天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)上冊(cè)的教案

八年級(jí)數(shù)學(xué)上冊(cè)的教案

時(shí)間:2024-07-10 13:33:46 數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)上冊(cè)的教案(優(yōu))

  作為一名無私奉獻(xiàn)的老師,就難以避免地要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案應(yīng)該怎么寫才好呢?以下是小編幫大家整理的八年級(jí)數(shù)學(xué)上冊(cè)的教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級(jí)數(shù)學(xué)上冊(cè)的教案(優(yōu))

八年級(jí)數(shù)學(xué)上冊(cè)的教案1

  知識(shí)目標(biāo):理解變量與函數(shù)的概念以及相互之間的關(guān)系

  能力目標(biāo):增強(qiáng)對(duì)變量的理解

  情感目標(biāo):滲透事物是運(yùn)動(dòng)的,運(yùn)動(dòng)是有規(guī)律的辨證思想

  重點(diǎn):變量與常量

  難點(diǎn):對(duì)變量的判斷

  教學(xué)媒體:多媒體電腦,繩圈

  教學(xué)說明:本節(jié)滲透找變量之間的簡(jiǎn)單關(guān)系,試列簡(jiǎn)單關(guān)系式

  教學(xué)設(shè)計(jì):

  引入:

  信息1:當(dāng)你坐在摩天輪上時(shí),想一想,隨著時(shí)間的變化,你離開地面的高度是如何變化的?

  信息2:汽車以60km/h的速度勻速前進(jìn),行駛里程為skm,行駛的時(shí)間為th,先填寫下面的表格,在試用含t的式子表示s.

  t/m 1 2 3 4 5

  s/km

  新課:

  問題:(1)每張電影票的售價(jià)為10元,如果早場(chǎng)售出票150張,日?qǐng)鍪鄢銎?05張,晚場(chǎng)售出票310張,三場(chǎng)電影的票房收入各多少元?設(shè)一場(chǎng)電影受出票x張,票房收入為y元,怎樣用含x的式子表示y?

  (2)在一根彈簧的下端懸掛中重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長(zhǎng)度的變化規(guī)律,如果彈簧原長(zhǎng)10cm,每1kg重物使彈簧伸長(zhǎng)0.5cm,怎樣用含重物質(zhì)量 m(單位:kg)的'式子表示受力后彈簧長(zhǎng)度l(單位:cm)?

  (3)要畫一個(gè)面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含圓面積s的式子表示圓的半徑r?

  (4)用10m長(zhǎng)的繩子圍成長(zhǎng)方形,試改變長(zhǎng)方形的長(zhǎng)度,觀察長(zhǎng)方形的面積怎樣變化。記錄不同的長(zhǎng)方形的長(zhǎng)度值,計(jì)算相應(yīng)的長(zhǎng)方形面積的值,探索它們的變化規(guī)律,設(shè)長(zhǎng)方形的長(zhǎng)為xm,面積為sm2,怎樣用含x的式子表示s?

  在一個(gè)變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable).數(shù)值始終不變的量為常量。

  指出上述問題中的變量和常量。

  范例:寫出下列各問題中所滿足的關(guān)系式,并指出各個(gè)關(guān)系式中,哪些量是變量,哪些量是常量?

 。1)用總長(zhǎng)為60m的籬笆圍成矩形場(chǎng)地,求矩形的面積s(m2)與一邊長(zhǎng)x(m)之間的關(guān)系式;

 。2)購(gòu)買單價(jià)是0.4元的鉛筆,總金額y(元)與購(gòu)買的鉛筆的數(shù)量n(支)的關(guān)系;

 。3)運(yùn)動(dòng)員在4000m一圈的跑道上訓(xùn)練,他跑一圈所用的時(shí)間t(s)與跑步的速度v(m/s)的關(guān)系;

 。4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金與所得的本息和y(元)之間的關(guān)系。

  活動(dòng):

  1.分別指出下列各式中的常量與變量.

  (1)圓的面積公式s=πr2;

  (2)正方形的l=4a;

  (3)大米的單價(jià)為2.50元/千克,則購(gòu)買的大米的數(shù)量x(kg)與金額與金額y的關(guān)系為y=2.5x.

  2.寫出下列問題的關(guān)系式,并指出不、常量和變量.

 。1)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (2)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式.

  思考:怎樣列變量之間的關(guān)系式?

  小結(jié):變量與常量

  作業(yè):閱讀教材5頁,11.1.2函數(shù)

八年級(jí)數(shù)學(xué)上冊(cè)的教案2

  教學(xué)目標(biāo)

  知識(shí)與能力:

  1.運(yùn)用類比的方法,通過學(xué)生的合作探究,得出平行四邊形的判定方法.

  2.理解平行四邊形的另一種判定方法,并學(xué)會(huì)簡(jiǎn)單運(yùn)用.

  過程與方法:

  1.經(jīng)歷平行四邊行判別條件的探索過程,在有關(guān)活動(dòng)中發(fā)展學(xué)生的合情推理意識(shí).

  2.在運(yùn)用平行四邊形的判定方法解決問題的過程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力.

  情感、態(tài)度與價(jià)值觀:

  通過平行四邊形判別條件的探索,培養(yǎng)學(xué)生面對(duì)挑戰(zhàn),勇于克服困難的意志,鼓勵(lì)學(xué)生大膽嘗試,從中獲得成功的體驗(yàn),激發(fā)學(xué)生的'學(xué)習(xí)熱情.

  教學(xué)方法 啟發(fā)誘導(dǎo)式 教具 三角尺

  教學(xué)重點(diǎn) 平行四邊形判定方法的探究、運(yùn)用.

  教學(xué)難點(diǎn) 對(duì)平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用

  教學(xué)過程:

  第一環(huán)節(jié) 復(fù)習(xí)引入:

  問題1:

  1.平行四邊形的定義是什么?它有什么作用?

  2.判定四邊形是平行四邊形的方法有哪些?

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形.

 。2)一組對(duì)邊平行且相等的四邊形是平行四邊形.

  (3)兩條對(duì)角線互相平分的四邊形是平行四邊形.

  第二環(huán)節(jié) 探索活動(dòng)

  活動(dòng):

  工具:兩對(duì)長(zhǎng)度分別相等的木條。

  動(dòng)手:能否在平面內(nèi)用這四根筆擺成一個(gè)平行四邊形?

  思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?

  已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形.

  思考1.2:以上活動(dòng)事實(shí),能用文字語言表達(dá)嗎?

  學(xué)生以小組為單位,利用課前準(zhǔn)備好的學(xué)具動(dòng)手操作、觀察,完成探究活動(dòng)1,共同得到:

  (1)只有將兩兩相等的木條分別作為四邊形的兩組對(duì)邊才能得到平行四邊形.

 。2)通過觀察、實(shí)驗(yàn)、猜想到:

  兩組對(duì)邊分別相等的四邊形是平行四邊形.

  在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:

 。1)學(xué)生在拼四邊形時(shí),能否將相等兩木條作為四邊形的對(duì)邊;

 。2)轉(zhuǎn)動(dòng)四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個(gè)平行四邊形;

 。3)學(xué)生能否通過獨(dú)立思考、小組合作得出正確的證明思路.

  第三環(huán)節(jié) 鞏固練習(xí)

  例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?

  八年級(jí)數(shù)學(xué)上冊(cè)教案例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?

  隨堂練習(xí)

  1.判斷下列說法是否正確

  (1)一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形 ( )

  (2)兩組對(duì)角都相等的四邊形是平行四邊形 ( )

  (3)一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形 ( )

  (4)一組對(duì)邊平行,一組鄰角互補(bǔ)的四邊形是平行四邊形 ( )

  2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?

  3.如圖所示,四個(gè)全等的三角形拼成一個(gè)大的三角形,找出圖中所有的平行四邊形,并說明理由.

  4.如圖:AD是ΔABC的邊BC邊上的中線.

  (1)畫圖:延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接BE,CE;

  (2)判斷四邊形ABEC的形狀,并說明理由.

  第四環(huán)節(jié) 小結(jié):

  師生共同小結(jié),主要圍繞下列幾個(gè)問題:

 。1)判定一個(gè)四邊形是平行四邊形的方法有哪幾種?

 。2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對(duì)你有什么啟發(fā)?

 。3)平行四邊形判定的應(yīng)用 集備意見 個(gè)案補(bǔ)充

八年級(jí)數(shù)學(xué)上冊(cè)的教案3

  一、教材分析教材的地位和作用:

  本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀察生活中的軸對(duì)稱現(xiàn)象開始,從整體的角度認(rèn)識(shí)軸對(duì)稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

  二、學(xué)情分析

  八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱圖形和軸對(duì)稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

  三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

  根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

  (一)教學(xué)目標(biāo):

  1、知識(shí)技能

  (1)理解并掌握軸對(duì)稱圖形的概念,對(duì)稱軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形;找出軸對(duì)稱圖形的對(duì)稱軸.

  (2)理解并掌握軸對(duì)稱的概念,對(duì)稱軸;了解對(duì)稱點(diǎn).

  (3)了解軸對(duì)稱圖形和軸對(duì)稱的聯(lián)系與區(qū)別.

  2、過程與方法目標(biāo)

  經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語言表達(dá)能力.

  3、情感、態(tài)度與價(jià)值觀

  通過對(duì)生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的.情感和欣賞圖形的對(duì)稱美。

  (二)教學(xué)重點(diǎn):軸對(duì)稱圖形和軸對(duì)稱的有關(guān)概念.

  (三)教學(xué)難點(diǎn):軸對(duì)稱圖形與軸對(duì)稱的聯(lián)系、區(qū)別

  .四、教法和學(xué)法設(shè)計(jì)

  本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:

  【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

  【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

  【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率

  五、說程序設(shè)計(jì):

  新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過程進(jìn)行了設(shè)計(jì)。

  (一)、觀圖激趣、設(shè)疑導(dǎo)入。

  出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說:“咱們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說出為什么長(zhǎng)得象嗎?今天我們就來共同探討這一問題――軸對(duì)稱。

  [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,

  (二)、實(shí)踐探索、感悟特征.

  《活動(dòng)一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對(duì)稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對(duì)稱?怎樣才能使對(duì)稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱圖形和對(duì)稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱圖形概念的理解。

  為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn)又出示了一組練習(xí)

  (練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對(duì)稱圖形,若是對(duì)稱圖形的,畫出它的對(duì)稱軸

  [設(shè)計(jì)意圖]通過這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見的圖形,有些是軸對(duì)稱圖形,有些不是軸對(duì)稱圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱圖形的對(duì)稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對(duì)稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

  (練習(xí)2)國(guó)家的一個(gè)象征,觀察下面的國(guó)旗,哪些是軸對(duì)稱圖形?試找出它們的對(duì)稱軸。次題進(jìn)一步鞏固了軸對(duì)稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識(shí)面。

  (三)、動(dòng)手操作、再度探索新知。

  將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對(duì)稱圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱概念。

  再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱的概念……。之后再結(jié)合動(dòng)畫演示加深對(duì)軸對(duì)稱概念的理解,進(jìn)而引出對(duì)稱軸、對(duì)稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識(shí)。

  (四)、鞏固練習(xí)、升華新知。

  出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱圖形哪些圖形軸對(duì)稱,

  在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱圖形及軸對(duì)稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

  (課件演示)軸對(duì)稱圖形及兩個(gè)圖形成軸對(duì)稱區(qū)別與聯(lián)系

  (五)、綜合練習(xí)、發(fā)展思維。

  1、搶答;觀察周圍哪些事物的形狀是軸對(duì)稱圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對(duì)稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱圖形。

  (1)下面的數(shù)字或字母,哪些是軸對(duì)稱圖形?它們各有幾條對(duì)稱軸?

  0123456789ABCDEFGH

  3、像這樣寫法的漢字哪些是軸對(duì)稱圖形?

  口工用中由日直水清甲

  (這幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

  (六)歸納小結(jié)、布置作業(yè)

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

  六、設(shè)計(jì)說明

  這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動(dòng)畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱圖形與關(guān)于直線成軸對(duì)稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說明。

八年級(jí)數(shù)學(xué)上冊(cè)的教案4

  11.1 與三角形有關(guān)的線段

  11.1.1 三角形的邊

  1.理解三角形的概念,認(rèn)識(shí)三角形的頂點(diǎn)、邊、角,會(huì)數(shù)三角形的個(gè)數(shù).(重點(diǎn))

  2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))

  3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))

  一、情境導(dǎo)入

  出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會(huì)生活中處處有數(shù)學(xué).

  教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

  問:你能不能給三角形下一個(gè)完整的定義?

  二、合作探究

  探究點(diǎn)一:三角形的概念

  圖中的銳角三角形有( )

  A.2個(gè)

  B.3個(gè)

  C.4個(gè)

  D.5個(gè)

  解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.

  方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.

  探究點(diǎn)二:三角形的三邊關(guān)系

  【類型一】 判定三條線段能否組成三角形

  以下列各組線段為邊,能組成三角形的.是( )

  A.2c,3c,5c

  B.5c,6c,10c

  C.1c,1c,3c

  D.3c,4c,9c

  解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.

  方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長(zhǎng)度之和大于第三條線段的長(zhǎng)度即可.

  【類型二】 判斷三角形邊的取值范圍

  一個(gè)三角形的三邊長(zhǎng)分別為4,7,x,那么x的取值范圍是( )

  A.3<x<11 B.4<x<7

  C.-3<x<11 D.x>3

  解析:∵三角形的三邊長(zhǎng)分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

  方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識(shí)進(jìn)行解決.

  【類型三】 等腰三角形的三邊關(guān)系

  已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為4和9,求這個(gè)三角形的周長(zhǎng).

  解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長(zhǎng)的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

  解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長(zhǎng)是4+9+9=22.

  方法總結(jié):在求三角形的邊長(zhǎng)時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長(zhǎng)能否組成三角形.

  【類型四】 三角形三邊關(guān)系與絕對(duì)值的綜合

  若a,b,c是△ABC的三邊長(zhǎng),化簡(jiǎn)|a-b-c|+|b-c-a|+|c+a-b|.

  解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對(duì)值里的式子的正負(fù),然后去絕對(duì)值符號(hào)進(jìn)行計(jì)算即可.

  解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

  方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).

  三、板書設(shè)計(jì)

  三角形的邊

  1.三角形的概念:

  由不在同一直線上的三條線段首尾順次相接所組成的圖形.

  2.三角形的三邊關(guān)系:

  兩邊之和大于第三邊,兩邊之差小于第三邊.

  本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力.

八年級(jí)數(shù)學(xué)上冊(cè)的教案5

  【教學(xué)目標(biāo)】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):理解分式有意義的條件,分式的值為零的條件.

  難點(diǎn):能熟練地求出分式有意義的`條件,分式的值為零的條件.

  【教學(xué)過程】

  一、課堂導(dǎo)入

  1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?

  設(shè)江水的流速為x千米/時(shí).

  輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.

  3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.

  二、例題講解

  例1:當(dāng)x為何值時(shí),分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

  (補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當(dāng)x取何值時(shí),下列分式有意義?

  3.當(dāng)x為何值時(shí),分式的值為0?

  四、小結(jié)

  談?wù)勀愕氖斋@.

  五、布置作業(yè)

  課本128~129頁練習(xí).

八年級(jí)數(shù)學(xué)上冊(cè)的教案6

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  了解因式分解的意義,以及它與整式乘法的關(guān)系.

  2.過程與方法

  經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

  3.情感、態(tài)度與價(jià)值觀

  在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):了解因式分解的意義,感受其作用.

  2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

  3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

  教學(xué)方法

  采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,激趣導(dǎo)入

  【問題牽引】

  請(qǐng)同學(xué)們探究下面的2個(gè)問題:

  問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

  問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

  二、豐富聯(lián)想,展示思維

  探索:你會(huì)做下面的填空嗎?

  1.ma+mb+mc=( )( );

  2.x2-4=( )( );

  3.x2-2xy+y2=( )2.

  【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

  三、小組活動(dòng),共同探究

  【問題牽引】

 。1)下列各式從左到右的變形是否為因式分解:

 、伲▁+1)(x-1)=x2-1;

 、赼2-1+b2=(a+1)(a-1)+b2;

 、7x-7=7(x-1).

 。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

  ①9x2(______)+y2=(3x+y)(_______);

  ②x2-4xy+(_______)=(x-_______)2.

  四、隨堂練習(xí),鞏固深化

  課本練習(xí).

  【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

  五、課堂總結(jié),發(fā)展?jié)撃?/strong>

  由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

  1.什么叫因式分解?

  2.因式分解與整式運(yùn)算有何區(qū)別?

  六、布置作業(yè),專題突破

  選用補(bǔ)充作業(yè).

  板書設(shè)計(jì)

  15.4.1 因式分解

  1、因式分解 例:

  練習(xí):

  15.4.2 提公因式法

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

  2.過程與方法

  使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

  2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

  3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  教學(xué)方法

  采用“啟發(fā)式”教學(xué)方法.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【復(fù)習(xí)交流】

  下列從左到右的變形是否是因式分解,為什么?

 。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

 。5)x2-2xy+y2=(x-y)2.

  問題:

  1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

  2.多項(xiàng)式4x2-x和xy2-yz-y呢?

  請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

  【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

  二、小組合作,探究方法

  【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

  【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

  三、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  【例2】分解因式,3a2(x-y)3-4b2(y-x)2

  【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)23a2(y-x)+4b2(y-x)2]

  =-(y-x)2 [3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)23a2(x-y)-4b2(x-y)2

  =(x-y)2 [3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  【例3】用簡(jiǎn)便的'方法計(jì)算:0.84×12+12×0.6-0.44×12.

  【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

  四、隨堂練習(xí),鞏固深化

  課本P167練習(xí)第1、2、3題.

  【探研時(shí)空】

  利用提公因式法計(jì)算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、課堂總結(jié),發(fā)展?jié)撃?/strong>

  1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

  2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

  六、布置作業(yè),專題突破

  課本P170習(xí)題15.4第1、4(1)、6題.

  板書設(shè)計(jì)

  15.4.2 提公因式法

  1、提公因式法 例:

  練習(xí):

  15.4.3 公式法(一)

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

  2.過程與方法

  經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):利用平方差公式分解因式.

  2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

  3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.

  教學(xué)方法

  采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.

  教學(xué)過程

  一、觀察探討,體驗(yàn)新知

  【問題牽引】

  請(qǐng)同學(xué)們計(jì)算下列各式.

  (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

  【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

 。1)(a+5)(a-5)=a2-52=a2-25;

  (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

  【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

  1.分解因式:a2-25; 2.分解因式16m2-9n.

  【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

 。1)a2-25=a2-52=(a+5)(a-5).

  (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

  【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

  平方差公式:a2-b2=(a+b)(a-b).

  評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:(投影顯示或板書)

 。1)x2-9y2; (2)16x4-y4;

 。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

  (5)m2(16x-y)+n2(y-16x).

  【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

  【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

  【學(xué)生活動(dòng)】分四人小組,合作探究.

  解:(1)x2-9y2=(x+3y)(x-3y);

 。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

 。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

 。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

 。5)m2(16x-y)+n2(y-16x)

  =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

  三、隨堂練習(xí),鞏固深化

  課本P168練習(xí)第1、2題.

  【探研時(shí)空】

  1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

  2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

  四、課堂總結(jié),發(fā)展?jié)撃?/strong>

  運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.

  五、布置作業(yè),專題突破

  課本P171習(xí)題15.4第2、4(2)、11題.

  板書設(shè)計(jì)

  15.4.3 公式法(一)

  1、平方差公式: 例:

  a2-b2=(a+b)(a-b) 練習(xí):

  15.4.3 公式法(二)

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

  2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

  教學(xué)方法

  采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

 。3) x2-0.01y2.

八年級(jí)數(shù)學(xué)上冊(cè)的教案7

 、.教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)與技能 使學(xué)生理解正比例函數(shù)的概念,會(huì)用描點(diǎn)法畫正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).

  過程與能力 培養(yǎng)學(xué)生數(shù)學(xué)建模的能力.

  情感與態(tài)度 實(shí)例引入,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  教學(xué)重點(diǎn) 探索正比例函數(shù)的性質(zhì).

  教學(xué)難點(diǎn) 從實(shí)際問題情境中建立正比例函數(shù)的數(shù)學(xué)模型.

  Ⅱ.教學(xué)過程設(shè)計(jì)

  問題及師生行為 設(shè)計(jì)意圖

  一、創(chuàng)設(shè)問題,激發(fā)興趣

  【問題1】將下列問題中的變量用函數(shù)表示出來:

  (1)小明騎自行車去郊游,速度為4km/h,其行駛路程y隨時(shí)間x變化而變化;

  (2)三角形的底為10cm,其面積y隨高x的變化而變化;

  (3)筆記本的單價(jià)為3元,買筆記本所要的錢數(shù)y隨作業(yè)本數(shù)量x的變化而變化.

  解:(1)y=4x;(2)y=5x;(3)y=3x.

  教師提出問題,學(xué)生獨(dú)立思考并回答問題.

  教師點(diǎn)評(píng),并且提醒學(xué)生注意用x表示y. 問題引入,為新知作好鋪墊.

  二、誘導(dǎo)參與,探究新知

  思考:觀察函數(shù)關(guān)系式:

  ① y=4x; ② y=5x; ③ y=3x.

  這些函數(shù)有什么特點(diǎn)?

  都是y等于一個(gè)常量與x的乘積.

  教師提出問題,并引導(dǎo)學(xué)生觀察:

  學(xué)生觀察思考并回答問題.

  三、引導(dǎo)歸納,提煉新知

  (板書)正比例函數(shù)的概念:

  一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).

  注意:x 的取值范圍是全體實(shí)數(shù).

  由教師引導(dǎo),學(xué)生觀察得出結(jié)論.體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的關(guān)系.

  通過板書,突出本節(jié)課的重點(diǎn).

  四、指導(dǎo)應(yīng)用,發(fā)展能力

  1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?

  (1) 是,比例系數(shù)k=8. (2) 不是.

  (3) 是,比例系數(shù)k= . (4) 不是.

  填空

  1.若函數(shù)y=(2m2+8)xm2-8+(m+3)是正比例函數(shù),則m的.值是___-3____.

  題 1請(qǐng)學(xué)生口答, 題2學(xué)生獨(dú)立完成,并到黑板板書,教師評(píng)價(jià)書寫規(guī)范.

  在本次活動(dòng)中,教師要關(guān)注:

  學(xué)生能否準(zhǔn)確地理解正比例函數(shù)的定義,注意二次項(xiàng)系數(shù)不能為0.

  五、探究新知

  例1 畫出正比例函數(shù)y=x的圖象.

  解:(1)列表:

  x --- -2 -1 0 1 2 ---

  y --- -2 -1 0 1 2 ---

  畫出函數(shù)y=x的圖象.

  (1)列表: (2)描點(diǎn): (3)連線:

  想一想

  除了用描點(diǎn)法外,還有其他簡(jiǎn)單的方法畫正比例函數(shù)圖象嗎?

  根據(jù)兩點(diǎn)確定一條直線,我們可以經(jīng)過原點(diǎn)與點(diǎn)(1,k)畫直線,即兩點(diǎn)法.

  同理,畫出y=-x的圖象.

  師生共同分析:兩個(gè)圖象的共同點(diǎn):都是經(jīng)過原點(diǎn)的直線.不同點(diǎn):函數(shù)y=x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大,經(jīng)過第一、三象限.

  函數(shù)y=-x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小,經(jīng)過第二、四象限.

  歸納:一般地,正比例函數(shù)y=kx(k是常數(shù),k≠ 0)的圖象是一條經(jīng)過原點(diǎn)的直線.

  當(dāng)k>0時(shí),圖象經(jīng)過一、三象限,從左向右上升,即隨x的增大y也增大;

  當(dāng)k<0時(shí),圖象經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.

  由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.

  六、指導(dǎo)應(yīng)用,發(fā)展能力

  例2 在同一直角坐標(biāo)系中畫出y=x,y=2x,y=3x的函數(shù)圖象,并比較它們的異同點(diǎn).

  相同點(diǎn):圖象經(jīng)過一、三象限,從左向右上升;

  不同點(diǎn):傾斜度不同, y=x,y=2x,y=3x的函數(shù)圖象離y軸越來越近.

  例3 在同一直角坐標(biāo)系中畫出y=-x,y=-2x,y=-3x的函數(shù)圖象,并比較它們的異同點(diǎn).

  相同點(diǎn):圖象經(jīng)過二、四象限,從左向右下降;

  不同點(diǎn):傾斜度不同, y=-x,y=-2x,y=-3x的函數(shù)圖象離y軸越來越近.

  在y=kx中,k的絕對(duì)值越大,函數(shù)圖象越靠近y軸.

八年級(jí)數(shù)學(xué)上冊(cè)的教案8

  教材分析

  平方差公式是在學(xué)習(xí)多項(xiàng)式乘法等知識(shí)的基礎(chǔ)上,自然過渡到具有特殊形式的多項(xiàng)式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動(dòng)中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機(jī)。對(duì)它的學(xué)習(xí)和研究,不僅得到了特殊的多項(xiàng)式乘法的.簡(jiǎn)便算法,而且為以后的因式分解,分式的化簡(jiǎn)、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個(gè)重要的公式。

  學(xué)情分析

  學(xué)生是在學(xué)習(xí)積的乘方和多項(xiàng)式乘多項(xiàng)式后學(xué)習(xí)平方差公式的,但在進(jìn)行積的乘方的運(yùn)算時(shí),底數(shù)是數(shù)與幾個(gè)字母的積時(shí)往往把括號(hào)漏掉,在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)確定錯(cuò)某些次符號(hào)及漏項(xiàng)等問題。學(xué)生學(xué)習(xí)平方差公式的困難在于對(duì)公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時(shí),要把它括號(hào)在平方。

  教學(xué)目標(biāo)

  1、知識(shí)與技能:經(jīng)歷探索平方差公式的過程,會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行運(yùn)算.

  2、過程與方法:在探索平方差公式的過程中,發(fā)展學(xué)生的符號(hào)感和歸納能力、推理能力.在計(jì)算的過程中發(fā)現(xiàn)規(guī)律,掌握平方差公式的結(jié)構(gòu)特征,并能用符號(hào)表達(dá),從而體會(huì)數(shù)學(xué)語言的簡(jiǎn)潔美.

  3、情感、態(tài)度與價(jià)值觀:激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.鼓勵(lì)學(xué)生自己探索,有意識(shí)地培養(yǎng)學(xué)生的合作意識(shí)與創(chuàng)新能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用.

  難點(diǎn):理解掌握平方差公式的結(jié)構(gòu)特點(diǎn)以及靈活運(yùn)用平方差公式解決實(shí)際問題.

八年級(jí)數(shù)學(xué)上冊(cè)的教案9

  【學(xué)習(xí)目標(biāo)】

  1.掌握等腰三角形的有關(guān)概念和性質(zhì),運(yùn)用等腰三角形的性質(zhì)解決問題。

  2. 通過學(xué)生之間的交流活動(dòng),培養(yǎng)學(xué)生主動(dòng)與他人合作 交流的意識(shí)和良好的學(xué)習(xí)習(xí)慣。

  【學(xué)習(xí)重點(diǎn)】

  探索和掌握等腰三角形的性質(zhì)及其應(yīng)用。

  【學(xué)習(xí)難點(diǎn)】

  等腰三角形的性質(zhì)的.應(yīng)用。

  【學(xué)習(xí) 過程】

  一、你知道嗎?

  等腰三角形的有關(guān)概念

  《等腰三角形應(yīng)用》講義

  課前預(yù)習(xí)

  1.SAS,SSS,ASA,AAS,HL

  2.這條線段的兩個(gè)端點(diǎn)的距離相等

  3.這個(gè)角的兩邊的距離相等

  4.這樣的點(diǎn)有4個(gè)

  ?知識(shí)點(diǎn)睛

  1.線段垂直平分線上的點(diǎn)到這條線段的兩個(gè)端點(diǎn)的距離相等

  2.角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等

  3.頂角的平分線 底邊上的中線 底邊上的高 三線合一

  《13.3等腰三角形》專項(xiàng)練習(xí)

  1、填空題

  2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個(gè)等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個(gè)等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個(gè)等腰直角三角形的面積 。

八年級(jí)數(shù)學(xué)上冊(cè)的教案10

  第11章平面直角坐標(biāo)系

  11。1平面上點(diǎn)的坐標(biāo)

  第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)

  教學(xué)目標(biāo)

  【知識(shí)與技能】

  1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。

  2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。

  3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點(diǎn)的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。

  2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來描述物體的位置。

  【情感、態(tài)度與價(jià)值觀】

  通過引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  認(rèn)識(shí)平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。

  【難點(diǎn)】

  理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

  教學(xué)過程

  一、創(chuàng)設(shè)情境、導(dǎo)入新知

  師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說?

  生甲:我在第3排第5個(gè)座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個(gè)問題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來表示這個(gè)物體

  的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?

  生:3排5號(hào)。

  師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰來說說我們應(yīng)該怎樣表示一個(gè)物體的位置呢?

  生:用一個(gè)有序的實(shí)數(shù)對(duì)來表示。

  師:對(duì)。我們學(xué)過實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。

  師:有了平面直角坐標(biāo)系,平面內(nèi)的`點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來表示了。現(xiàn)在請(qǐng)大家自己動(dòng)手畫一個(gè)平面直角坐標(biāo)系。

  學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。

  教師邊操作邊講解:

  如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。

  教師多媒體出示:

  師:如圖,請(qǐng)同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。

  生甲:A點(diǎn)的坐標(biāo)是(—5,4)。

  生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。

  生丙:C點(diǎn)的坐標(biāo)是(4,0)。

  生。篋點(diǎn)的坐標(biāo)是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標(biāo)是3的點(diǎn),過這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。

  學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。

  三、深入探究,層層推進(jìn)

  師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開始,按逆時(shí)針方向,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?

  生:都一樣。

  師:對(duì),由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?

  生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。

  師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?

  生:能,在第二象限。

  四、練習(xí)新知

  師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。

  教師寫出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點(diǎn)在第三象限。

  生乙:B點(diǎn)在第四象限。

  生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。

  生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。

  師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。

  學(xué)生作圖,教師巡視,并予以指導(dǎo)。

  五、課堂小結(jié)

  師:本節(jié)課你學(xué)到了哪些新的知識(shí)?

  生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。

  教師補(bǔ)充完善。

  教學(xué)反思

  物體位置的說法和表述物體的位置等問題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)

  教學(xué)目標(biāo)

  【知識(shí)與技能】

  進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。

  【過程與方法】

  通過探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價(jià)值觀】

  培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過二維坐標(biāo)來描述圖形頂點(diǎn),從而描述圖形的方法。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。

  【難點(diǎn)】

  不規(guī)則圖形面積的求法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。

  學(xué)生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計(jì)算出它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎樣算的呢?

  生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學(xué)生完成操作后回答:平行四邊形。

  師:你能計(jì)算它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎么計(jì)算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來看這樣一個(gè)連接成的圖形:

  教師多媒體出示下圖:

八年級(jí)數(shù)學(xué)上冊(cè)的教案11

  教學(xué)目標(biāo)

  1.等腰三角形的概念。

  2.等腰三角形的性質(zhì)。

  3.等腰三角形的概念及性質(zhì)的應(yīng)用。

  教學(xué)重點(diǎn):

  等腰三角形的概念及性質(zhì)。 2.等腰三角形性質(zhì)的應(yīng)用。

  教學(xué)難點(diǎn):

  等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。

  教學(xué)過程

 、.提出問題,創(chuàng)設(shè)情境

  在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案。這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形。來研究:

 、偃切问禽S對(duì)稱圖形嗎?

 、谑裁礃拥娜切问禽S對(duì)稱圖形?

  有的三角形是軸對(duì)稱圖形,有的三角形不是。

  問題:那什么樣的三角形是軸對(duì)稱圖形?

  滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。

  我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。

 、.導(dǎo)入新課:要求學(xué)生通過自己的思考來做一個(gè)等腰三角形。

  作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。

  等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的'兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角。同學(xué)們?cè)谧约鹤鞒龅牡妊切沃,注明它的腰、底邊、頂角和底角?/p>

  思考:

  1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。

  2.等腰三角形的兩底角有什么關(guān)系?

  3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

  4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

  結(jié)論:等腰三角形是軸對(duì)稱圖形。它的對(duì)稱軸是頂角的平分線所在的直線。因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。

  要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。

  沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

  由此可以得到等腰三角形的性質(zhì):

  1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).

  2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

  由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程).

  如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

  [例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

  求:△ABC各角的度數(shù)。

  分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角。

  把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡(jiǎn)捷。

  解:因?yàn)锳B=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等邊對(duì)等角).

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識(shí)。

 、.隨堂練習(xí):1.課本P51練習(xí)1、2、3. 2.閱讀課本P49~P51,然后小結(jié)。

 、.課時(shí)小結(jié)

  這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。

  我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。

 、.作業(yè):課本P56習(xí)題12.3第1、2、3、4題。

  板書設(shè)計(jì)

  12.3.1.1等腰三角形

  一、設(shè)計(jì)方案作出一個(gè)等腰三角形

  二、等腰三角形性質(zhì):1.等邊對(duì)等角2.三線合一

八年級(jí)數(shù)學(xué)上冊(cè)的教案12

  教學(xué)目標(biāo):

  1、 理解運(yùn)用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過程中,我設(shè)計(jì)了這樣的自學(xué)提示:

  1、整式乘法中的`平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

  2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫出分解過程,若不能,說出為什么?

  ①-x2+y2 ②-x2-y2 ③4-9x2

 、 (x+y)2-(x-y)2 ⑤ a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

  生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

  生5: a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)

  師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問題:

  (1) 我在備課時(shí),過高估計(jì)了學(xué)生的能力,問題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問題2改為:

  下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

  (2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計(jì)時(shí)可寫一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。

  我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們?cè)僮鰩最}試試!鄙珠_始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥恚院笊险n不能單聽學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

  確實(shí),“學(xué)海無涯,教海無邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問題,“沒有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……

八年級(jí)數(shù)學(xué)上冊(cè)的教案13

  一.教學(xué)目標(biāo):

  1.了解方差的定義和計(jì)算公式。

  2.理解方差概念的產(chǎn)生和形成的過程。

  3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。

  二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

  1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

  2.難點(diǎn):理解方差公式

  3.難點(diǎn)的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

  (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。

  (2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法。可以畫折線圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。

  (3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

  三.例習(xí)題的意圖分析:

  1.教材P125的討論問題的意圖:

  (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

  (2).為引入方差概念和方差計(jì)算公式作鋪墊。

  (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。

  (4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。

  2.教材P154例1的設(shè)計(jì)意圖:

  (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。

  (2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。

  四.課堂引入:

  除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

  五.例題的分析:

  教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):

  1.題目中“整齊”的'含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。

  2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。

  3.方差怎樣去體現(xiàn)波動(dòng)大小?

  這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。

  六.隨堂練習(xí):

  1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?

  (2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?

  2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l的成績(jī)比較穩(wěn)定?為什么?

  測(cè)試次數(shù)1 2 3 4 5

  段巍13 14 13 12 13

  金志強(qiáng)10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。

  七.課后練習(xí):

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

  3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?

  4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  選擇小兵參加比賽。

八年級(jí)數(shù)學(xué)上冊(cè)的教案14

  一、 教學(xué)目標(biāo)

  1.了解分式、有理式的概念.

  2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):理解分式有意義的條件.

  2.難點(diǎn):能熟練地求出分式有意義的條件.

  三、課堂引入

  1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.

  2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?

  請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

  設(shè)江水的流速為v /h.

  輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.

  3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?

  四、例題講解

  P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.

  [分析]已知分式有意義,就可以知道分式的.分母不為零,進(jìn)一步解

  出字母的取值范圍.

  [補(bǔ)充提問]如果題目為:當(dāng)字母為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

  (補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?

 。1) (2) (3)

  [分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 當(dāng)x取何值時(shí),下列分式有意義?

  (1) (2) (3)

  3. 當(dāng)x為何值時(shí),分式的值為0?

 。1) (2) (3)

  六、課后練習(xí)

  1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

 。1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).

 。2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).

 。3)x與的差于4的商是 .

  2.當(dāng)x取何值時(shí),分式 無意義?

  3. 當(dāng)x為何值時(shí),分式 的值為0?

八年級(jí)數(shù)學(xué)上冊(cè)的教案15

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1.經(jīng)歷探索積的乘方的運(yùn)算法則的過程,進(jìn)一步體會(huì)冪的意義。

  2.理解積的乘方運(yùn)算法則,能解決一些實(shí)際問題。

 。ǘ┠芰τ(xùn)練要求

  1.在探究積的乘方的運(yùn)算法則的過程中,發(fā)展推理能力和有條理的表達(dá)能力。

  2.學(xué)習(xí)積的.乘方的運(yùn)算法則,提高解決問題的能力。

  (三)情感與價(jià)值觀要求

  在發(fā)展推理能力和有條理的語言、符號(hào)表達(dá)能力的同時(shí),進(jìn)一步體會(huì)學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡(jiǎn)潔美。

  教學(xué)重點(diǎn)

  積的乘方運(yùn)算法則及其應(yīng)用。

  教學(xué)難點(diǎn)

  冪的運(yùn)算法則的靈活運(yùn)用。

  教學(xué)方法

  自學(xué)─引導(dǎo)相結(jié)合的方法。

  同底數(shù)冪的乘法、冪的乘方、積的乘方成一個(gè)體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運(yùn)算方法,能解決一些實(shí)際問題。

  教具準(zhǔn)備

  投影片.

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  [師]還是就上節(jié)課開課提出的問題:若已知一個(gè)正方體的棱長(zhǎng)為1.1×103cm,你能計(jì)算出它的體積是多少嗎?

  [生]它的體積應(yīng)是V=(1.1×103)3cm3。

  [師]這個(gè)結(jié)果是冪的乘方形式嗎?

  [生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認(rèn)為應(yīng)是積的乘方才有道理。

  [師]你分析得很有道理,積的乘方如何運(yùn)算呢?能不能找到一個(gè)運(yùn)算法則?有前兩節(jié)課的探究經(jīng)驗(yàn),老師想請(qǐng)同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。

  Ⅱ.導(dǎo)入新課

  老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。

  出示投影片

  1.填空,看看運(yùn)算過程用到哪些運(yùn)算律,從運(yùn)算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?

  (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

 。2)(ab)3=______=_______=a()b()

 。3)(ab)n=______=______=a()b()(n是正整數(shù))

  2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號(hào)語言表達(dá)。

  3.解決前面提到的正方體體積計(jì)算問題。

  4.積的乘方的運(yùn)算法則能否進(jìn)行逆運(yùn)算呢?請(qǐng)驗(yàn)證你的想法。

  5.完成課本P170例3。

  學(xué)生探究的經(jīng)過:

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

【八年級(jí)數(shù)學(xué)上冊(cè)的教案】相關(guān)文章:

八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

八年級(jí)上冊(cè)數(shù)學(xué)教案12-11

八年級(jí)數(shù)學(xué)上冊(cè)教案06-08

八年級(jí)數(shù)學(xué)上冊(cè)的教案07-10

數(shù)學(xué)上冊(cè)教案01-15

[推薦]八年級(jí)上冊(cè)數(shù)學(xué)教案05-23

[精華]八年級(jí)上冊(cè)數(shù)學(xué)教案06-08

[優(yōu)選]八年級(jí)上冊(cè)數(shù)學(xué)教案06-09

八年級(jí)上冊(cè)數(shù)學(xué)教案[熱門]07-03