)題,進(jìn)一步引出一元二次方程的具體例子,然后引導(dǎo)學(xué)生觀察出它們的共同點(diǎn),得出一元二次方程的定義。
2.書(shū)中的定義是以未知數(shù)的個(gè)數(shù)和次數(shù)為標(biāo)準(zhǔn),用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本節(jié)始終都有列方程的內(nèi)容,這樣安排一方面是分散列方程這一教學(xué)難點(diǎn),化整為零地培養(yǎng)由實(shí)際問(wèn)題抽象出方程模型的'能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。
學(xué)情分析
1、通過(guò)課堂練習(xí),大部分學(xué)生對(duì)概念基本理解,能夠找出各項(xiàng)系數(shù),但有少數(shù)學(xué)困生對(duì)于系數(shù)符號(hào)沒(méi)有掌握。
2、部分學(xué)生由于基礎(chǔ)較薄弱,用一元二次方程解決實(shí)際問(wèn)題有一定的難度,解決這問(wèn)題要以多練為主。
3、學(xué)生認(rèn)知障礙點(diǎn):一元二次方程與不等式和整式的綜合運(yùn)用能力有待提高。
教學(xué)目標(biāo)
1、從實(shí)際問(wèn)題引出一元二次方程,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力及用數(shù)學(xué)的意識(shí)。
2、使學(xué)生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉(zhuǎn)化為一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
3、通過(guò)概念教學(xué),培養(yǎng)學(xué)生的觀察、類(lèi)比、歸納能力,同時(shí)通過(guò)變式練習(xí),使學(xué)生對(duì)概念理解具備完整性和深刻性。
教學(xué)重點(diǎn)和難點(diǎn)
1、重點(diǎn):概念的形成及一般形式。
2、難點(diǎn):從實(shí)際問(wèn)題引出一元二次方程;正確識(shí)別一般形式中的“項(xiàng)”及“系數(shù)”。
初中數(shù)學(xué)設(shè)計(jì)教案7
教學(xué)目標(biāo):
1.使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力
2.通過(guò)矩形判定的教學(xué)滲 透矛盾可以互相轉(zhuǎn)化的唯物辯證法思想
教法設(shè)計(jì):觀察、啟發(fā)、總結(jié)、提高,類(lèi)比探討,討 論分析,啟 發(fā)式.
教學(xué)重點(diǎn):矩形的判定.
教學(xué)難點(diǎn):矩形的 判定及性質(zhì)的綜合應(yīng)用.
教具學(xué)具準(zhǔn)備:教具(一個(gè)活動(dòng)的平行四邊形)
教學(xué)步驟:
一.復(fù)習(xí)提問(wèn):
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
二.引入新課
設(shè)問(wèn):1.矩形的判定.
2.矩形是有一個(gè)角是直角的平行四 邊形,在判定一個(gè)四邊形是不是矩 形 ,首先看這個(gè)四邊形是不是平行四邊 形,再看它兩邊的夾角是不是直角,這種用“定義”判定是最重要和最基本的判定方法(這 體現(xiàn)了定義作用的雙重性、性質(zhì)和判定).除此之外,還有其它 幾種判定矩形的方法,下面就來(lái)研究這 些方法.
方法1:有三個(gè)角是直角的四邊形是矩形.(并讓學(xué)生寫(xiě)出推理過(guò)程。)
矩形判定方法2:對(duì)角錢(qián)相等的平行四邊形是矩形.(分析判定方法2和學(xué)生 一道寫(xiě)出證明過(guò)程。)
歸納矩形判定方法(由學(xué)生小 結(jié)):
。1)一個(gè)角是直角的平行四邊形.(2)對(duì)角線相等的平行四邊形.
。3)有三個(gè)角是直角的四邊形.
2 .矩形判定方法的實(shí)際應(yīng)用
除教材中所舉的門(mén)框或矩形零件外,還可以結(jié)合生產(chǎn)生活實(shí)際說(shuō)明判定矩形的實(shí)用價(jià)值.
3.矩形知識(shí)的綜合應(yīng)用。(讓學(xué)生思考,然后師生共同完成)
例:已知 的對(duì)角線 , 相交于
,△ 是等邊三角形, ,求這個(gè)平行
四邊形的面積(圖2).
分析解題思路:(1)先判定 為矩形.(2)求 出 △ 的直角邊 的長(zhǎng).(3)計(jì)算 .
三.小結(jié):(1)矩形的判定方法l、2都是有兩個(gè)條件:①是平行四邊形,②有一個(gè)角是直角或?qū)蔷 相等.判定方法3的兩個(gè)條件是:①是四邊形,②有三個(gè)直 角.
矩形的判定方法有哪些?
一個(gè)角是直角的平行四邊形
對(duì)角線相等的'平行四邊形-是矩形。
有三個(gè)角是直角的四邊形
。2)要注意不要不加考慮地把性質(zhì)定理的逆命題作為矩形的判定定理.
補(bǔ)充例題
例1:已知:O是矩形A BCD對(duì)角線的交點(diǎn),E、F、G、H分別是OA、OB、OC、OD 上的點(diǎn),AE=BF=CG=DH,
求證:四邊形EFGH為矩形
分析:利用對(duì)角線互相平分且相等的四邊形是矩形可以證明
證明:∵ABCD為矩形
AC=BD
AC、BD互相平分于O
AO=BO=CO=DO
∵AE=BF=CG=DH
EO=FO=GO=HO
又HF=EG
EFGH為矩形
例2:判斷
(1)兩條對(duì) 角線相等四邊形是矩形()
。2)兩條對(duì)角線相等且互相平分的四邊形是矩形()
(3)有一個(gè)角是 直角的四邊形是矩形( )
。4)在矩形內(nèi)部沒(méi)有和四個(gè)頂點(diǎn)距離相等的點(diǎn)()
分析及解答:
(1)如圖(1)四邊形ABC D中,AC=BD,但ABCD不為矩形,
。2)對(duì)角線互相平分的四邊形即平行四邊形,對(duì)角線相等的平行四邊形為矩形
。3)如圖(2),四邊形ABCD中,B=90,但ABCD不為矩形
(4)矩形 對(duì)角線的交點(diǎn)O到四個(gè)頂點(diǎn)距離相等,如圖(3),
初中數(shù)學(xué)設(shè)計(jì)教案8
一 、教學(xué)目標(biāo)
。ㄒ唬┗A(chǔ)知識(shí)目標(biāo):
1。理解方程的概念,掌握如何判斷方程。
2。理解用字母表示數(shù)的好處。
。ǘ┠芰δ繕(biāo)
體會(huì)字母表示數(shù)的好處,畫(huà)示意圖有利于分析問(wèn)題,找相等關(guān)系是列方程的重要一步,從算式到方程(從算術(shù)到代數(shù))是數(shù)學(xué)的一大進(jìn)步。
(三)情感目標(biāo)
增強(qiáng)用數(shù)學(xué)的意識(shí),激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重點(diǎn)
知道什么是方程、一元一次方程,找相等關(guān)系列方程。
三、教學(xué)難點(diǎn)
如何找相等關(guān)系列方程
四、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng)設(shè)情景,引入新課
由學(xué)生已有的知識(shí)出發(fā),結(jié)合章前圖提出的問(wèn)題,激發(fā)學(xué)生進(jìn)一步探究的欲望。
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問(wèn)題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問(wèn)題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題。
。ǘ┨岢鰡(wèn)題
章前圖中的汽車(chē)勻速行駛途經(jīng)王家莊、青山、秀水三地的時(shí)間如表所示,翠湖在青山、秀水兩地之間,距青山50千米,距秀水70千米,王家莊到翠湖的`路程有多遠(yuǎn)?
你會(huì)用算術(shù)方法解決這個(gè)實(shí)際問(wèn)題么?不妨試一下。
如果設(shè)王家莊到翠湖的路程為x千米,你能列出方程嗎?
根據(jù)題意畫(huà)出示意圖。
由圖可以用含x的式子表示關(guān)于路程的數(shù)量,
王家莊距青山 千米,王家莊距秀水 千米,
由時(shí)間表可以得出關(guān)于路程的數(shù)量,
從王家莊到青山行車(chē) 小時(shí),王家莊到秀水 小時(shí),
汽車(chē)勻速行駛,各路段車(chē)速相等,于是列出方程:
= (1)
各表示的意義是什么?
以后我們將學(xué)習(xí)如何解出x,從而得到結(jié)果。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
例2 環(huán)行跑道一周長(zhǎng)400米,沿跑道跑多少周,可以跑3000米?
五、課堂小結(jié)
用算術(shù)方法解題時(shí),列出的算式表示用算術(shù)方法解題的計(jì)算過(guò)程,其中只能用到已知數(shù),而方程是根據(jù)問(wèn)題中的等量關(guān)系列出的等式,其中有已知數(shù),又有未知數(shù),有了方程后人們解決很多問(wèn)題就方便了,通過(guò)今后的學(xué)習(xí),你會(huì)逐步認(rèn)識(shí),從算式到方程是數(shù)學(xué)的進(jìn)步。
六、作業(yè)布置
習(xí)題3。1 第1,2兩題
初中數(shù)學(xué)設(shè)計(jì)教案9
教學(xué)目標(biāo)
1、使學(xué)生能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語(yǔ)用代數(shù)式表示出來(lái);
2、初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):把實(shí)際問(wèn)題中的數(shù)量關(guān)系列成代數(shù)式?
難點(diǎn):正確理解題意,從中找出數(shù)量關(guān)系里的運(yùn)算順序并能準(zhǔn)確地寫(xiě)成代數(shù)式???
教學(xué)手段
現(xiàn)代課堂教學(xué)手段
教學(xué)方法
啟發(fā)式教學(xué)
教學(xué)過(guò)程
(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1、用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2、在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問(wèn)題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語(yǔ)言)列成代數(shù)式?本節(jié)課我們就來(lái)一起學(xué)習(xí)這個(gè)問(wèn)題?
(二)、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫(xiě)代數(shù)式以前需要把甲數(shù)具體設(shè)出來(lái),才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
最后,教師需指出:第4小題的答案也可寫(xiě)成x+16%x?
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來(lái),然后依條件寫(xiě)出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律?但a與b的差指的'是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說(shuō),用文字語(yǔ)言敘述的句子里應(yīng)特別注意其運(yùn)算順序?
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時(shí),可提出以下問(wèn)題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2?
(這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)?
例4設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:
(1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的;
(3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的的和?
分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通過(guò)本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力?)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個(gè)座位?
分析本題時(shí),可提出如下問(wèn)題:
(1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(3)通過(guò)上述問(wèn)題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個(gè);(2)(m)m個(gè)?
(三)、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;
(3)把用日常生活語(yǔ)言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握
練習(xí)設(shè)計(jì)
1、用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2、已知一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,
求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積?
板書(shū)設(shè)計(jì)
§3.2代數(shù)式
(一)知識(shí)回顧(三)例題解析(五)課堂小結(jié)
例1、例2
(二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計(jì)
教學(xué)后記
由于列代數(shù)式的內(nèi)容既是本章的重點(diǎn),又是本書(shū)的重點(diǎn),同時(shí)也是學(xué)生學(xué)習(xí)過(guò)程中的一個(gè)難點(diǎn),故在設(shè)計(jì)其教學(xué)過(guò)程時(shí),注意所選例題及練習(xí)題由易到難,循序漸進(jìn),使學(xué)生逐步地掌握好這一內(nèi)容,為今后的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)?同時(shí),也使學(xué)生的抽象思維能力得到初的培養(yǎng)。
初中數(shù)學(xué)設(shè)計(jì)教案10
教材與學(xué)情:
解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實(shí)際問(wèn)題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問(wèn)題,對(duì)分析問(wèn)題能力要求較高,這會(huì)使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。
信息論原理:
將直角三角形中邊角關(guān)系作為已有信息,通過(guò)復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過(guò)例題講解,達(dá)到信息處理;通過(guò)總結(jié)歸納,使信息優(yōu)化;通過(guò)變式練習(xí),使信息強(qiáng)化并能靈活運(yùn)用;通過(guò)布置作業(yè),使信息得到反饋。
教學(xué)目標(biāo):
、闭J(rèn)知目標(biāo):
⑴懂得常見(jiàn)名詞(如仰角、俯角)的意義
⑵能正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)
、悄芾靡延兄R(shí),通過(guò)直接解三角形或列方程的方法解決一些實(shí)際問(wèn)題。
、材芰δ繕(biāo):培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生思維能力的靈活性。
、城楦心繕(biāo):使學(xué)生能理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的對(duì)立統(tǒng)一的`觀點(diǎn)。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):利用解直角三角形來(lái)解決一些實(shí)際問(wèn)題
難點(diǎn):正確理解題意,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。
信息優(yōu)化策略:
、旁趯W(xué)生對(duì)實(shí)際問(wèn)題的探究中,神經(jīng)興奮,思維活動(dòng)始終處于積極狀態(tài)
、圃跉w納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。
、侵匾晫W(xué)法指導(dǎo),以加速教學(xué)效績(jī)信息的順利體現(xiàn)。
教學(xué)媒體:
投影儀、教具(一個(gè)銳角三角形,可變換圖2-圖7)
高潮設(shè)計(jì):
1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性
2、將一個(gè)銳角三角形紙片通過(guò)旋轉(zhuǎn)、翻折等變換,使學(xué)生對(duì)問(wèn)題本質(zhì)有了更深的認(rèn)識(shí)
教學(xué)過(guò)程:
一、復(fù)習(xí)引入,輸入并貯存信息:
1.提問(wèn):如圖,在Rt△ABC中,∠C=90°。
⑴三邊a、b、c有什么關(guān)系?
、苾射J角∠A、∠B有怎樣的關(guān)系?
⑶邊與角之間有怎樣的關(guān)系?
2.提問(wèn):解直角三角形應(yīng)具備怎樣的條件:
注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息
二、實(shí)例講解,處理信息:
例1.(投影)在水平線上一點(diǎn)C,測(cè)得同頂?shù)难鼋菫?0°,向山沿直線 前進(jìn)20為到D處,再測(cè)山頂A的仰角為60°,求山高AB。
、乓龑(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。
、品治觯呵驛B可以解Rt△ABD和
Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發(fā)現(xiàn)AD=CD=20米,故可以解Rt△ABD,求得AB。
、墙忸}過(guò)程,學(xué)生練習(xí)。
、人伎迹杭偃纭螦DB=45°,能否直接來(lái)解一個(gè)三角形呢?請(qǐng)看例2。
例2.(投影)在水平線上一點(diǎn)C,測(cè)得山頂A的仰角為30°,向山沿直線前進(jìn)20米到D處,再測(cè)山頂A的仰角為45°,求山高AB。
分析:
、旁赗t△ABC和Rt△ABD中,都沒(méi)有兩個(gè)已知元素,故不能直接解一個(gè)三角形來(lái)求出AB。
、瓶紤]到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個(gè)直角三角形的直角邊,但CD=BC=BD,啟以學(xué)生設(shè)AB=X,通過(guò) 列方程來(lái)解,然后板書(shū)解題過(guò)程。
解:設(shè)山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、歸納總結(jié),優(yōu)化信息
例2的圖開(kāi)完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來(lái)解。
四、變式訓(xùn)練,強(qiáng)化信息
(投影)練習(xí)1:如圖,山上有鐵塔CD為m米,從地上一點(diǎn)測(cè)得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。
練習(xí)2:如圖,海岸上有A、B兩點(diǎn)相距120米,由A、B兩點(diǎn)觀測(cè)海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。
練習(xí)3:在塔PQ的正西方向A點(diǎn)測(cè)得頂端P的
仰角為30°,在塔的正南方向B點(diǎn)處,測(cè)得頂端P的仰角為45°且AB=60米,求塔高PQ。
教師待學(xué)生解題完畢后,進(jìn)行講評(píng),并利用教具揭示各題實(shí)質(zhì):
、艑⒒緢D形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉(zhuǎn)90°,即可得圖7的立體圖形。
、埔龑(dǎo)學(xué)生歸納三個(gè)練習(xí)題的等量關(guān)系:
練習(xí)1的等量關(guān)系是AB=AB;練習(xí)2的等量關(guān)系是AD+BD=AB;練習(xí)3的等量關(guān)系是AQ2+BQ2=AB2
五、作業(yè)布置,反饋信息
《幾何》第三冊(cè)P57第10題,P58第4題。
板書(shū)設(shè)計(jì):
解直角三角形的應(yīng)用
例1已知:………例2已知:………小結(jié):………
求:………求:………
解:………解:………
練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………
求:………求:………求:………
解:………解:………解:………
初中數(shù)學(xué)設(shè)計(jì)教案11
一、教學(xué)目標(biāo)
。ㄒ唬。及時(shí)鞏固所學(xué)知識(shí);
。ǘ。培養(yǎng)學(xué)生觀察能力,提高他們分析問(wèn)題和解決問(wèn)題的能力;
。ㄈ。使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣。
二、教學(xué)重點(diǎn)和難點(diǎn)
一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。
三、教學(xué)過(guò)程
主要為習(xí)題處理,由淺入深,使學(xué)生把所學(xué)知識(shí)系統(tǒng)化。
主要由學(xué)生完成,老師引導(dǎo)。
習(xí)題3。1中,1。2。3都是基礎(chǔ)知識(shí)題,讓學(xué)生到黑板上做幾道有代表意義的題,然后老師對(duì)錯(cuò)的給與糾正,讓學(xué)生對(duì)基礎(chǔ)知識(shí)題的正確把握。
主要針對(duì)學(xué)生比較難懂的應(yīng)用題來(lái)講解;
習(xí)題5,把1400元獎(jiǎng)學(xué)金按照兩種獎(jiǎng)項(xiàng)獎(jiǎng)給22名學(xué)生,其中一等獎(jiǎng)每人200元,二等獎(jiǎng)每人50元,獲得一等獎(jiǎng)的學(xué)生有多少人?
分析:設(shè)獲得一等獎(jiǎng)的學(xué)生有X人,由已知條件得:
X×200+(22—X)×50=1400
本題要讓學(xué)生理解這種設(shè)未知數(shù)建立方程的思想,設(shè)獲得一等獎(jiǎng)的學(xué)生有X人,那么二等獎(jiǎng)的人數(shù)就是22—X。
習(xí)題6,種一批樹(shù)苗,如果每人種10棵,則剩6棵樹(shù)苗未種,如果每人種12棵,則缺少6棵苗,有多少人種數(shù)?
分析:兩種方法種樹(shù)苗,等式就是總樹(shù)苗相等,設(shè)有X人種樹(shù),
那么:10X+6=12X—6
所以找到等式就是列出方程的重要一步。
習(xí)題7,一輛汽車(chē)已經(jīng)行駛了12000千米,計(jì)劃每月再行駛800千米,幾個(gè)月后這輛汽車(chē)將行駛20800千米?
分析:由已經(jīng)行駛了12000千米,計(jì)劃每月再行駛800千米,最后達(dá)到20800千米,我們?cè)O(shè)X個(gè)月后達(dá)到目標(biāo),列出等式
12000+800X=20800
總之,找出他們之間存在的相等關(guān)系就是解決問(wèn)題的關(guān)鍵。
通過(guò)系統(tǒng)的學(xué)習(xí),讓學(xué)生的'綜合運(yùn)用能力提高,對(duì)拓廣探索中的題目老師要細(xì)心講解,因?yàn)閷W(xué)生對(duì)這些題的理解有困難。
四、課堂總結(jié)
通過(guò)大量的練習(xí),及時(shí)鞏固所學(xué)知識(shí),使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題。
五、作業(yè)布置
習(xí)題3。1第7、8題。
初中數(shù)學(xué)設(shè)計(jì)教案12
教學(xué)目的:
1、使學(xué)生學(xué)會(huì)將正多邊形的邊長(zhǎng)、半徑、邊心距和中心角 、周長(zhǎng)、面積等有關(guān) 的計(jì)算問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題.
2、通過(guò)定理的證明過(guò)程培養(yǎng)學(xué)生觀察能力、推理能力、概括能力;
3、通過(guò)一定量的計(jì)算,培養(yǎng)學(xué)生正確迅速的運(yùn)算能力;
教學(xué)重點(diǎn):
化正多邊形的有關(guān)計(jì)算為解直角三角形問(wèn)題定理;正多邊形計(jì)算圖及其應(yīng)用.
教學(xué)難點(diǎn):
正確地將正多邊形的有關(guān)計(jì)算問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題解決、綜合運(yùn)用幾何知識(shí)準(zhǔn)確計(jì)算.
教學(xué)過(guò)程:
一、新課引入:
前幾課我們學(xué)習(xí)了正多邊形的定義、概念、性質(zhì),今天我們來(lái)學(xué)習(xí)正多邊形的有關(guān)計(jì)算.
大家知道正多邊形在生產(chǎn)和生活中有廣泛的應(yīng)用性,伴隨而來(lái)的有關(guān)正多邊形計(jì)算問(wèn)題必然擺在大家的面前,如何解決正多邊形的計(jì)算問(wèn)題,正是本堂課研究的課題.
二、新課講解:
哪位同學(xué)回答,什么叫正多邊形.(安排中下生回答:各邊相等,各角相等的多邊形.)
什么是正多形的邊心距、半徑?(安排中下生回答:正多邊形內(nèi)切圓的半徑叫做邊心距.正多邊形外接圓的半 徑叫做正多邊形的半徑.)
正多邊形的邊有什么性質(zhì)、角有什么性質(zhì)?(安 排中下生回答:邊都相等,角都相等.)
什么叫正多邊形的中心角?(安排中下生回答:正多邊形的一邊所對(duì)正多邊形外接圓的圓心角.)
正n邊形的中心角度數(shù)如何計(jì)算?(安排中下生回答:中心角的度數(shù)
正n邊形的一個(gè)外角度數(shù)如何計(jì)算?(安排中下生回答:
一個(gè)外角度
哪位同學(xué)有所發(fā)現(xiàn)?(安排舉手學(xué)生:正n邊形的中心角度數(shù)=正n邊形的一個(gè)外角度數(shù).)
哪位同學(xué)記得n邊形的內(nèi)角和公式?(請(qǐng)回憶起來(lái)的學(xué)生回答).
哪位同學(xué)能根據(jù)n邊形內(nèi)角和定理和正n邊形的性質(zhì)給出求正n邊形一個(gè)內(nèi)角度數(shù)的公式?(安排中下生回答:正n邊形每個(gè)內(nèi)角度數(shù)
正n邊形的每個(gè)內(nèi)角與它有共同頂點(diǎn)的外角有何數(shù)量關(guān) 系?(安排中下生回答:互補(bǔ)).
根據(jù)正n邊形的每個(gè)內(nèi)角與它有共同頂點(diǎn)的外角的互補(bǔ)關(guān)系和正n邊形每個(gè)外角度數(shù)公式,正n邊形每個(gè)內(nèi)角度數(shù)又可怎樣計(jì)算?(安排中
(幻燈展示練習(xí)題,學(xué)生思考,回答)
1.正五邊形的中心角度數(shù)是____ __;每個(gè)內(nèi)角的度數(shù)是______;
2.一個(gè)正n邊形的一個(gè)外角度數(shù)是360,則它的邊數(shù)n=______,每個(gè)內(nèi)角度數(shù) 是__ ____;
3.一個(gè)正n邊形的一個(gè)內(nèi)角的度數(shù)是140,則它的邊數(shù)n=______,中心角度數(shù)是______.
對(duì)于前2題安排中下生回答,對(duì)于第3題不僅要回答題目的答案而且要求回答思路.
解此方程n=9.
幻燈展示正三角形、正方形、正五邊形、正 六邊形.如下圖,讓學(xué)生邊觀察、邊回答老師依次提出的問(wèn)題、邊思考.
1.觀察每個(gè)圖形的半徑,分別將它們分割成多少個(gè)什么樣子的三角形?(安排中下生回答:等腰三角形)
2.觀察每個(gè)圖形中所得的三角形具有什么關(guān)系?為什么?(安排中等生回答:全等,依據(jù)( S.S.S)或(S.A.S))
3.將上述四個(gè)圖形的觀察與思考推而廣之,你得出了什么結(jié)論?哪位同學(xué)說(shuō)說(shuō)自己的想法(安排中上生回答:正n邊形的n條半徑分正n邊形為n個(gè)全等的等腰三角形.)
套上幻燈片的復(fù)合片:作出各等腰三角形底邊上的高,如下圖,安排學(xué)生觀察、思考并回答以下問(wèn)題:
1.這些等腰三角形的每一條高都將每個(gè)等腰三角形分割為兩個(gè)直角三角形,這兩個(gè)直角三角形全等嗎?為什么?(安排中下生回答)
2.這些等腰三角形的`高在正多邊形中的名稱(chēng)是什么?(安排中下生回答: 邊心距)
3.正n邊形的 n條半徑、n條邊心距將正n邊形分割成全等直角三角形的個(gè)數(shù)是多少?(安排中等生回答:2n個(gè))
給出定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形.
再套幻燈片的復(fù)合片,如圖7-140,安排學(xué)生觀察每個(gè) 直角三角形都由正多邊形的哪些元素組成 .
安排中下生回答:直角三角形的斜邊是正多邊形的半徑R、一條直角邊是正多邊形的邊心距.另一直角邊是正多邊形邊長(zhǎng)的一半(在此安排中等生回答:為什么?)半徑與邊心距的 夾角是正多邊形一個(gè)中心角的一半.(安排中等生回答“為什么?”)
講解:由于這個(gè)直角三角形融合了正多 邊形諸多元素,所以就可將正多邊形有關(guān)半徑、邊心距、邊長(zhǎng)、中心角的計(jì)算問(wèn)題歸結(jié)為解直角三角形的問(wèn)題來(lái)解決.
幻燈給出正多邊形抽象的計(jì)算圖,教師講解:
由于正多邊形的有關(guān)計(jì)算都?xì)w結(jié)為解直角三角形的問(wèn)題來(lái)解決,所以我們只要畫(huà)出這個(gè) 直角三角形就可以了,其余就不畫(huà)或略畫(huà).圖中R表示半徑,rn表示正n邊形的邊心距,an表示正n邊形的邊長(zhǎng),an表示正n邊形的中心角.
提問(wèn):對(duì)于給定具 體邊數(shù)的正n邊形,你首先可以求出直角三角形
(教師講解):直角三角形中一銳角已知,所以只要再給直角三角形的R、rn、an其中一項(xiàng)賦值就可求出其它元素.例如:(幻燈展示題目)
例1 已知:如下圖,正△ABC的邊心距r3=2.
求:R、a3.
問(wèn):要解此題,首先要做什么?(找中等生回答:畫(huà)出基本計(jì)算圖)
最后要做什么工作:(找中上生回答:選擇三角函 數(shù))
解:
∵n=3
又
完成下列各題:(幻燈展示題目)
1.已知,正方形ABCD的邊長(zhǎng)a4=2.
求:R,r4.
2.已知:正六邊形ABCDEF的半徑 R=2,
求:r6,a6.
(對(duì)于計(jì)算正確且較快的學(xué)生,讓他們自擬試題進(jìn)行計(jì)算,教師重點(diǎn)輔導(dǎo)需要幫助的學(xué)生)
再回到例1,問(wèn):你會(huì)求這個(gè)正三角形的周長(zhǎng)P3嗎?怎么求?為什么這樣求?(安排中等生回答 :邊長(zhǎng)3,因?yàn)檎切?三邊相等).
再問(wèn):你會(huì)求這個(gè)正三角形的面積S3嗎?怎么求?為什么這樣求?(安排中 等生回答:直角△AOC的面積6,由定理可知這樣的直角三角形的個(gè)數(shù)是邊數(shù)的2倍.或者,等腰△ AOB的面積3,由定理可知選擇的等腰三角形的個(gè)數(shù)與邊數(shù)相同.)
請(qǐng)同學(xué)們分別計(jì)算上述二題的周長(zhǎng)和面積(計(jì)算快而準(zhǔn)的學(xué)生讓其自擬題目再練習(xí))[
(幻燈給出例2):已知正六邊形ABCDEF的半徑為R,求這個(gè)正六邊形的邊長(zhǎng)a6、周長(zhǎng)P6和面積S6.
(提問(wèn)):1.首先要作什么?(安排中下生回答:畫(huà)基本計(jì)算圖)
2.然 么?(安排中下生回答:選擇三角函數(shù))
P6=9 R.
通過(guò)上面計(jì)算,你得出正六邊形的半徑與邊長(zhǎng)有什么數(shù)量關(guān)系?(安排中下生回答:相等)希望大家記住這個(gè)結(jié)論:a6=R,因?yàn)樗粌H有利于計(jì)算而且是尺規(guī)畫(huà)正六邊形的依據(jù).
三、課堂小結(jié):
哪位同學(xué)能說(shuō)一下,這堂課我們都學(xué)習(xí)了什么知識(shí)?(安排中等生歸納)
1.化正多邊形的有關(guān)計(jì)算為解直角三角形問(wèn)題定理,2.運(yùn)用正多
角計(jì)算.
四、布置作業(yè)
初中數(shù)學(xué)設(shè)計(jì)教案13
教學(xué)內(nèi)容
24。2圓的切線(1)
教學(xué)目標(biāo) 使學(xué)生掌握切線的識(shí)別方法,并能初步運(yùn)用它解決有關(guān)問(wèn)題
通過(guò)切線識(shí)別方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問(wèn)題的能力
教學(xué)重點(diǎn) 切線的識(shí)別方法
教學(xué)難點(diǎn) 方法的理解及實(shí)際運(yùn)用
教具準(zhǔn)備 投影儀,膠片
教學(xué)過(guò)程 教師活動(dòng) 學(xué)生活動(dòng)
(一)復(fù)習(xí) 情境導(dǎo)入
1、復(fù)習(xí)、回顧直線與圓的三 種位置關(guān)系。
2、請(qǐng)學(xué)生判斷直線和圓的位置關(guān)系。
學(xué)生判斷的過(guò)程,提問(wèn):你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學(xué)生的回答,繼續(xù)提出 問(wèn)題:如何界定直線與圓是否只有一個(gè)公共點(diǎn)?教師指出,根據(jù)切線的定義可以識(shí)別一條直線是不是圓的切線,但有時(shí)使用定義識(shí)別很不方便,為此我們還要學(xué)習(xí)識(shí)別切 線的其它方法。(板書(shū)課題) 搶答
學(xué)生總結(jié)判別方法
(二)
實(shí)踐與探索1:圓的切線的判斷方法 1、由上面 的復(fù)習(xí),我們可以把上節(jié)課所學(xué)的切線的定義作為識(shí)別切線的方法1——定義法:與圓只有一個(gè)公共點(diǎn)的直線是圓的切線。
2、當(dāng)然,我們還可以由上節(jié)課所學(xué)的用圓心到直線的距離 與半徑 之間的關(guān)系來(lái)判斷直線與圓是否相切,即:當(dāng) 時(shí),直線與圓的位置關(guān)系是相切。以此作為識(shí)別切線的方法2——數(shù)量關(guān)系法:圓心到直線的距離等于半徑的直線是圓的切線 。
3、實(shí)驗(yàn):作⊙O的半徑OA,過(guò)A作l⊥OA可以發(fā)現(xiàn):
(1)直線 經(jīng)過(guò)半徑 的外端點(diǎn) ;
。2)直線 垂直于半徑 。這樣我們就得到了從位 置上來(lái)判斷直線是圓的切線的`方法3——位置關(guān)系法:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線。 理解并識(shí)記圓的切線的幾種方法,并比較應(yīng)用。
通過(guò)實(shí)驗(yàn)探究圓的切線的位置判別方法,深入理解它的兩個(gè)要義。
三、課堂練習(xí)
思考:現(xiàn)在,任意給定一個(gè)圓,你能不能作出圓的切線?應(yīng)該如何作?
請(qǐng)學(xué)生回顧作圖過(guò)程,切線 是如何作出來(lái)的?它滿(mǎn)足哪些條件? 引導(dǎo)學(xué)生總結(jié)出:①經(jīng)過(guò)半徑外端;②垂直于這條半徑。
請(qǐng)學(xué)生繼續(xù)思考:這兩個(gè)條件缺少一個(gè)行不行? (學(xué)生畫(huà)出反例圖)
。▓D1) (圖2) 圖(3)
圖(1)中直線 經(jīng)過(guò)半徑外端,但不與半徑垂直; 圖(2)中直線 與半徑垂直,但不經(jīng)過(guò)半徑外端。 從以上兩個(gè)反例可以看出,只滿(mǎn)足其中一個(gè)條件的直線不是圓的切線。
最后引導(dǎo)學(xué)生分析,方法3實(shí)際上是從前一節(jié)所講的“圓 心到直線的距離等于半徑時(shí)直線和圓相切”這個(gè)結(jié)論直接得出來(lái)的,只是為了便于應(yīng)用把它改寫(xiě)成“經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。 試驗(yàn)體會(huì)圓的位置判別方法。
理解位置判別方法的兩個(gè)要素。
(四)應(yīng)用與拓展 例1、如圖,已知直線AB經(jīng)過(guò)⊙O上的點(diǎn)A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?
例2、如圖,線段AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)A、C,BAD=B=30,邊BD交圓于點(diǎn)D。BD是⊙ O的切線嗎?為什么?
分析:欲證BD是⊙O的切線,由于BD過(guò)圓上點(diǎn)D,若連結(jié)OD,則BD過(guò)半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。
教師板演,給出解答過(guò)程及格式。
課堂練習(xí):課本練習(xí)1-4 先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。
注意圓的切線的特征與識(shí)別的區(qū)別。
。ㄋ模┬〗Y(jié)與作業(yè) 識(shí) 別一條直線是圓的切線,有 三種方法:
(1)根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來(lái)判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
(3)根據(jù)直線的位置關(guān)系來(lái)判定,即經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的 切線,
說(shuō)明一條直線是圓的切線,常常需要作輔助線,如果 已知直線過(guò)圓上某 一點(diǎn),則作出過(guò) 這一點(diǎn)的半徑,證明直線垂直于半徑即可(如例2)。
各抒己見(jiàn),談收獲。
。ㄎ澹┌鍟(shū)設(shè)計(jì)
識(shí)別一條直線是圓的切線,有三種方法: 例:
。1 )根據(jù)切線定義判定,即與圓只有一個(gè)公共點(diǎn)的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來(lái)判定,即與圓心的距離等于圓的半徑的直線是圓 的切線;
。3)根據(jù)直線的位置關(guān)系來(lái)判定,即經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的 切線,
說(shuō)明一條直線是圓的切線,常常需要作輔助線,如果已知直線過(guò)圓上某一點(diǎn),則作出過(guò) 這一點(diǎn)的半徑,證明 直線垂直于半徑
。┙虒W(xué)后記
教學(xué)內(nèi)容 24。2圓的切線(2) 課型 新授課 課時(shí) 執(zhí)教
教學(xué)目標(biāo) 通過(guò)探究,使學(xué)生發(fā)現(xiàn)、掌握切線長(zhǎng)定理,并初步長(zhǎng)定理,并初步學(xué)會(huì)應(yīng)用切線長(zhǎng)定理解決問(wèn)題,同時(shí)通過(guò)從三角形紙片中剪出最大圓的實(shí)驗(yàn)的過(guò)程中發(fā)現(xiàn)三角形內(nèi)切圓的畫(huà)法,能用內(nèi)心的性質(zhì)解決問(wèn)題。
教學(xué)重點(diǎn) 切線長(zhǎng)定理及其應(yīng)用,三角形的內(nèi)切圓的畫(huà)法和內(nèi)心的性質(zhì)。
教學(xué)難點(diǎn) 三角形的內(nèi)心及其半徑的確定。
教具準(zhǔn)備 投影儀,膠片
教學(xué)過(guò)程 教師 活動(dòng) 學(xué)生活動(dòng)
。ㄒ唬⿵(fù)習(xí)導(dǎo)入:
請(qǐng)同學(xué)們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質(zhì)?(經(jīng)過(guò)半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。)
你能說(shuō)明以下這個(gè)問(wèn)題?
如右圖所示,PA是 的平分線,AB是⊙O的切線,切點(diǎn)E,那么AC是⊙O的切線嗎?為什么?
回顧舊知,看誰(shuí)說(shuō)的全。
利用舊知,分析解決該問(wèn)題。
。ǘ
實(shí)踐與探索 問(wèn)題1、從圓外一點(diǎn)可以作圓的幾條切線?請(qǐng)同學(xué)們畫(huà)一畫(huà)。
2、請(qǐng)問(wèn):這一點(diǎn) 與切點(diǎn)的 兩條線段的長(zhǎng)度相等嗎?為什么?
3、切線長(zhǎng)的定義是什么?
通過(guò)以 上幾個(gè)問(wèn)題的解決,使同學(xué)們得出以下的結(jié)論:
從圓外一點(diǎn)可以引圓的兩條切線,切線長(zhǎng)相等。這一點(diǎn)與圓心的連線
平分兩條切線的夾角。 在解決以上問(wèn)題時(shí),鼓勵(lì)同學(xué)們用不同的觀點(diǎn)、不同的知識(shí)來(lái)解決問(wèn)題,它既可以用書(shū)上闡述的對(duì)稱(chēng)的觀點(diǎn)解決,也可以用以前學(xué)習(xí)的其他知識(shí)來(lái)解決問(wèn)題。
(三)拓展與應(yīng)用 例:右圖,PA、PB是,切點(diǎn)分別是A、B,直線EF也是⊙O的切線,切點(diǎn)為P,交PA、PB為E、F點(diǎn),已知 , ,(1)求 的周長(zhǎng);(2)求 的度數(shù)。
解:(1)連結(jié)PA、PB、EF是⊙O的切線
所以 , ,
所以 的周長(zhǎng) (2)因?yàn)镻A、PB、EF是⊙O的切線
所以 , ,,
所以
所以
畫(huà)圖分析探究,教學(xué)中應(yīng)注重基本圖形的教學(xué),引導(dǎo)學(xué)生發(fā)現(xiàn)基本圖形,應(yīng)用基本圖形解決問(wèn)題。
。ㄋ模┬〗Y(jié)與作業(yè) 談一下本節(jié)課的 收獲 ? 各抒己見(jiàn),看誰(shuí) 說(shuō)得最好
(五)板書(shū)設(shè)計(jì)
切線(2)
切線長(zhǎng)相等 例:
切線長(zhǎng)性質(zhì)
點(diǎn)與圓心連 線平分兩切線夾角
。┙虒W(xué)后記
初中數(shù)學(xué)設(shè)計(jì)教案14
一、教材的地位與作用
《二元一次方程》是九年義務(wù)教育人教版教材七年級(jí)下冊(cè)第四章《二元一次方程組》的第一節(jié)。在此之前學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程,這為本節(jié)的學(xué)習(xí)起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學(xué)中,起著承上啟下的地位。
二、教學(xué)目標(biāo)
(一)知識(shí)與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
(二)數(shù)學(xué)思考:
體會(huì)學(xué)習(xí)二元一次方程的必要性,學(xué)會(huì)獨(dú)立思考,體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想和主元思想。
(三)問(wèn)題解決:
初步學(xué)會(huì)利用二元一次方程來(lái)解決實(shí)際問(wèn)題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態(tài)度:
培養(yǎng)學(xué)生發(fā)現(xiàn)意識(shí)和能力,使其具有強(qiáng)烈的好奇心和求知欲。
三、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):二元一次方程及其解的概念。
教學(xué)難點(diǎn):二元一次方程的概念里“含未知數(shù)的項(xiàng)的次數(shù)”的理解;把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
四、教法與學(xué)法分析
教法:情境教學(xué)法、比較教學(xué)法、閱讀教學(xué)法。
學(xué)法:閱讀、比較、探究的學(xué)習(xí)方式。
五、教學(xué)過(guò)程
1.創(chuàng)設(shè)情境,引入新課
從學(xué)生熟悉的姚明受傷事件引入。
師:火箭隊(duì)最近取得了20連勝,姚明參加了前面的12場(chǎng)比賽,是球隊(duì)的頂梁柱。
。1)連勝的第12場(chǎng),火箭對(duì)公牛,在這場(chǎng)比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個(gè)兩分球?(本場(chǎng)比賽姚明沒(méi)投中三分球)師:能用方程解決嗎?列出來(lái)的方程是什么方程?
。2)連勝的第1場(chǎng),火箭對(duì)勇士,在這場(chǎng)比賽中,姚明得了36分,你知道姚明投中了幾個(gè)兩分球,罰進(jìn)了幾個(gè)球嗎?(罰進(jìn)1球得1分,本場(chǎng)比賽姚明沒(méi)投中三分球)師:這個(gè)問(wèn)題能用一元一次方程解決嗎?,你能列出方程嗎?
設(shè)姚明投進(jìn)了x個(gè)兩分球,罰進(jìn)了y個(gè)球,可列出方程。
(3)在雄鹿隊(duì)與火箭隊(duì)的比賽中易建聯(lián)全場(chǎng)總共得了19分,其中罰球得了3分。你知道他分別投進(jìn)幾個(gè)兩分球、幾個(gè)三分球嗎?
設(shè)易建聯(lián)投進(jìn)了x個(gè)兩分球,y個(gè)三分球,可列出方程。
師:對(duì)于所列出來(lái)的三個(gè)方程,后面兩個(gè)你覺(jué)的是一元一次方程嗎?那這兩個(gè)方程有什么相同點(diǎn)嗎?你能給它們命一個(gè)名稱(chēng)嗎?
從而揭示課題。
。ㄔO(shè)計(jì)意圖:第一個(gè)問(wèn)題主要是讓學(xué)生體會(huì)一元一次方程是解決實(shí)際問(wèn)題的數(shù)學(xué)模型,從而回顧一元一次方程的概念;第二、三問(wèn)題設(shè)置的主要目的是讓學(xué)生體會(huì)到當(dāng)實(shí)際問(wèn)題不能用一元一次方程來(lái)解決的時(shí)候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活,通過(guò)創(chuàng)設(shè)輕松的問(wèn)題情境,點(diǎn)燃學(xué)習(xí)新知識(shí)的“導(dǎo)火索”,引起學(xué)生的學(xué)習(xí)興趣,以“我要學(xué)”的主人翁姿態(tài)投入學(xué)習(xí),而且“會(huì)學(xué)”“樂(lè)學(xué)”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學(xué)生思考后回答)
師:翻開(kāi)書(shū)本,請(qǐng)同學(xué)們把這個(gè)概念劃起來(lái),想一想,你覺(jué)得和我們自己歸納出來(lái)的概念有什么區(qū)別嗎?(同學(xué)們思考后回答)
師:根據(jù)概念,你覺(jué)得二元一次方程應(yīng)具備哪幾個(gè)特征?
活動(dòng):你自己構(gòu)造一個(gè)二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
、賦2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
(設(shè)計(jì)意圖:這一環(huán)節(jié)是本課設(shè)計(jì)的'重點(diǎn),為加深學(xué)生對(duì)“含有未知數(shù)的項(xiàng)的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書(shū)本中二元一次方程的概念,形成學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生對(duì)“項(xiàng)的次數(shù)”的思考,進(jìn)而完善學(xué)生對(duì)二元一次方程概念的理解,通過(guò)學(xué)生自己舉例子的活動(dòng)去把“項(xiàng)的次數(shù)”形象化。)
二元一次方程解的概念
師:前面列的兩個(gè)方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過(guò)方程2x+3y=16,你知道易建聯(lián)可能投中幾個(gè)兩分球,幾個(gè)三分球嗎?
師:你是怎么考慮的?(讓學(xué)生說(shuō)說(shuō)他是如何得到x和y的值的,怎么證明自己的這對(duì)未知數(shù)的取值是對(duì)的)利用一個(gè)學(xué)生合理的解釋,引導(dǎo)學(xué)生類(lèi)比一元一次方程的解的概念,讓學(xué)生歸納出二元一次方程的解的概念及其記法。(學(xué)生看書(shū)本上的記法)
使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。(設(shè)計(jì)意圖:通過(guò)引導(dǎo)學(xué)生自主取值,猜x和y的值,從而更深刻的體會(huì)二元一次方程解的本質(zhì):使方程左右兩邊相等的一對(duì)未知數(shù)的取值。引導(dǎo)學(xué)生看書(shū)本,目的是讓學(xué)生在記法上體會(huì)“一對(duì)未知數(shù)的取值”的真正含義。)
二元一次方程解的不唯一性
對(duì)于2x+3y=16,你覺(jué)得這個(gè)方程還有其它的解嗎?你能試著寫(xiě)幾個(gè)嗎?師:這些解你們是如何算出來(lái)的?
。ㄔO(shè)計(jì)意圖:設(shè)計(jì)此環(huán)節(jié),目的有三個(gè):首先,是讓學(xué)生學(xué)會(huì)如何檢驗(yàn)一對(duì)未知數(shù)的取值是二元一次方程的解;其次是讓學(xué)生體會(huì)到二元一次方程的解的不唯一性;最后讓學(xué)生感受如何得到一個(gè)正確的解:只要取定一個(gè)未知數(shù)的取值,就可以代入方程算出另一個(gè)未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
。1)當(dāng)x=2時(shí),求所對(duì)應(yīng)的y的值;
。2)取一個(gè)你自己喜歡的數(shù)作為x的值,求所對(duì)應(yīng)的y的值;
。3)用含x的代數(shù)式表示y;
。4)用含y的代數(shù)式表示x;
(5)當(dāng)x=負(fù)2,0時(shí),所對(duì)應(yīng)的y的值是多少?
。6)寫(xiě)出方程3x+2y=10的三個(gè)解.
(設(shè)計(jì)意圖:此處設(shè)計(jì)主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過(guò)程,再?gòu)乃麄兘庖辉淮畏匠痰闹貜?fù)步驟中提煉出用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后把它與原方程比較,把一個(gè)未知數(shù)的值代入哪一個(gè)方程計(jì)算會(huì)更簡(jiǎn)單,形成“正遷移”,引導(dǎo)學(xué)生體會(huì)“用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程,實(shí)質(zhì)是解一個(gè)關(guān)于y的一元一次方程,滲透數(shù)學(xué)的主元思想。以此突破本節(jié)課的難點(diǎn)。)
大顯身手:
課內(nèi)練習(xí)第2題
梳理知識(shí),課堂升華
本節(jié)課你有收獲嗎?能和大家說(shuō)說(shuō)你的感想嗎?3.作業(yè)布置
必做題:書(shū)本作業(yè)題1、2、3、4。
選做題:書(shū)本作業(yè)題5、6。
設(shè)計(jì)說(shuō)明
本節(jié)授課內(nèi)容屬于概念課教學(xué)。數(shù)學(xué)學(xué)科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學(xué)概念作為核心和邏輯起點(diǎn),形成系統(tǒng)的數(shù)學(xué)知識(shí),所以數(shù)學(xué)概念是數(shù)學(xué)課程的核心。只有真正理解數(shù)學(xué)概念,才能理解數(shù)學(xué)。二元一次方程作為初中階段接觸的第二類(lèi)方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學(xué)自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點(diǎn),進(jìn)而理解“含有未知數(shù)的項(xiàng)的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學(xué)過(guò)程中,采用的是讓學(xué)生體會(huì)“一個(gè)解、不止一個(gè)解、無(wú)數(shù)個(gè)解”的漸進(jìn)過(guò)程,感受到用一個(gè)二元一次方程并不能求出一對(duì)確定的未知數(shù)的取值,從而讓學(xué)生產(chǎn)生有后續(xù)學(xué)習(xí)的愿望。
在講授用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的時(shí)候,采用“特殊、一般、特殊”的教學(xué)流程,以期突破難點(diǎn)。首先拋出問(wèn)題“這幾個(gè)解你是如何求的”,
此時(shí)注意的聚焦點(diǎn)是二元一次方程;其次學(xué)生歸納先定一個(gè)未知數(shù)的取值,代入原方程求另一個(gè)未知數(shù)的值,此時(shí)注意的聚焦點(diǎn)是一元一次方程;然后教師引導(dǎo)回到二元一次方程,假如x是一個(gè)常數(shù),那么這個(gè)方程可以看成是一個(gè)關(guān)于誰(shuí)的一元一次方程,此時(shí)注意的聚焦點(diǎn)是原來(lái)的二元一次方程;最后代入求值,此時(shí)注意的聚焦點(diǎn)是等號(hào)右邊的那個(gè)算式,體會(huì)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”在求值過(guò)程中的簡(jiǎn)潔性,強(qiáng)化這種代數(shù)形式。另外,在引導(dǎo)學(xué)生推導(dǎo)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程中,滲透數(shù)學(xué)的主元思想和轉(zhuǎn)化思想。
初中數(shù)學(xué)設(shè)計(jì)教案15
學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)完全平方公式,并能用幾何圖形解釋公式;
2、利用公式進(jìn)行熟練地計(jì)算;
3、經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)知規(guī)律。
學(xué)習(xí)過(guò)程:
(一)自主探索
1、計(jì)算:(1)(a+b)2 (2)(a-b)2
2、你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?
(二)合作交流:
你能利用下圖的`面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。
(三)試一試,我能行。
1、利用完全平方公式計(jì)算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來(lái)源:中.考.資.源.網(wǎng)]
(四)鞏固練習(xí)
利用完全平方公式計(jì)算:
A組:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B組:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C組:
(1)1012 (2)542 (3)9972
(五)小結(jié)與反思
我的收獲:
我的疑惑:
(六)達(dá)標(biāo)檢測(cè)
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、計(jì)算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
【初中數(shù)學(xué)設(shè)計(jì)教案】相關(guān)文章:
初中數(shù)學(xué)設(shè)計(jì)教案06-29
初中數(shù)學(xué)設(shè)計(jì)教案(實(shí)用)06-29
初中數(shù)學(xué)設(shè)計(jì)教案模板范文01-03
初中數(shù)學(xué)設(shè)計(jì)教案15篇[薦]06-29
初中數(shù)學(xué)教學(xué)設(shè)計(jì)08-06
初中數(shù)學(xué)的作業(yè)設(shè)計(jì)07-30
初中數(shù)學(xué) 教案02-24
數(shù)學(xué)教學(xué)設(shè)計(jì)教案02-15
初中數(shù)學(xué)直線教案12-29
初中數(shù)學(xué)教案08-12