[推薦]七年級數(shù)學上冊教案
作為一位杰出的教職工,時常要開展教案準備工作,借助教案可以讓教學工作更科學化。我們該怎么去寫教案呢?下面是小編幫大家整理的七年級數(shù)學上冊教案,僅供參考,希望能夠幫助到大家。
七年級數(shù)學上冊教案1
教學目標
1,掌握相反數(shù)的概念,進一步理解數(shù)軸上的點與數(shù)的對應(yīng)關(guān)系;
2,通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力;
3,體驗數(shù)形結(jié)合的思想。
教學難點
歸納相反數(shù)在數(shù)軸上表示的點的特征
知識重點
相反數(shù)的概念
教學過程
(師生活動)設(shè)計理念
設(shè)置情境
引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類
4,-2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結(jié)論:教科書第13頁的思考
再換2個類似的數(shù)試一試。
歸納結(jié)論:教科書第13頁的歸納。以開放的形式創(chuàng)設(shè)情境,以學生進行討論,并培養(yǎng)分類的'能力
培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想
深化主題提煉定義給出相反數(shù)的定義
問題2:你怎樣理解相反數(shù)定義中的“只有符號不同”和“互為”一詞的含義?零的相反數(shù)是什么?為什么?
學生思考討論交流,教師歸納總結(jié)。
規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a
思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關(guān)系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。
深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。
強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義
給出規(guī)律
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數(shù)是-5和+5
練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法
小結(jié)與作業(yè)
課堂小結(jié)
1,相反數(shù)的定義
2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征
3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
本課作業(yè)
1,必做題教科書第18頁習題1。2第3題
2,選做題教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)
1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征。這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質(zhì)均有廣泛的應(yīng)用。所以本教學設(shè)計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結(jié)合的思想。
2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復(fù)習數(shù)軸知識的同時,滲透了數(shù)形結(jié)合的數(shù)學方法,數(shù)與形的相互轉(zhuǎn)化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法。
3,本教學設(shè)計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地。
七年級數(shù)學上冊教案2
一、教學目標
知識與技能
1.理解單項式及單項式系數(shù)、次數(shù)的概念。
2.會準確迅速地確定一個單項式的系數(shù)和次數(shù)。
過程與方法
通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力。
情感態(tài)度與價值觀
初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。
二、重點難點
重點
列單項式表示數(shù)量關(guān)系,單項式及其系數(shù)、次數(shù)的意義.
難點
列單項式表示數(shù)量關(guān)系.
三、學情分析
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學習。要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。
四、教學過程設(shè)計
問題設(shè)計師生活動設(shè)計意圖
[活動1]
舉世矚目的青藏鐵路于20xx年7月1日建成通車,實現(xiàn)了幾代中國人夢寐以求的愿望。青藏鐵路是世界上海拔最高、線路最長的高原鐵路。青藏鐵路線上,在格爾木到拉薩之間有一段很長的.凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答問題:
列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
提問:字母表示數(shù)有什么意義?
學生獨立思考,嘗試解決
解答:
1002=200千米
1003=300千米
100t=100t千米
我們用含字母t的式子100t表示路程。用字母表示數(shù)后,可以用含有字母的式子把數(shù)量關(guān)系簡明地表達出來,更適合一般規(guī)律的表達。
從學生已有的數(shù)學經(jīng)驗和現(xiàn)實問題情境出發(fā),感受用字母表示數(shù)的意義。
以青藏鐵路為引例,對學生進行愛國主義教育的德育滲透。
七年級數(shù)學上冊教案3
教學內(nèi)容:
小學數(shù)學六年級下冊P112-113練習二十二1~7題。
教學目標:
1.通過練習,進一步掌握統(tǒng)計與概率的相關(guān)知識。
2.能解決統(tǒng)計與概率相關(guān)的簡單實際問題。
3.感受數(shù)學與生活的緊密聯(lián)系,提高學習數(shù)學的興趣和學好數(shù)學的自信心。
重點、難點:
1.掌握統(tǒng)計與概率的基本知識和方法。
2.靈活應(yīng)用統(tǒng)計與概率的相關(guān)知識解決實際問題。
教學準備:
教學掛圖,小黑板,自主檢測題等。
教學過程
一、情境引入,回顧再現(xiàn)
1.回顧統(tǒng)計與概率的相關(guān)知識。
組織學生簡單回憶,說一說:
本單元學習了統(tǒng)計圖,統(tǒng)計表;平均數(shù),中位數(shù),眾數(shù);以及游戲公平,可能性等概率問題。
2.揭示課題。
師:那么這節(jié)課我們就來對本部分知識進行練習。
板書課題:統(tǒng)計與概率練習
二、分層練習,強化提高
(一)基本練習。
1.
(1)該公司去年全年的銷售情況如何?
(2)該公司的發(fā)展前景怎樣?
(3)你還能提出哪些問題?
、俳M織學生獨立解答.
、趨R報訂正,說解題思路。
教師引導學生從圖中的變化趨勢上來分析問題,從而得出結(jié)論:該公司去年總體經(jīng)營情況很好,產(chǎn)量和銷量不斷增長,第四季度增長幅度較快,而且出現(xiàn)了銷量大于產(chǎn)量的良好勢頭。由此可以作出預(yù)測:該公司在未來的一段時間內(nèi)將有良好的發(fā)展。
2.
、俳M織學生獨立解答.
②匯報訂正,說解題思路
教師注意提醒學生考慮事件發(fā)生的等可能性以及幾率的多少。
(二)綜合練習。
、俳M織學生獨立解答第一小題。
②小組交流討論,解答第二小題。
師根據(jù)學生的匯報,讓學生明確在研究一組數(shù)據(jù)的分布情況時,用平均數(shù)、中位數(shù)或眾數(shù)作為數(shù)據(jù)的代表都是可以的。但是在一般情況下,用平均數(shù)作為數(shù)據(jù)代表的時候較多,它與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān)系,但它易受極端數(shù)據(jù)的影響,所以為了減少這種影響,在評分時就采取去掉一個分和一個最低分,再計算平均數(shù),這樣做是合理的。
、俳M織學生獨立思考。
、谛〗M交流討論,匯報結(jié)果。
本題是有關(guān)眾數(shù)的應(yīng)用的練習。從進貨和銷售數(shù)量的差來看,尺碼是35、37、39三種型號的鞋進貨有些多了,下一次進貨時可考慮適當降低數(shù)量;但從銷量來看,37碼的鞋仍然排名第一,36和38碼的列第二、三名,所以每種型號的鞋的進貨量的比例總體上不會有大的.變化。研究一組數(shù)據(jù)的頻數(shù)大小分布情況時,應(yīng)用了眾數(shù)的知識。
(三)提高練習。
、俳M織學生獨立思考。
、谛〗M交流討論,匯報結(jié)果。
六(2)班同學的血型情況如圖,
(1)從圖中你能得到哪些信息?
(2)該班有50人,各種血型有多少人?
本題是有關(guān)可能性的習題,對簡單事件發(fā)生的可能性作出預(yù)測。從兩隊的歷史戰(zhàn)績來看,各是兩勝一平兩負,不相上下;從這一點來判斷,兩隊獲勝的可能性都是二分之一。但是,仔細觀察可以發(fā)現(xiàn):在離比賽日最近的兩場比賽中均是乙隊獲勝,說明最近乙隊的狀態(tài)好于甲隊,由此可以預(yù)測:乙隊獲勝的可能性稍大一些。這種判斷也有一定道理。
三、自主檢測,評價完善
自主檢測
1.填空:
(1)人們對收集的統(tǒng)計數(shù)據(jù)經(jīng)過分析整理后可以制成( )還可以制成( )
(2)( )統(tǒng)計圖可以清楚地表示出各部分同總數(shù)之間的關(guān)系。
(3)( )統(tǒng)計圖既能表示出數(shù)量的多少,又能反映出數(shù)量變化情況
2.選擇:
(1)評價一個班整體學習成績情況,看( )比較合適?
A.平均數(shù)B.中位數(shù)C.眾數(shù)
(2)為了清楚地表示出20xx年各月平均氣溫變化情況,應(yīng)繪制( )。
A.條形B.折線C.扇形
3.做一做:
有A—J 10張字母卡片,小明翻字母卡片,小紅猜小明的字母卡片,如果小紅猜對,小紅獲勝,如果小紅猜錯了,小明獲勝。
(1)你認為這個游戲規(guī)則對雙方公平嗎?對誰有利?
(2)請設(shè)計一個雙方公平的游戲規(guī)則。
四、課堂總結(jié)
1.教師評價:通過本節(jié)課的練習大都分同學掌握較好,值得表揚。
2.學生談收獲:通過本節(jié)課練習你有什么新的收獲?
板書設(shè)計:
統(tǒng)計與概率練習
統(tǒng)計表
統(tǒng)計圖:條形統(tǒng)計圖;折線統(tǒng)計圖;扇形統(tǒng)計圖
統(tǒng)計量:平均數(shù);中位數(shù);眾數(shù)
可能性:等可能;公平;
作業(yè)設(shè)計
基礎(chǔ):
1.簡單的統(tǒng)計圖有( )統(tǒng)計圖、( )統(tǒng)計圖和( )統(tǒng)計圖。
2.( )統(tǒng)計圖是用長短不同、寬窄一致的直條表示數(shù)量,從圖上很容易看出( )。
3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1這組數(shù)據(jù)的眾數(shù)是( ),中位數(shù)是( ),平均數(shù)是( )。
4.在一組數(shù)據(jù)中,( )只有一個,有時( )不止一個,也可能沒有( )。(填眾數(shù)或中位數(shù))
七年級數(shù)學上冊教案4
知識目標
使學會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。
能力目標
聯(lián)系的生活實際創(chuàng)設(shè)情境,體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。
情感目標
利用所學知識解決生活中的問題,進一步培養(yǎng)綜合運用知識的能力及情度、價值觀的發(fā)展。
重點
使學會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。
難點
體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。
教學過程
教學預(yù)設(shè)個性修改
目標導學,復(fù)習激趣,自主合作,匯報交流,變式訓練
創(chuàng)境激疑一、舊知鋪墊
1、什么叫做比例?
2、什么叫做比例的基本性質(zhì)?怎樣用比例的基本性質(zhì)判斷兩個比能否組成比例?那么組成一個比例需要幾項呢?
3、比例有幾種表示形式?
合作探究二、探索新知
1、出示埃菲爾鐵掛圖
2、出示例題
(1)、讀題。
(2)、從這道題里,你們獲得了哪些信息?
(3)、在這信息里,關(guān)鍵理解哪里?(埃菲爾鐵模型與埃菲爾鐵塔的高度比是1:10)
(4)、這句話什么意思?(就是埃菲爾鐵塔模型的高度:埃菲爾鐵塔的高度=1:10)(板書)
(5)、還有一個條件是什么?(埃菲爾鐵塔的高是320米)
(6)、我們把這個條件換到我們的這個關(guān)系中,就是(板書:埃菲爾鐵塔的高度:320=1:10)
(7)、這道題怎么列比例式解答呢?請同學們想想,想出來的同學請舉手。
(8)、根據(jù)學生的反饋板書:“解:設(shè)埃菲爾鐵塔模型的高度設(shè)為x米”,把這個x代入這個數(shù)學模式中就組成了一個比例式(板書x:320=1:10)
(9)、這樣在組成比例的四個項中,我們知道其中的幾個項?還有幾個項不知道?
(10)、不知道的`這個項,我們來給它起個名字,好不好?叫做什么?(板書:未知項)
(11)、指著x:320=1:10,問:“這個未知項是多少呢?那怎么辦?”誰上來做做? (指名板演)
(12)、為什么可以寫成這樣的等式呢?10x=320×1(根據(jù)比例的基本性質(zhì))
(13)、對了,把上面的比例式改寫成下面這樣一個等式,就是應(yīng)用了比例的基本性質(zhì)。應(yīng)用比例的基本性質(zhì),把比例式改寫成了一個等式,這個等式還是一個什么樣的等式呀?(含有未知數(shù)的等式)
(14)、這樣含有未知數(shù)的等式,叫做方程。那么求出方程中的未知數(shù)就叫做什么?(解方程)那么在這個比例式中,我們知道了任意三項,要求出其中一項的過程又叫做什么?(解比例)出示比例的意義。
(15)、我們解出的答案對不對呢?怎么知道?可以怎樣檢驗? (把結(jié)果代入題目中看看對應(yīng)的比的比值是不是能成比例.)
(16)這道題還有其他的解法嗎?(引導學生從比例的意義上來解。
2、教學例3
過渡:我們知道比例還有另一種表示形式,當是=這樣形式的時候,又該怎么解呢?
(1)、出示例3,問:這題與剛剛那個比例有哪些不同?
(2)、解這種比例時,要注意些什么呢?(找出比例的外項、內(nèi)項)
(3)、在這個比例里,哪些是外項?哪些是內(nèi)項?
(4)、解答(提問:你們是怎么解答的?)、檢驗。
(5)、 =
拓展應(yīng)用在一個比例中,兩個外項的乘積正好互為倒數(shù),已知一個內(nèi)向是3,另一個內(nèi)項是多少?
總結(jié)這節(jié)課主要學習了什么內(nèi)容?
作業(yè)布置教材43頁5題
板書設(shè)計解比例
例3、解比例=
解:2.4 =1.5×6
=( )×( )
( )
教學札記
七年級數(shù)學上冊教案5
教學目標
1.經(jīng)歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經(jīng)歷探索圖形平移性質(zhì)的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應(yīng)點連線平行且相等的性質(zhì).
重點、難點
重點:探索并理解平移的性質(zhì).
難點:對平移的認識和性質(zhì)的探索.
教學過程
一、引入新課
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據(jù)其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1 上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的`正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形, 四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內(nèi)接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝; 下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
《5.4平移》同步講義練習和同步練習
1在△ABC中,∠C=90°,AC=BC=5,現(xiàn)將△ABC沿著CB的方向平移到△A′B′C′的位置,若平移的距離為2,則圖中的陰影部分的面積為 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為 cm2.
3、紿正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為l的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,第20xx次“移位”后,則他所處頂點的編號是 .
《5.4平移》同步測試卷含答案
1. 將圖形平移,下列結(jié)論錯誤的是( )
A.對應(yīng)線段相等
B.對應(yīng)角相等
C.對應(yīng)點所連的線段互相平分
D.對應(yīng)點所連的線段相等
解析: 根據(jù)平移的性質(zhì),將圖形平移,對應(yīng)線段相等、對應(yīng)角相等、對應(yīng)點所連的線段相等,而對應(yīng)點所連的線段不一定互相平分,故選C.
12. 國旗上的四個小五角星,通過怎樣的移動可以相互得到( )
A.軸對稱 B.平移 C.旋轉(zhuǎn) D.平移和旋轉(zhuǎn)
解析: 國旗上的四個小五角星通過平移和旋轉(zhuǎn)可以相互得到.故選D.
七年級數(shù)學上冊教案6
教學內(nèi)容:
人教版小學數(shù)學教材六年級下冊第107~108頁例2及相關(guān)練習。
教學目標:
1.在學習過程中引導學生探索研究數(shù)與形之間的聯(lián)系,尋找規(guī)律,發(fā)現(xiàn)規(guī)律,學會利用圖形來解決一些有關(guān)數(shù)的問題。
2.讓學生經(jīng)歷猜想與驗證的過程,體會和掌握數(shù)形結(jié)合、歸納推理、極限等基本數(shù)學思想。
重點難點:
探索數(shù)與形之間的聯(lián)系,尋找規(guī)律,并利用圖形來解決有關(guān)數(shù)的問題。
教學準備:
教學課件。
教學過程:
一、直接導入,揭示課題
同學們,上節(jié)課我們探究了圖形中隱藏的數(shù)的規(guī)律,今天我們繼續(xù)研究有關(guān)數(shù)與圖形之間的聯(lián)系。(板書課題:數(shù)與形)
【設(shè)計意圖】直奔主題,簡潔明了,有利于學生清楚本節(jié)課學習的內(nèi)容和方向。
二、探索發(fā)現(xiàn),學習新知
(一)教師與學生比賽算題
1.教師:你知道等于多少嗎?(學生:)
教師:那等于多少呢?(學生計算需要時間)教師緊接著說:我已經(jīng)算好了,是,不信你算算。
2.只要按照這個分子是1,分母依次擴大2倍的規(guī)律寫下去,不管有多少個分數(shù)相加,我都能立馬算出結(jié)果。有的同學不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學跟我一起算,看看結(jié)果是否相同。誰來出題?
在學生出題后,老師都能立刻算出結(jié)果,并且是正確的,學生感到很驚奇。
3.知道我為什么算得那么快嗎?因為我有一件神秘的法寶,你們也想知道嗎?
【設(shè)計意圖】一方面,教師通過與學生比賽計算速度,且每次老師勝利,使學生產(chǎn)生好奇心,再通過教師幽默的語言,吸引學生的注意力,激發(fā)學生的學習興趣和求知欲。另一方面,為接下來學習例題做好鋪墊。
(二)借助正方形探究計算方法
1.這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學們一定能看明白是怎么回事了。
2.進行演示講解。
(1)演示:用一個正方形表示“1”,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。
想一想:正方形中表示的涂色部分與空白部分和整個正方形之間有什么關(guān)系呢?(涂色部分等于“1”減去空白部分)空白部分占正方形的幾分之幾?()那么涂色部分還可以怎么算呢?(),也就是說。
(2)繼續(xù)演示,誰知道除了通分,還可以怎么算?
根據(jù)學生回答,板書。
(3)演示:那么計算就可以得到?()。
3.看到這兒,你發(fā)現(xiàn)什么規(guī)律了嗎?
4.小結(jié):按照這樣的規(guī)律往下加,不管加到幾分之一,只要用1減去這個幾分之一就可以得到答案了。
5.這個法寶怎么樣?誰來說說它好在哪里?你學會了嗎?
6.嘗試練習
【設(shè)計意圖】將復(fù)雜的數(shù)量運算轉(zhuǎn)化為簡單的圖形面積計算,轉(zhuǎn)繁為簡,轉(zhuǎn)難為易,引導學生探索數(shù)與圖形的聯(lián)系,讓學生體會到數(shù)形結(jié)合、歸納推理的數(shù)學思想方法。
(三)知識提升,探索發(fā)現(xiàn)
1.感受極限。
(1)剛才我們已經(jīng)從一直加到了,如果我繼續(xù)加,加到,得數(shù)等于?()再接著加,一直加到,得數(shù)等于?()隨著不斷繼續(xù)加,你發(fā)現(xiàn)得數(shù)越來越?(大)無數(shù)個這樣的.數(shù)相加,和會是多少呢?
(2)這時候你心中有沒有一個大膽的猜想?(學生猜想:這樣一直加下去,得數(shù)會不會就等于1了。)
(3)想象一下,如果我們在剛才加的過程中在正方形上不斷涂色,那空白部分的面積就越來越?(小)而涂色部分的面積越來越接近?(1)也就是求和的得數(shù)越來越接近?(1)最終得數(shù)是1嗎?你有什么方法來證明得數(shù)就是1?
(學情預(yù)設(shè):學生提出書本的圓形圖和線段圖,若沒有學生提出,教師自己提出。)
2.利用線段圖直觀感受相加之和等于“1”。
(1)書本上有兩幅圖,我們一起來看看(課件出示)。一幅是圓形圖,一幅是線段圖,你能看懂它的意思嗎?請你想一想,然后告訴大家你的想法。
(2)學生看書思考。
(3)全班交流,課件演示,得出結(jié)論:這些分數(shù)不斷加下去,總和就是1。
【設(shè)計意圖】利用數(shù)與形的結(jié)合,讓學生直觀體會極限數(shù)學思想,并讓學生經(jīng)歷猜想得數(shù)等于“1”,到數(shù)形結(jié)合證明得數(shù)等于“1”的過程,激發(fā)學生學習興趣,培養(yǎng)學生探索新知的精神。
3.課堂小結(jié)。
對于這種借用圖形來幫助我們解決問題的方法,你有什么感受?
教師小結(jié):是的,“數(shù)”與“形”有著緊密的聯(lián)系,在一定條件下可以相互轉(zhuǎn)化。當用數(shù)形結(jié)合的方法解決問題時,你會發(fā)現(xiàn)許多難題的解決變得很簡單。
4.舉一反三。
其實在以前的學習中,我們也常用到數(shù)形結(jié)合的數(shù)學方法幫助我們解題,你能想到些例子嗎?(如學生有困難,教師舉例:一年級加法,分數(shù)的認識,復(fù)雜的路程問題線段圖等。)
【設(shè)計意圖】讓學生體會“數(shù)形結(jié)合”是數(shù)學學習中常用的方法。
三、練習鞏固
1.基礎(chǔ)練習。
(1)學生獨立計算。
(2)全班交流反饋。
【設(shè)計意圖】通過練習,回顧新知,鞏固新知,使學生對新知識掌握得更扎實。
2.小林、小強、小芳、小兵和小剛5人進行象棋比賽,每2人之間都要下一盤。小林已經(jīng)下了4盤,小強下了3盤,小芳下了2盤,小兵下了1盤。請問:小剛一共下了幾盤?分別和誰下的?
解決問題
(1)全班讀題,學生獨立思考。
(2)指名回答。
(3)根據(jù)學生回答情況,連線(課件演示)。
(4)結(jié)合連線圖得出:小剛一共下了2盤,分別和小林、小強下的。
【設(shè)計意圖】讓學生進一步體會數(shù)形結(jié)合的直觀性和變難為易的特點。
四、課堂總結(jié)
快下課了,請你來說說這節(jié)課有什么收獲?
課后反思:
圖形的直觀形象的特點,決定了化數(shù)為形往往能達到以簡馭繁的目的,例2中,用舉例的方法求出等比數(shù)列的有限和,都不能證明無限多項相加結(jié)果為1,但是接近 1,但這個無限接近于1的數(shù)是多少呢?電子白板呈現(xiàn)出圓形模型和線段模型來表示“1”,使學生結(jié)合分數(shù)意義,在圓上和線段上分別有規(guī)律地表示這些加數(shù),當這個過程無止境地持續(xù)下去時,所有的扇形和線段就會把整個圓和整條線段占滿,即和為“1”,用畫圖的方法來表示計算過程和結(jié)果,讓學生感受到什么叫無限接近,什么叫直觀形象,同時,一個極其抽象的極限問題,變得十分直觀和便捷。
七年級數(shù)學上冊教案7
教學目標
【知識與能力目標】
1、鞏固理解有理數(shù)的概念;
2、掌握數(shù)軸的意義及構(gòu)成特點,明確其在實際中的應(yīng)用;
3、會用數(shù)軸上的點表示有理數(shù)。
【過程與方法目標】
【情感態(tài)度價值觀目標】
通過畫數(shù)軸,給學生以圖形美的教育,同時由于數(shù)形的結(jié)合,學生會得到和諧美的享受。
教學重難點
【教學重點】
數(shù)軸的意義及作用。
【教學難點】
數(shù)軸上的點與有理數(shù)的直觀對應(yīng)關(guān)系。
課前準備
《數(shù)學》人教版七年級上冊,自制課件
教學過程
一、探索新知(投影展示)
問題在一條東西向的馬路上,有一個汽車站,汽車站東3m和7、5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4、5m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情景。
學生結(jié)合上述問題分組討論,明確以下問題:
1、怎樣用數(shù)簡明地表示這些樹、電線桿與汽車站的相對位置關(guān)系(體現(xiàn)距離、方向)?
2、舉例說明生活中類似的事例;
3、什么叫數(shù)軸?它有哪幾個要素組成?
4、數(shù)軸的用處是什么?
5、你會畫數(shù)軸嗎并應(yīng)用它嗎?
“問題”解決:課件投影課本p8圖1、2-1,同時說明其產(chǎn)生的過程及合理、簡明的特點;
結(jié)論:正數(shù)、0和負數(shù)可以用一條直線上的點表示出來。
3、展示溫度計圖形,比較其與圖1、2-1的共同點和不同點:
共同點:溫度計也可以看作將正數(shù)、0和負數(shù)用一條直線上的點表示出來的情形;
不同點:溫度計是豎直的,方向感不直觀。
4、描述數(shù)軸的意義(課本p9中間,由學生閱讀,并嘗試畫一條數(shù)軸,強調(diào))
。1)數(shù)軸的構(gòu)成三要素:原點、方向、單位長度;
。2)數(shù)軸的用處是:把數(shù)用數(shù)軸上的點來表示,例(課本p9圖1、2-3),說明有理數(shù)都可以用數(shù)軸上的點表示;
5、歸納
(1)一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的邊,與原點的距離是個單位長度;表示數(shù)-a的點在原點的邊,與原點的距離是個單位長度。
。2)數(shù)軸的出現(xiàn)將圖形(直線上的點)和數(shù)緊密聯(lián)系起來,使很多數(shù)學問題都可以借助圖直觀地表示,是“數(shù)形結(jié)合”的重要工具。
二、例題分析
例1.先畫出數(shù)軸,然后在數(shù)軸上表示下列各數(shù):
-1、5,0,-2,2,-10/3
例2、數(shù)軸上與原點距離4個長度單位的點表示的`數(shù)是。
三、鞏固訓練
課本p10練習
自我檢測
。1)數(shù)軸的三要素是;
。2)數(shù)軸上表示-5的點在原點的側(cè),與原點的距離是個長度單位;
。3)數(shù)軸上表示5與-2的兩點之間距離是單位長度,有個點;
。4)如圖,a、b為有理數(shù),則a0,b0,ab
課堂小結(jié)
。1)數(shù)軸概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸。
。2)數(shù)軸的三要素:原點、正方向、單位長度。
。3)數(shù)學思想:數(shù)形結(jié)合的思想。
五、作業(yè)
1、課本14頁習題1、2
2、完成“自我檢測”
3、個性補充
⑴畫一條數(shù)軸,并表示出如下各點:±0.5,±0.1,±0.75。
⑵畫一條數(shù)軸,并表示出如下各點:1000,5000,-20xx。
、窃跀(shù)軸上標出到原點的距離小于3的整數(shù)。
、仍跀(shù)軸上標出-5和+5之間的所有整數(shù)。
七年級數(shù)學上冊教案8
教學目標
1 知識與技能:
使學生理解和掌握整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
2 過程與方法:
通過觀察、操作、討論的活動,使學生經(jīng)歷探究口算方法的全過程。
3 情感態(tài)度與價值觀:
讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)學生用數(shù)學知識解決簡單實際問題的能力。
教學重難點
1 教學重點:
掌握用整十數(shù)除的口算方法。
2 教學難點:
理解用整十數(shù)除的口算算理。
教學工具
多媒體設(shè)備
教學過程
1 復(fù)習引入
口算。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
2 新知探究
1、教學例1
有80面彩旗,每班分20面,可以分給幾個班?
。1)提出問題,尋找解決問題的方法。
師:從中你能獲取什么數(shù)學信息?
師:怎樣解決這個問題?
。2)列式 80÷20
(3)學生獨立探索口算的方法
師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
學生匯報:
預(yù)設(shè)學生可能會有以下兩種口算方法:
A.因為20×4=80,所以80÷20=4 這是想乘算除
B.因為8÷2=4, 所以80÷20=4 這是根據(jù)計數(shù)單位的組成
為什么可以不看這個“0”? ( 80÷20可以想“8個十里面有幾個二十?”)
這樣我們就把除數(shù)是整十數(shù)的轉(zhuǎn)化為我們已經(jīng)學過的表內(nèi)除法。
(4)師小結(jié):
同學們有的用乘法算除法的,也有用表內(nèi)除法來想的`,都很好,那么你喜歡哪種方法呢?
把你喜歡的方法說給同桌聽。
。5)檢查正誤
師:我們分的結(jié)果對不對?請同學們看屏幕(課件演示分的結(jié)果)
。6)用剛學會的方法再次口算,并與同桌交流你的想法
40÷20 20÷10 60÷30 90÷30
。7)探究估算的方法
出示:83÷20≈ 80÷19≈
師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
師:誰想把你的方法跟大家說一說。
預(yù)設(shè):83接近于80,80除以20等于 4,所以83除以20約等于4。
19接近于20,80除以20等于 4,所以80除以19約等于4。
2、教學例2
。1)創(chuàng)設(shè)情境引出問題
師:誰會解決這個問題?
150÷50
。2)小組討論口算方法
(3)你是怎么這樣快就算出的呢?
A.因為15÷5=3,所以150÷50=3。
B.因為3個50是150,所以150÷50=3。
這一題跟剛才分彩旗的口算方法有不同嗎?
都是運用想乘算除和表內(nèi)除法這兩種方法來口算的。
師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
口算練習:150÷30 240÷80 300÷50 540÷90
3、估算
。1)探計估算的方法
師:你能知道題目要求我們做什么嗎?
你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
。2)誰想把你的方法跟大家說一說。
。3)總結(jié)方法:把被除數(shù)和除數(shù)都看作與原數(shù)比較接近的整十數(shù)再用口算方法算。
。4)判斷估算是否正確:122÷60=2 349÷50≈8 為什么不正確?
3 鞏固提升
1、獨立口算
觀察每道題,怎樣很快說出下面除法算式的商?
如果估算的話把誰估成多少。
2、算一算、說一說。
(1)除數(shù)不變,被除數(shù)乘幾,商也乘幾。
。2)被除數(shù)不變,除數(shù)乘幾,商反而除以幾。
3、解決問題
。1)一共要寄240本書,每包40本。要捆多少包?
你能找到什么條件、問題。你會解決嗎?
240÷40 = 6(包)
答:要捆6包。
。2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
出示條件:一共有120個小故事,每天看1個故事。
問題:看完這本書大約需要幾個月?
問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
120÷30 = 4(個)
答:看完這本書大約需要4個月。
課后小結(jié)
這節(jié)課你有什么收獲?還有什么問題?
本節(jié)課學習了整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
板書
口算除法
有80面彩旗,每班分20面,可以分給幾個班?
80÷20=
七年級數(shù)學上冊教案9
一、背景知識
《有理數(shù)》選自浙江版《義務(wù)教育課程標準實驗教科書·數(shù)學·七年級上冊》第一章《從自然數(shù)到有理數(shù)》中的第二節(jié),這一章是開啟整個初中階段代數(shù)學習的大門。《有理數(shù)》是本章的第二節(jié)。本節(jié)內(nèi)容讓學生在現(xiàn)實的情境中理解負數(shù)的引入確實是實際生活的需要,感受到有理數(shù)應(yīng)用的廣泛性,是在小學學習自然數(shù)和分數(shù)之后,數(shù)的概念的第一次擴充,是自然數(shù)和分數(shù)到有理數(shù)的銜接與過渡,并且是以后學習數(shù)軸、絕對值及有理數(shù)運算的基礎(chǔ)。
二、教學目標
1、知識目標:理解有理數(shù)產(chǎn)生的必然性、合理性;會判斷一個數(shù)是正數(shù)還是負數(shù),能靈活運用正、負數(shù)表示生活中具有相反意義的量;會將有理數(shù)從不同的角度進行分類。
2、過程與方法:利用學生身邊熟悉的事物引入負數(shù)、學習有理數(shù);運用有理數(shù)表示現(xiàn)實生活問題中的量;讓學生經(jīng)歷有理數(shù)概念的形成及運用過程,領(lǐng)會分析、總結(jié)的方法。
3、情感與能力目標:通過提供適當?shù)那榫迟Y料,吸引學生的注意力,激發(fā)學生的學習興趣;在合作討論中學會交流與合作,啟迪思維,提高創(chuàng)新能力;通過實際問題的解決和從不同角度對有理數(shù)分類,可提高學生應(yīng)用數(shù)學能力和培養(yǎng)學生的分類思想。
三、教學重點、難點
重點:能應(yīng)用正、負數(shù)表示具有相反意義的量和對有理數(shù)進行合理的分類。
難點:用有理數(shù)表示實際生活中的量。
四、教學設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情境 探求新知
如圖表示某一天我國5個城市的最低氣溫。
請同學們合作討論下列問題:
1、-20℃、-10℃、5℃、0℃、10℃ 這幾個量分別表示什么?
2、你還在哪些地方見到過用帶有“-”號的數(shù)來表示某一種量,請講出來。
把學生講出的較恰當?shù)牧繉懙胶诎迳,再引導學生把與之相對的量分別寫在后邊,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出這樣的量就是具有相反意義的量,并從以下方面加以理解。
。1)具有相反意義的量是:意義相反,與值無關(guān)。
(2)區(qū)分“意義相反”與“意義不同”。
反問學生:以上具有相反意義的量能用我們學過的自然數(shù)和分數(shù)表示出來嗎?
顯然是不能的。為了解決這樣的實際問題,我們需要引進一種新的數(shù)——負數(shù)。
我們把一種意義的量(如零上)規(guī)定為正,用學過的數(shù)(零除外)來表示,這樣的數(shù)叫做正數(shù),正數(shù)前面可以放上正號“+”來表示(常省略不寫),;把另一種與之意義相反的量規(guī)定負,用學過的數(shù)(零除外)前面放上負號“-”來表示,這樣的數(shù)叫做負數(shù)(負號不能省略)。
如:“+2”讀做“正2”、“-3.3”讀做“負3.3”等。
這樣我們學過的數(shù)中又增加了新的數(shù)——負整數(shù)和負分數(shù);相應(yīng)地我們學過的自然數(shù)和分數(shù)分別稱為正整數(shù)和正分數(shù)。
。ǘ┻\用新知 體驗成功
填空:
1)規(guī)定盈利為正,某公司去年虧損了2.5萬元,記做__________萬元,今年盈利了3.2萬元,記做__________萬元;
2)規(guī)定海平面以上的海拔高度為正,新疆烏魯木齊市高于海平面918米,記做海拔__________米;吐魯番盆地最低處低于海平面155米,記做海拔__________米;
3)汽車在一條南北走向的高速公路上行駛,規(guī)定向北行駛的路程為正。汽車向北行駛75km,記做________km(或_______km),汽車向南行駛100km,記做________km;
4)下降米記做米,則上升米記做__________米;
5)如果向銀行存入50元記為50元,那么-30.50元表示__________;
6)規(guī)定增加的百分比為正,增加25%記做__________,-12%表示__________.
利用第3)題說明在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,是相對的`例如我們可以把向南100米記做+100km,那么向北記做-75km.但習慣上,人們常把上升、運進、零上、增加、收入等規(guī)定為正。
(請同學獨立完成,然后同桌同學相互評價。)
(三) 師生互動,繼續(xù)探究
。ê献鲗W習)讀一讀這些數(shù)0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,請根據(jù)你認定的數(shù)的特征進行分類,并說出分類的特征。
讓學生四人小組合作討論完成。
估計可能出現(xiàn)的正確結(jié)論有:
;
;
對于較為正確的分類,并能說出特征的都將給予肯定,重視個體差異,體現(xiàn)多元評價的思想,發(fā)揮評價的激勵作用,保護學生的自尊心,增強學生的自信心.然后教師給出規(guī)范的分類:
正整數(shù)、零和負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
說明:①分類的標準不同,結(jié)果也不同;②分類的結(jié)果應(yīng)無遺漏、無重復(fù);③零是整數(shù),零既不是正數(shù),也不是負數(shù).
(四) 分層練習,鞏固提高
為了使學生實現(xiàn)從掌握知識到運用知識的轉(zhuǎn)化,使知識教育與能力培養(yǎng)結(jié)合起來,設(shè)計分層練習。
例 下列給出的各數(shù),哪些是正數(shù)?哪些是負數(shù)?哪些是整數(shù)?哪些是分數(shù)?哪些是有理數(shù)?
-8.4, 22, ,0.33, , -9.
練習1 判斷表中各數(shù)屬于什么數(shù),在相應(yīng)的空格內(nèi)打“√” .
正整數(shù)
整數(shù)
分數(shù)
正數(shù)
負數(shù)
有理數(shù)
20xx
√
√
√
√
-4.9
0
-12
探究活動:
練習2 如圖,兩個圈內(nèi)分別表示所有正數(shù)組成的正數(shù)集合和所有整數(shù)組成的整數(shù)集合.請寫出3個分別滿足下列條件的數(shù):
1)屬于正數(shù)集合,但不屬于整數(shù)集合的數(shù);
2)屬于整數(shù)集合,但不屬于正數(shù)集合的數(shù);
3)既屬于正數(shù)集合,又屬于整數(shù)集合的數(shù).
將它們分別填入圖中適當?shù)奈恢?你能說出這兩個圈的重疊部分表示什么數(shù)的集合嗎?
通過多角度的練習,并對典型錯誤進行討論與矯正,使學生鞏固所學內(nèi)容,同時完成對新知的遷移。
。ㄎ澹└爬ㄊ崂,形成系統(tǒng)
采取師生互動的形式完成。即:
學生談本節(jié)課的收獲,教師適當?shù)难a充、概括,以本節(jié)知識目標的要求進行把關(guān),確保基礎(chǔ)知識的當堂落實。
(六)布置作業(yè)
1、課后作業(yè)
2、設(shè)計題可根據(jù)自己的喜好和學有余利的同學完成。
七年級數(shù)學上冊教案10
教學目標:
1、正確理解數(shù)軸的意義,理解數(shù)軸的三要素。
2、掌握有理數(shù)在數(shù)軸上的表示法,以及利用數(shù)軸比較有理數(shù)的大小。
3、理解相反數(shù)的意義及求法。
4、對學生滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學生的觀察、歸納與概括的能力。
重點難點:
1、正確掌握數(shù)軸的畫法;用數(shù)軸上的點表示有理數(shù);求已知數(shù)的相反數(shù)。
2、有理數(shù)和數(shù)軸上的的點的對應(yīng)關(guān)系。
教學方法:
合作探究交流
學法指導:
觀察歸納概括
教學過程:
一、情景引入:
。1)你會讀溫度計嗎?完成課本43頁最上面的讀溫度計的問題。
。2)我們能否用類似溫度計的圖形表示有理數(shù)呢?
二、講授新課:認真閱讀課本第43頁至45頁,完成下列問題
(1)畫一條水平直線,在直線上取一點O(叫做▁▁▁),選取某一長度作為▁▁▁▁,規(guī)定向右的方向為▁▁▁,就得到了數(shù)軸。
于是,+3可以用數(shù)軸上位于原點右邊3個單位的點表示,—4可以用數(shù)軸上位于原點左邊4個單位的點表示,在數(shù)軸上位于原點右邊點表示,在數(shù)軸上位于原點左邊1、5的點表示,任何有理數(shù)都可以用數(shù)軸上的一個點來表示。
三、例題講解、鞏固提高
例1、如圖,指出數(shù)軸上A、B、C、D各點表示什么數(shù)?
A D CB
–2 –1 0 1 2 3
解:點A表示—2;點B表示2;點C表示0;
點D表示—1
練習:畫出數(shù)軸并用數(shù)軸上的點表示下列個數(shù):
—5,0,5,—4,—、
四、繼續(xù)探究
2與—2有什么相同點與不同點?它們在數(shù)軸上的位置有什么關(guān)系?5與—5,與–呢?
如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)、特別地0的相反數(shù)是0、
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點的`距離相等、
練習:1、5的相反數(shù)是▁▁;▁▁的相反數(shù)是—3、5。
議一議
數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關(guān)系?
數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。
練習:比較大小:—3▁5;0 ▁—4;—3 ▁—2、5。
3、合作交流
(1)什么是數(shù)軸?怎樣畫數(shù)軸。
。2)有理數(shù)與數(shù)軸上的點之間存在怎樣的關(guān)系?
。3)什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?
(4)如何利用數(shù)軸比較有理數(shù)的大小?
5、隨堂練習:
(1)下列說法正確的是()
A、數(shù)軸上的點只能表示有理數(shù)
B、一個數(shù)只能用數(shù)軸上的一個點表示
C、在1和3之間只有2
D、在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2
。2)語句:①—5是相反數(shù)?②—5與+3互為相反數(shù)③—5是5的相反數(shù)④—5和5互為相反數(shù)⑤0的相反數(shù)是0⑥—0=0。上述說法中正確的是()
A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥
(3)大于—4而小于4的整數(shù)有▁▁▁▁▁▁。
。4)用“﹤”或“﹥”號填空
、佟5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1
。5)寫出下列各數(shù)的相反數(shù)
3、4,—3,0,a,2a—3。
七年級數(shù)學上冊教案11
1.進一步理解字母表示數(shù)的意義,會用含字母的式子表示實際問題中的數(shù)量關(guān)系.
2.經(jīng)歷用含有字母的式子表示實際問題數(shù)量關(guān)系的過程,體會從具體到抽象的認識過程,發(fā)展符號意識.
進一步理解字母表示數(shù)的意義,會用含字母的式子表示實際問題中的數(shù)量關(guān)系.
分析題目中的數(shù)量關(guān)系,用式子表示數(shù)量關(guān)系.
(設(shè)計者: )
一、創(chuàng)設(shè)情境 明確目標
青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段.列車在凍土地段的行駛速度是100 km/h,列車在凍土地段的行駛時,根據(jù)已知數(shù)據(jù)求出列車行駛的路程.
(1)2 h行駛的路程是多少?3 h呢?t h呢?
(2)字母t表示時間有什么意義?如果用v表示速度,列車行駛的路程是多少?
(3)回顧以前所學的知識,你還能舉出用字母表示數(shù)或數(shù)量關(guān)系的例子嗎?
二、自主學習 指向目標
自學教材第54至55頁,完成下列問題:
1.假設(shè)列車的行駛速度是100 km/h,根據(jù)路程、速度、時間之間的關(guān)系:路程=速度×時間,請寫出:
(1)列車2 h行駛的路程為__200__km.
(2)列車3 h行駛的路程為__300__km.
(3)列車t h行駛的路程為__100t__km.
2.在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作__·__或__省略不寫__.
三、合作探究 達成目標
用字母表示數(shù)
活動一:(1)蘋果原價是每千克p元,按8折優(yōu)惠出售,用式子表示現(xiàn)價;
(2)某產(chǎn)品前年的產(chǎn)量是n件,去年的產(chǎn)量是前年產(chǎn)量的m倍,用式子表示去年的產(chǎn)量;
(3)一個長方體包裝盒的長和寬都是a cm,高是h cm,用式子表示它的體積;
(4)用式子表示數(shù)n的相反數(shù).
【展示點評】解答過程見教材第54頁例1的解.含有字母的式子中如果出現(xiàn)乘號,寫成“·”或省略不寫.如第(3)小題,就不能寫成a2·h.
【小組討論】用字母表示數(shù)有什么意義?
【反思小結(jié)】字母可以表示任意的數(shù),也可以表示特定意義的公式,還可以表示符合條件的某一個數(shù),甚至可以表示具有某些規(guī)律的數(shù),總之字母可以簡明的將數(shù)量關(guān)系表示出來.
【針對訓練】見“學生用書”.
用字母表示簡單的數(shù)量關(guān)系
活動二:閱讀教科書例2中的四個問題,思考:
順水行駛時,船的速度=________+________;
逆水行駛時,船的速度=________-________.
解答過程見教材第55頁例2的解答過程.
【展示點評】列式表示關(guān)系時,一定要搞清“和”、“差”、“積”、“倍”等關(guān)系.
【小組討論】用含有字母的式子表示數(shù)量關(guān)系時,關(guān)鍵是什么?應(yīng)注意什么問題?
【反思小結(jié)】用含有字母的'式子表示數(shù)量關(guān)系時,關(guān)鍵是找準題目中的數(shù)量關(guān)系.
注意:1.用字母表示數(shù)時,數(shù)字與字母,字母與字母相乘,中間的乘號可以省略不寫或用“·”表示;
2.字母和數(shù)字相乘時,省略乘號,并把數(shù)字放到字母前;
3.出現(xiàn)除式時,用分數(shù)的形式表示;
4.結(jié)果含加減運算的,需要帶單位時,式子要用“()”;
5.系數(shù)是帶分數(shù)時,帶分數(shù)要化成假分數(shù).
【針對訓練】見“學生用書”.
四、總結(jié)梳理 內(nèi)化目標
1.用字母表示數(shù)的意義.
2.用含有字母的式子表示數(shù)量關(guān)系的意義.
3.用含有字母的式子表示數(shù)量關(guān)系時要注意的問題.
實際問題―→用字母表示數(shù)―→用字母表示數(shù)量關(guān)系
《2.1整式》同步練習含答案
1. 其中長方形的長為a,寬為b.
(1)陰影部分的面積是多少?
(2)你能判斷它是單項式或多項式嗎?它的次數(shù)是多少?
《2.1整式》課后練習含答案
知識要點
1.單項式:只含有數(shù)和字母的乘積的代數(shù)式叫做單項式.單獨的一個數(shù)或一個字母也是單項式.它的本質(zhì)特征在于:
(1)不含加減運算;
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數(shù)、系數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù).單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數(shù)項.一個多項式中,次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù).
4.整式:單項和多項式統(tǒng)稱整式.
七年級數(shù)學上冊教案12
教學目標
1、使學生理解單項式及單項系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù)、
2、初步培養(yǎng)學生的觀察分析和歸納概括的能力,使學生初步認識特殊與一般的辯證關(guān)系、
重點
掌握單項式及單項式系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù)、
難點
識別單項式的系數(shù)和次數(shù)、
教學過程
一、創(chuàng)設(shè)情境,導入新課
師:出示圖片、
青藏鐵路線上,在格爾木到拉薩之間有段很長的凍土地段,列車在凍土地段的行駛速度是100千米/小時,在非凍土地段的行駛速度可以達到120千米/小時,請根據(jù)這些數(shù)據(jù)回答:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?利用怎樣的一個等量關(guān)系來解決?
。2)t小時呢?
二、推進新課
。ㄒ唬┯煤帜傅腵式子表示數(shù)量關(guān)系、
師:出示第54頁例1、
生:解答例1后,討論問題,用字母表示數(shù)有什么意義?
學生經(jīng)過討論得出一定的答案,但可能不會太規(guī)范,教師總結(jié)、
師:用字母表示數(shù),在具有某些共性的問題上具有更廣泛的意義,在形式上更簡單,使用上更方便(可考慮補充:像這樣的用運算符號把數(shù)或字母連接起來的式子叫做代數(shù)式、一個數(shù)或表示數(shù)的字母也是代數(shù)式)、
師生共同完成例2,進一步體會用字母表示數(shù)的意義、
鞏固練習:第56頁練習、
(二)單項式的概念、
師:出示問題、
引言與例1中的式子100t,0.8p,mn,a2h,—n這些式子有什么特點?
生:通過觀察、對比、討論得出,各式都是數(shù)或字母的積、
師:指出單項式的概念,特別地,單獨的一個數(shù)或字母也是單項式、
鞏固練習:下列各式是單項式的式子是____________、
《整式的加減》同步練習
1、代數(shù)式a2+a+3的值為8,則代數(shù)式2a2+2a﹣3的值為?
2、甲、乙二人一起加工零件、甲平均每小時加工a個零件,加工2小時;乙平均每小時加工b個零件,加工3小時、甲、乙二人共加工零件___個。
《整式的加減》單元測試卷含答案
9、已知a是一位數(shù),b是兩位數(shù),將a放在b的左邊,所得的三位數(shù)是()
A、ab B、a+b C、10a+b D、100a+b
【考點】列代數(shù)式、
【分析】a放在左邊,則a在百位上,據(jù)此即可表示出這個三位數(shù)、
【解答】解:a放在左邊,則a在百位上,因而所得的數(shù)是:100a+b、
故選D、
【點評】本題考查了利用代數(shù)式表示一個數(shù),關(guān)鍵是正確確定a是百位上的數(shù)字、
10、原產(chǎn)量n噸,增產(chǎn)30%之后的產(chǎn)量應(yīng)為()
A、(1﹣30%)n噸B、(1+30%)n噸C、n+30%噸D、30%n噸
【考點】列代數(shù)式、
【專題】應(yīng)用題、
【分析】原產(chǎn)量n噸,增產(chǎn)30%之后的產(chǎn)量為n+n×30%,再進行化簡即可、
【解答】解:由題意得,增產(chǎn)30%之后的產(chǎn)量為n+n×30%=n(1+30%)噸、
故選B、
【點評】本題考查了根據(jù)實際問題列代數(shù)式,列代數(shù)式要分清語言敘述中關(guān)鍵詞語的意義,理清它們之間的數(shù)量關(guān)系、
七年級數(shù)學上冊教案13
一、教材分析
(一)教材的地位和作用
本節(jié)內(nèi)容是一元一次方程應(yīng)用的延伸與拓展,它進一步讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應(yīng)用的過程,同時又滲透了函數(shù)與不等式的思想,為以后內(nèi)容學習奠定了必要的數(shù)學基礎(chǔ),本節(jié)內(nèi)容具有承上啟下的作用.學生能深刻地認識到方程是刻畫現(xiàn)實世界有效的數(shù)學模型,領(lǐng)悟到“方程”的數(shù)學思想方法.總之,本節(jié)內(nèi)容無論在知識上還是在數(shù)學思想方法上,都是十分很好的素材,能很好培養(yǎng)學生的探索精神、應(yīng)用意識以及創(chuàng)新能力.
(二)教材的重難點
本節(jié)的重點是探索并掌握列一元一次方程解決實際問題的方法.而方程的建模思想學生還是初步接觸,尋找相等關(guān)系對學生來說仍相當困難,所以確定“找出已知量與未知量之間的關(guān)系,尤其是相等關(guān)系”為本節(jié)的難點之一,列方程解應(yīng)用題的最終目標是運用方程的解對客觀現(xiàn)實作出合理的解釋,這是本節(jié)的難點之二.
二、教學目標分析
(一)知識技能目標
1.目標內(nèi)容
(1) 結(jié)合生活實際,會在獨立思考后與他人合作,結(jié)合估算和試探,列出一元一次方程解決本節(jié)的三個實際問題,并能解釋結(jié)果的實際意義及其合理性.
(2) 培養(yǎng)學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.
2.目標分析
(1) 本節(jié)的內(nèi)容就是通過列方程、解方程來解決實際問題,這是必須掌握的知識,估算與試探的思維方法也很重要,這是發(fā)現(xiàn)和解決問題的有效途徑.
(2) 七年級的學生對數(shù)學建模還比較陌生,建模能突出應(yīng)用數(shù)學的意識,而探索精神和合作意識又是課標所大力倡導的,因而必須加強培養(yǎng)學生這方面的能力.
(二)過程目標
1.目標內(nèi)容
在活動中感受方程思想在數(shù)學中的作用,進一步增強應(yīng)用意識.
2.目標分析
利用方程解決問題是有用的數(shù)學方法,學生在前兩節(jié)的數(shù)學活動中,有了一些初步的經(jīng)驗,但是更接近生活,更富有挑戰(zhàn)性的問題則需要師生合作,探索解決.
(三)情感目標
1.目標內(nèi)容
(1) 在探索中獲得成功的體驗,激發(fā)學生學習數(shù)學的熱情,享受與他人合作的樂趣,建立自信心.
(2) 通過對實際問題的解決,進一步體會“數(shù)學來源于生活,且服務(wù)于生活”的辯證思想.
2.目標分析
七年級學生的年齡特征決定了他們好奇心強、思想活躍、求知心切.利用教材培養(yǎng)學生良好的學習習慣、方法和品質(zhì),這是落實新課標倡導的教育理念的關(guān)鍵.
三、教材處理與教法分析
本節(jié)內(nèi)容擬定兩課時完成,今天說課的內(nèi)容是第一課時(探究Ⅰ、探究Ⅱ).根據(jù)本節(jié)課的特點及七年級學生的心理特征和認知特征,本節(jié)課采用探索發(fā)現(xiàn)法進行教學,在活動中充分體現(xiàn)學生是學習的主人,教師是學習的組織者、引導者、合作者.本課借助多媒體輔助教學,給學生以直觀形象的演示,增強感性認識,增強教學效果.課中以設(shè)疑提問、分組活動等方式,激發(fā)學生的興趣,引導學生自主探索與合作交流,主動獲得知識.
四、教學過程分析
(一)教學過程流程圖
探究Ⅰ
(二)教學過程Ⅰ
。ㄒ蕴骄繛橹骶、形式多樣化)
1.問題情境
(1) 多媒體展示有關(guān)盈虧的新聞報道,感受生活實際.
(2) 據(jù)此生活實例,展示探究Ⅰ,引入新課.
考慮到學生不完全明白“盈利”、“虧損”這樣的商業(yè)術(shù)語,故針對性地播放相關(guān)新聞報道,然后引出要探索的問題Ⅰ.
2.討論交流
(1) 學生結(jié)合自己的生活實際,交流對“盈利”、“虧損”含義的理解.
(2) 學生交流后,老師提出問題:某件商品的進價是40元,賣出后盈利25%,那么利潤是多少?如果賣出后虧損25%,利潤又是多少?(利潤是負數(shù),是什么意思?)
(3) 要求學生對探究Ⅰ中商店的盈虧進行估算,交流討論并說明理由.在討論中學生對商店盈虧可能出現(xiàn)不同的觀點,因此引導學生用數(shù)學方法解決問題,統(tǒng)一認識.
(4) 師生互動,要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進價.
讓學生討論盈利和虧損的含義,理解其概念,建立感性認識;乍一看,大多數(shù)學生可能在大體估算后得到不虧不盈,直覺上也是如此,但要解決實際問題,還要知其原價(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊.
3.建立模型
(1) 學生自主探索,尋找已知量與未知量之間的關(guān)系,確定相等關(guān)系.
(2) 學生分組,根據(jù)找出的相等關(guān)系列出方程,其中一組計算盈利25%的衣服的進價,另一組計算虧損25%的衣服的'進價.
(3) 師生互動:①兩件衣服的進價和為________;②兩件衣服的售價和為________;③由于進價________售價,由此可知兩件衣服的盈虧情況.
。ń處熂皶r給出完整的解答過程)
學生分組、計算盈虧;教師參與、適當提示;師生互動、得到?jīng)Q策.這樣設(shè)計,讓學生體會到合作交流、互相評價、互相尊重的學習方式,有利于學生知識的形成與發(fā)展,也有利于學生健康人格的養(yǎng)成.這樣設(shè)計易于突出重點,突破難點,鞏固應(yīng)用一元一次方程作工具來解決實際問題的方法,也很好地讓學生從已有的經(jīng)驗中、活動中,有意義地構(gòu)建自己的知識結(jié)構(gòu),獲得富有成效的學習體驗.
4.小結(jié)
一個感悟:估算與主觀判斷往往與實際情況大相徑庭,需要我們通過準確的計算來檢驗自己的判斷.
培養(yǎng)學生科學的學習態(tài)度與嚴謹?shù)膶W習作風.
探究Ⅱ
(三)教學過程Ⅱ
1.在燈具店選購燈具時,由于兩種燈具價格、能耗的不同,引起矛盾沖突.
恰當?shù)膯栴}情境激發(fā)學生探索的欲望,同時讓學生體會到數(shù)學來源于生活,又服務(wù)于生活的實用性.
啟發(fā):選擇的目的是節(jié)省費用,費用又是由哪些因素決定的?學生討論得出結(jié)論:
2.列代數(shù)式
費用=燈的售價+電費
電費=0.5×燈的功率(千瓦)×照明時間(時)
在此基礎(chǔ)上,用t表示照明時間(小時).要求學生列出代數(shù)式表示這兩種燈的費用.
節(jié)能燈的費用(元):60+0.5×0.011t.
白熾燈的費用(元):3+0.5×0.06t.
分析各個量之間的關(guān)系,列出代數(shù)式,為后面列方程,并進一步探索提供了基礎(chǔ).
3.特值試探
具體感知
學生分組計算:
t=1000、20xx、2500、3000時,這兩種燈具的使用費用,填入下表:
時間(小時)
1000
20xx
2500
3000
節(jié)能燈的費用(元)
白熾燈的費用(元)
七年級數(shù)學上冊教案14
教 案
第一章 有理數(shù)
(1)本周小張一共用掉了多少錢?存進了多少錢?
根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?
夯實基礎(chǔ)
(1)序號為幾的零件最接近標準?
④-(-) 0.025.
第2課時 加法運算律
教學目標:
1.能運用加法運算律簡化加法運算.
2.理解加法運算律在加法運算中的作用,適當進行推理訓練.
教學重點:如何運用加法運算律簡化運算.
教學難點:靈活運用加法運算律.
教與學互動設(shè)計:
(一)情境創(chuàng)設(shè),導入新課
思考:在小學里,我們學過的加法運算有哪些運算律?它們的內(nèi)容是什么?能否舉一兩個例子來?那這些加法運算律還適用于有理數(shù)范圍嗎?今天,我們一起來探究這個問題.
(二)合作交流,解讀探究
計算:20+(-30)與(-30)+20兩次得到的和相同嗎?
得出結(jié)論:20+(-30)=(-30)+20
換幾組數(shù)去試:得到加法交換律:a+b= (學生填).
其實,學生在小學中就已經(jīng)接觸到運算律,此時,可以讓學生回憶在小學中除了學習了加法的交換律,還學習了加法的哪種運算律?(結(jié)合律)
計算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出結(jié)論:加法結(jié)合律:(a+b)+c= .
【例1】計算:
16+(-25)+24+(-35)
【例2】課本P20例3
說明:把互為相反數(shù)的一對數(shù)結(jié)合起來相加,可以使運算簡化,這種方法是使用加法交換律和加法結(jié)合律.
總結(jié):在進行多個有理數(shù)相加時,在下列情況下一般可以用加法交換律和加法結(jié)合律簡化運算:①有些加數(shù)相加后可以得到整數(shù)時,可以先行相加;②有相反數(shù)可以互相消去,和為0,可以先行相加;③有許多正數(shù)和負數(shù)相加時,可以先把符號相同的數(shù)相加,即正數(shù)和正數(shù)相加,負數(shù)和負數(shù)相加,再把一個正數(shù)和一個負數(shù)相加.
(三)應(yīng)用遷移,鞏固提高
【例3】 利用有理數(shù)的加法運算律計算,使運算簡便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司機某天下午營運全是在東西走向的人民大道上進行的,如果規(guī)定向東為正,向西為負,他這天下午行車里程如下:(單位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他將最后一名乘客送到目的地,該司機與下午出發(fā)點的距離是多少千米?
(2)若汽車耗油量為a公升/千米,這天下午汽車共耗油多少公升?
(四)總結(jié)反思,拓展升華
本節(jié)課我們探索了有理數(shù)的加法交換律和結(jié)合律.靈活運用加法的運算律會使運算簡便.一般情況下,我們將互為相反數(shù)的數(shù)相結(jié)合,同分母的分數(shù)相結(jié)合,能湊整數(shù)的數(shù)相結(jié)合,正數(shù)負數(shù)分別相加,從而使計算簡便.
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.運用加法的.運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當?shù)氖? )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.計算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到銀行共辦理了四筆業(yè)務(wù),第一筆存入了120元,第二筆支取了85元,第三筆支取了70元,第四筆存入了130元.如果將這四筆業(yè)務(wù)合并為一筆,請你替他策劃一下這一筆業(yè)務(wù)該怎樣做?
4.某檢修小組乘汽車沿公路檢修線路,約定前進為正,后退為負.某天自A地出發(fā)到收工時所走路線(單位:千米)為:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)問收工時距A地多遠?
(2)若每千米路程耗油0.2升,問從A地出發(fā)到收工共耗油多少升?
第3課時 有理數(shù)的減法
教學目標:
1.經(jīng)歷探索有理數(shù)減法法則的過程,理解有理數(shù)減法法則.
2.會熟練進行有理數(shù)減法運算.
教學重點:有理數(shù)減法法則和運算.
教學難點:有理數(shù)減法法則的推導.
教與學互動設(shè)計
(一)創(chuàng)設(shè)情景,導入新課
觀察溫度計:
你能從溫度計看出4℃比-3℃高出多少度嗎?
學生普遍能直觀地看出4℃比-3℃高7℃,進一步地假定某地一天的氣溫是-3~4℃,那么溫差(減最低氣溫,單位℃)如何用算式表示?
按照剛才觀察到的結(jié)果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述結(jié)論的獲得應(yīng)放手讓學生回答.
(二)動手實踐,發(fā)現(xiàn)新知
觀察、探究、討論:從③式能看出減-3相當于加哪個數(shù)嗎?
結(jié)論:減去-3等于加上-3的相反數(shù)+3.
(三)類比探究,總結(jié)提高
如果將4換成-1,還有類似于上述的結(jié)論嗎?
先讓學生直觀觀察,然后教師再利用“減法是與加法相反的運算”引導學生換一個角度去驗算.
計算(-1)-(-3)就是要求一個數(shù)x,使x與-3相加得-1,因為2與-3相加得-1,所以x應(yīng)是2,即(-1)-(-3)=2 ①,
又因為(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述結(jié)論依然成立.
試一試:如果把4換成0、-5,用上面的方法考慮0-(-3),(-5)-(-3),這些數(shù)減-3的結(jié)果與它加上+3的結(jié)果相同嗎?
讓學生利用“減法是加法的相反運算”得出結(jié)果,再與加法算式的結(jié)果進行比較,從而得出這些數(shù)減-3的結(jié)果與它們加+3的結(jié)果相同的結(jié)論.
再試:把減數(shù)-3換成正數(shù),結(jié)果又如何呢?
計算9-8與9+(-8);15-7與15+(-7)
從中又能有新發(fā)現(xiàn)嗎?
讓學生通過計算總結(jié)如下結(jié)論:減去一個正數(shù)等于加上這個正數(shù)的相反數(shù).
歸納:由上述實驗可發(fā)現(xiàn),有理數(shù)的減法可以轉(zhuǎn)化為加法來進行.
減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù).
用字母表示:a-b=a+(-b).
(在上述實驗中,逐步滲透了一種重要的數(shù)學思想方法——轉(zhuǎn)化)
(四)例題分析,運用法則
【例】計算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)總結(jié)鞏固,初步應(yīng)用
總結(jié)這節(jié)課我們學習了哪些數(shù)學知識和數(shù)學思想?你能說一說嗎?
教師引導學生回憶本節(jié)課所學內(nèi)容,學生回憶交流,教師和學生一起補充完善,使學生更加明晰所學的知識.
七年級數(shù)學上冊教案15
教學目標:
知識與能力
能正確運用角度表示方向,并能熟練運算和角有關(guān)的問題。
過程與方法
能通過實際操作,體會方位角在是實際生活中的應(yīng)用,發(fā)展抽象思維。
情感、態(tài)度、價值觀
能積極參與數(shù)學學習活動,培養(yǎng)學生對數(shù)學的好奇心和求知欲。
教學重點:方位角的表示方法。
教學難點:方位角的準確表示。
教學準備:預(yù)習書上有關(guān)內(nèi)容
預(yù)習導學:
如圖所示,請說出四條射線所表示的方位角?
教學過程;
一、創(chuàng)設(shè)情景,談話導入
在現(xiàn)實生活中,有一種角經(jīng)常用于航空、航海,測繪中領(lǐng)航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應(yīng)用比較廣泛,什么是方位角呢?
二、精講點拔,質(zhì)疑問難
方位角其實就是表示方向的角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準,如不能說成“東偏北60°,西偏南50°”等,但有時如北偏東45°時,我們可以說成東北方向。
三、課堂活動,強化訓練
例1如圖:指出圖中射線OA、OB所表示的方向。
(學生個別回答,學生點評)
例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?
。ㄐ〗M討論,個別回答,教師)
例3如圖,貨輪O在航行過程中發(fā)現(xiàn)燈塔A在它的南偏東60°的方向上,同時在它北偏東60°,南偏西10°,西北方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D,仿照表示燈塔方位的方法,畫出表示客輪B、貨輪C、海島D方向的射線。
(教師分析,一學生上黑板,學生點評)
四、延伸拓展,鞏固內(nèi)化
例4某哨兵上午8時測得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10時,測得該船在哨所的北偏東60°,距哨所8km的地方。
。1)請按比例尺1:000畫出圖形。
(獨立完成,一同學上黑板,學生點評)
。2)通過測量計算,確定船航行的方向和進度。
(小組討論,得出結(jié)論,代表發(fā)言)
五、布置作業(yè)、當堂反饋
練習:請使用量角器、刻度尺畫出下列點的位置。
。1)點A在點O的`北偏東30°的方向上,離點O的距離為3cm。
。2)點B在點O的南偏西60°的方向上,離點O的距離為4cm。
(3)點C在點O的西北方向上,同時在點B的正北方向上。
作業(yè):書P1407、9
【七年級數(shù)學上冊教案】相關(guān)文章:
數(shù)學七年級上冊教案04-16
湘教版數(shù)學七年級上冊教案01-09
七年級數(shù)學上冊教案01-11
七年級數(shù)學上冊教案[精選]06-16
七年級數(shù)學上冊教案(精選)06-14
七年級上冊數(shù)學教案01-19
七年級上冊數(shù)學教學教案06-01
七年級上冊數(shù)學教案12-16
數(shù)學新七年級上冊教案模板01-24