高中數(shù)學(xué)教案(精選15篇)
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,就有可能用到教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么什么樣的教案才是好的呢?以下是小編幫大家整理的高中數(shù)學(xué)教案,希望對(duì)大家有所幫助。
高中數(shù)學(xué)教案1
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;
(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
教學(xué)過(guò)程設(shè)計(jì)
(-)導(dǎo)入新課
(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.
[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?
(學(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
[評(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.
設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.
(二)新課講授
[提出問(wèn)題 創(chuàng)設(shè)情境]
(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說(shuō)明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
(學(xué)生活動(dòng))閱讀回答.
(教師活動(dòng))對(duì)照課文,逐一評(píng)析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).
[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.
(學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.
(教師活動(dòng))提出思考問(wèn)題.
[投影] 與 的關(guān)系如何?
(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的'全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.
【例題示范 探求方法】
(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.
例2 計(jì)算:(1) ;(2) .
(學(xué)生活動(dòng))板演、示范.
(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動(dòng))思考分析.
解 首先,根據(jù)組合的定義,有
、
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會(huì)應(yīng)用】
(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).
[課堂練習(xí)]課本P99練習(xí)第2,5,6題.
[補(bǔ)充練習(xí)]
[字幕]1.計(jì)算:
2.已知 ,求 .
(學(xué)生活動(dòng))板演、解答.
設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
(五)課后點(diǎn)評(píng)
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
高中數(shù)學(xué)教案2
教學(xué)目標(biāo)
(1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及最優(yōu)解等基本概念;
。2)了解線性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;
(3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實(shí)際問(wèn)題的能力;
。4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的.興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.
重點(diǎn)難點(diǎn)
理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。
如何擾實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答是教學(xué)難點(diǎn)。
教學(xué)步驟
(一)引入新課
我們已研究過(guò)以二元一次不等式組為約束條件的二元線性目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問(wèn)題呢?又什么樣的問(wèn)題不用線性規(guī)劃知識(shí)來(lái)解決呢?
高中數(shù)學(xué)教案3
一、教學(xué)目標(biāo):
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
二、教學(xué)重點(diǎn):
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
三、教學(xué)過(guò)程:
。ㄒ唬┲饕R(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
。ǘ├}分析:略
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的.知識(shí)解決有關(guān)應(yīng)用問(wèn)題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。
五、作業(yè):
略
高中數(shù)學(xué)教案4
【教學(xué)目標(biāo)】
1.知識(shí)與技能
(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:
(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。
2.過(guò)程與方法
在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價(jià)值觀
通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點(diǎn)】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項(xiàng)公式
【教學(xué)難點(diǎn)】
①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
【設(shè)計(jì)思路】
1、教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.
③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).
2、學(xué)法
引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚(yú)類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú).如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?
3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢(qián),年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?
教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點(diǎn)?
思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.
(設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.
注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.
(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項(xiàng)
1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?
2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?
教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五、應(yīng)用通項(xiàng),解決問(wèn)題
1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)
教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式
(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的.聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)
六、反饋練習(xí):教材13頁(yè)練習(xí)1
七、歸納總結(jié):
1、一個(gè)定義:
等差數(shù)列的定義及定義表達(dá)式
2、一個(gè)公式:
等差數(shù)列的通項(xiàng)公式
3、二個(gè)應(yīng)用:
定義和通項(xiàng)公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)
【設(shè)計(jì)反思】
本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.
高中數(shù)學(xué)教案15
【教學(xué)目標(biāo)】
1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
【教學(xué)過(guò)程】
1.情景導(dǎo)入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
。3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類
。4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
。5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
。6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
。1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)
。2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?
。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
。5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5、典型例題
例1:判斷下列語(yǔ)句是否正確。
⑴有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。
、朴袃蓚(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案 A B
6、課堂檢測(cè):
課本P8,習(xí)題1.1 A組第1題。
7.歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
【板書(shū)設(shè)計(jì)】
一、柱、錐、臺(tái)、球的結(jié)構(gòu)
二、例題
例1
變式1、2
【作業(yè)布置】
導(dǎo)學(xué)案課后練習(xí)與提高
1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征
課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo):
通過(guò)圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征
二、預(yù)習(xí)內(nèi)容:
閱讀教材第2—6頁(yè)內(nèi)容,然后填空
。1)多面體的概念: 叫多面體,
叫多面體的面, 叫多面體的棱,
叫多面體的頂點(diǎn)。
、 棱柱:兩個(gè)面 ,其余各面都是 ,并且每相鄰兩個(gè)四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱
、诶忮F:有一個(gè)面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐
、劾馀_(tái):用一個(gè) 棱錐底面的平面去截棱錐, ,叫作棱臺(tái)。
(2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。
、賵A柱: 所圍成的幾何體叫做圓柱
、趫A錐: 所圍成的幾何
體叫做圓錐
、蹐A臺(tái): 的部分叫圓臺(tái)
. ④球的定義
思考:
。1)試分析多面體與旋轉(zhuǎn)體有何去別
。2)球面球體有何去別
(3)圓與球有何去別
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
疑惑點(diǎn) 疑惑內(nèi)容
高中數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1、知識(shí)與能力目標(biāo)
①使學(xué)生理解數(shù)列極限的概念和描述性定義。
②使學(xué)生會(huì)判斷一些簡(jiǎn)單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。
、弁ㄟ^(guò)觀察運(yùn)動(dòng)和變化的過(guò)程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。
2、過(guò)程與方法目標(biāo)
培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。
3、情感、態(tài)度、價(jià)值觀目標(biāo)
使學(xué)生初步認(rèn)識(shí)有限與無(wú)限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):數(shù)列極限的概念和定義。
教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。
三、教學(xué)對(duì)象分析
這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門(mén)課,對(duì)于學(xué)生來(lái)說(shuō)是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過(guò)渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問(wèn)題,很少涉及“無(wú)限”的問(wèn)題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無(wú)限增大時(shí),數(shù)列{an}中的項(xiàng)an無(wú)限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無(wú)限趨近于0”,并能用這個(gè)定義判斷一些簡(jiǎn)單數(shù)列的極限。但要使他們?cè)谝还?jié)課內(nèi)掌握“ε—N”語(yǔ)言求極限要求過(guò)高。因此不宜講得太難,能夠通過(guò)具體的幾個(gè)例子,歸納研究一些簡(jiǎn)單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。
四、教學(xué)策略及教法設(shè)計(jì)
本課是采用啟發(fā)式講授教學(xué)法,通過(guò)多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過(guò)學(xué)生比較熟悉的一個(gè)實(shí)際問(wèn)題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過(guò)具體的兩個(gè)比較簡(jiǎn)單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無(wú)限地趨向于某個(gè)常數(shù)的過(guò)程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡(jiǎn)單的數(shù)列的極限。從而達(dá)到深化定義的`效果。最后進(jìn)行練習(xí)鞏固,通過(guò)這樣的一個(gè)完整的教學(xué)過(guò)程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過(guò)程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。
五、教學(xué)過(guò)程
1、創(chuàng)設(shè)情境
課件展示創(chuàng)設(shè)情境動(dòng)畫(huà)。
今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。
情境
(1)我國(guó)古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無(wú)所失矣”。
情境
(2)我國(guó)古代哲學(xué)家莊周所著的《莊子·天下篇》引用過(guò)一句話:一尺之棰,日取其半,萬(wàn)世不竭。也就是說(shuō)拿一根木棒,將它切成一半,拿其中一半來(lái)再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無(wú)限次地切,每次都切一半,問(wèn)是否會(huì)切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來(lái)的少了一半,也就是說(shuō)木棒的長(zhǎng)度越來(lái)越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。
2、定義探究
展示定義探索(一)動(dòng)畫(huà)演示。
問(wèn)題1:請(qǐng)觀察以下無(wú)窮數(shù)列,當(dāng)n無(wú)限增大時(shí),a,I的變化趨勢(shì)有什么特點(diǎn)?
。1)1/2,2/3,3/4,n/n—1
。2)0.9,0.99,0.999,0.9999,1—1/10n
問(wèn)題2:觀察課件演示,請(qǐng)分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?
師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1。
那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無(wú)限增大,項(xiàng)無(wú)限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。
那么,什么叫數(shù)列的極限呢?對(duì)于無(wú)窮數(shù)列an,如果當(dāng)n無(wú)限增大時(shí),an無(wú)限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。
提出問(wèn)題3:怎樣用數(shù)學(xué)語(yǔ)言來(lái)定量描述呢?怎樣用數(shù)學(xué)語(yǔ)言來(lái)描述上述數(shù)列的變化趨勢(shì)?
展示定義探索(二)動(dòng)畫(huà)演示。
師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無(wú)限小的方式來(lái)描述項(xiàng)無(wú)限趨近常數(shù)。無(wú)論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來(lái)描述數(shù)列1的極限)。
數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。
課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫(huà)演示數(shù)列的變化過(guò)程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。
定義探索動(dòng)畫(huà)(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫(huà)演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。
3、知識(shí)應(yīng)用
這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。
例1、已知數(shù)列:
1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。
(3)確定這個(gè)數(shù)列的極限。
例2、已知數(shù)列:
已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。
猜測(cè)這個(gè)數(shù)列有無(wú)極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.017
例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。
4、知識(shí)小結(jié)
這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無(wú)限變化的趨勢(shì),而通過(guò)對(duì)數(shù)列極限定義的探討,我們看到這一過(guò)程又是通過(guò)有限來(lái)把握的,有限與無(wú)限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。
課后練習(xí):
。1)判斷下列數(shù)列是否有極限,如果有的話請(qǐng)求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。
(2)課本練習(xí)1,2。
5、探究性問(wèn)題
設(shè)計(jì)研究性學(xué)習(xí)的思考題。
提出問(wèn)題:
芝諾悖論:阿基里斯是《荷馬史詩(shī)》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無(wú)法超過(guò)在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過(guò)這一小段路,而烏龜又向前走了。這樣,阿基里斯可無(wú)限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問(wèn)題的習(xí)慣。
高中數(shù)學(xué)教案6
教學(xué)目標(biāo)
理解數(shù)列的概念,掌握數(shù)列的運(yùn)用
教學(xué)重難點(diǎn)
理解數(shù)列的概念,掌握數(shù)列的運(yùn)用
教學(xué)過(guò)程
【知識(shí)點(diǎn)精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))
2、通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來(lái)表示an=f(n)。
(通項(xiàng)公式不)
3、數(shù)列的`表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點(diǎn)構(gòu)成;
(3)解析法:用通項(xiàng)公式表示,如an=2n+1
(4)遞推法:用前n項(xiàng)的值與它相鄰的項(xiàng)之間的關(guān)系表示各項(xiàng),如a1=1,an=1+2an-1
4、數(shù)列分類:有窮數(shù)列,無(wú)窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動(dòng)數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列
5、任意數(shù)列{an}的前n項(xiàng)和的性質(zhì)
高中數(shù)學(xué)教案7
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí).
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力.
教學(xué)重點(diǎn):求反函數(shù)的方法.
教學(xué)難點(diǎn):反函數(shù)的概念.
教學(xué)過(guò)程:
教學(xué)活動(dòng)
設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問(wèn)
、俸瘮(shù)的概念
②y=f(x)中各變量的意義
2.同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù).在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書(shū)課題
由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實(shí)例分析,組織探究
1.問(wèn)題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱.是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算.同樣,與()也互為逆運(yùn)算.)
(2)由,已知y能否求x?
(3)是否是一個(gè)函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問(wèn)題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動(dòng),歸納定義
1.(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的'值域?yàn)?C.我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) .如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對(duì)應(yīng)法則為互逆運(yùn)算;
3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號(hào)f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫(xiě)出反函數(shù)的定義域.
(簡(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】(1)有沒(méi)有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x<0)的反函數(shù)是__________.
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù).在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握.
通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解.
通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對(duì)定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強(qiáng)化,評(píng)價(jià)反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性."問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識(shí).
教學(xué)設(shè)計(jì)說(shuō)明
"問(wèn)題是數(shù)學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程.本節(jié)教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過(guò)若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號(hào).由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過(guò)不同層次的問(wèn)題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用.通過(guò)對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
高中數(shù)學(xué)教案8
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問(wèn)題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過(guò)程:
一、問(wèn)題情境
1、問(wèn)題情境。
如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,
。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
(2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的`一般步驟:
。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);
。2)求出割線PQ的斜率;
。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教案9
教學(xué)目標(biāo):
1。理解并掌握瞬時(shí)速度的定義;
2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;
3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力。
教學(xué)重點(diǎn):
會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。
教學(xué)難點(diǎn):
理解瞬時(shí)速度和瞬時(shí)加速度的.定義。
教學(xué)過(guò)程:
一、問(wèn)題情境
1。問(wèn)題情境。
平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。
問(wèn)題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的快慢程度。那么如何刻畫(huà)物體在某一時(shí)刻運(yùn)動(dòng)的快慢程度?
問(wèn)題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過(guò)程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動(dòng)員相對(duì)于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度.
2。探究活動(dòng):
(1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(t∈)內(nèi)的平均速度。
(2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t∈)內(nèi)的平均速度。
(3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。
探究結(jié)論:
時(shí)間區(qū)間
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
當(dāng)?t?0時(shí),?-13.1,
該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。
即t=2s時(shí),高度對(duì)于時(shí)間的瞬時(shí)變化率。
二、建構(gòu)數(shù)學(xué)
1。平均速度。
設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過(guò)的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。
可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。
三、數(shù)學(xué)運(yùn)用
例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)
間單位是s,,求:
。1)物體在時(shí)間區(qū)間s上的平均速度;
。2)物體在時(shí)間區(qū)間上的平均速度;
。3)物體在t=2s時(shí)的瞬時(shí)速度。
分析
解
。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。
。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:
例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,
求當(dāng)時(shí)轎車的瞬時(shí)加速度。
解
∴當(dāng)?t無(wú)限趨于0時(shí),無(wú)限趨于,即=。
練習(xí)
課本P12—1,2。
四、回顧小結(jié)
問(wèn)題1本節(jié)課你學(xué)到了什么?
1理解瞬時(shí)速度和瞬時(shí)加速度的定義;
2實(shí)際應(yīng)用問(wèn)題中瞬時(shí)速度和瞬時(shí)加速度的求解;
問(wèn)題2解決瞬時(shí)速度和瞬時(shí)加速度問(wèn)題需要注意什么?
注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。
問(wèn)題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?
2極限的思想方法。
3特殊到一般、從具體到抽象的推理方法。
五、課外作業(yè)
高中數(shù)學(xué)教案10
課程概述:
本課程為高中數(shù)學(xué)網(wǎng)課教學(xué),針對(duì)的學(xué)生群體為高一學(xué)生,總共有40節(jié)課。課程主要內(nèi)容包括:集合、函數(shù)、三角函數(shù)、數(shù)列、立體幾何、概率論等。
教學(xué)歷程:
在教學(xué)歷程中,我們采用在線直播教學(xué)的方式,每節(jié)課的時(shí)長(zhǎng)為1小時(shí)。每周安排4節(jié)課,共進(jìn)行2個(gè)月。每節(jié)課開(kāi)始前,我們會(huì)提前通知學(xué)生上課的時(shí)間和地點(diǎn),以確保學(xué)生能夠準(zhǔn)時(shí)參加。
教學(xué)內(nèi)容和教學(xué)方法:
在教學(xué)內(nèi)容方面,我們按照高中數(shù)學(xué)的教學(xué)大綱進(jìn)行安排,包括基礎(chǔ)概念、公式和解題方法等。教學(xué)方法上,我們采用多種形式的教學(xué)方式,包括在線直播講解、PPT演示、習(xí)題講解等。為了提高學(xué)生的學(xué)習(xí)興趣,我們還會(huì)引入一些生活中的例子進(jìn)行講解。
教學(xué)效果:
通過(guò)本課程的學(xué)習(xí),學(xué)生們的數(shù)學(xué)成績(jī)有了明顯的提高。其中,80%的學(xué)生掌握了課程中的所有內(nèi)容,15%的學(xué)生掌握了一些難度較高的`內(nèi)容。在課后作業(yè)的完成情況方面,85%的學(xué)生能夠獨(dú)立完成作業(yè),15%的學(xué)生需要在老師的指導(dǎo)下完成作業(yè)。此外,學(xué)生們還學(xué)會(huì)了如何應(yīng)用數(shù)學(xué)知識(shí)解決生活中的問(wèn)題。
反思和建議:
在課程結(jié)束后,我們對(duì)本次教學(xué)進(jìn)行了反思,發(fā)現(xiàn)在教學(xué)的過(guò)程中需要進(jìn)一步加強(qiáng)習(xí)題的講解,以幫助學(xué)生更好地掌握數(shù)學(xué)知識(shí)和解題方法。同時(shí),我們建議教師在教學(xué)過(guò)程中注重學(xué)生的個(gè)體差異,針對(duì)不同的學(xué)生采用不同的教學(xué)方法和策略。
高中數(shù)學(xué)教案11
教學(xué)目標(biāo)
1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.
。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;
(2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
(3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.
2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).
3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.
。2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.
①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).
③對(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).
教學(xué)建議
。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.
。2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.
。3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.
。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象.
。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設(shè)計(jì)示例
課題:的概念
教學(xué)目標(biāo)
1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)
、伲2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
。ò鍟(shū))
1.的定義(板書(shū))
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).
請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):
2.對(duì)定義的認(rèn)識(shí)(板書(shū))
。1)的'首項(xiàng)不為0;
(2)的每一項(xiàng)都不為0,即;
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?
。3)公比不為0.
用數(shù)學(xué)式子表示的定義.
是①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.
3.的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng).
、俨煌耆珰w納法
.
、诏B乘法
,…,,這個(gè)式子相乘得,所以.
。ò鍟(shū))(1)的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.
。ò鍟(shū))(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
①函數(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
三、小結(jié)
1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;
2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.
四、作業(yè)(略)
五、板書(shū)設(shè)計(jì)
1.等比數(shù)列的定義
2.對(duì)定義的認(rèn)識(shí)
3.等比數(shù)列的通項(xiàng)公式
。1)公式
。2)對(duì)公式的認(rèn)識(shí)
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).
高中數(shù)學(xué)教案12
1.課題
填寫(xiě)課題名稱(高中代數(shù)類課題)
2.教學(xué)目標(biāo)
(1)知識(shí)與技能:
通過(guò)本節(jié)課的學(xué)習(xí),掌握......知識(shí),提高學(xué)生解決實(shí)際問(wèn)題的能力;
(2)過(guò)程與方法:
通過(guò)......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價(jià)值觀:
通過(guò)本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。
3.教學(xué)重難點(diǎn)
(1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)
(2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)
4.教學(xué)方法(一般從中選擇3個(gè)就可以了)
(1)討論法
(2)情景教學(xué)法
(3)問(wèn)答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學(xué)過(guò)程
(1)導(dǎo)入
簡(jiǎn)單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
(2)新授課程(一般分為三個(gè)小步驟)
、俸(jiǎn)單講解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。
、跉w納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對(duì)該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)?梢栽O(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。
、弁卣寡由,將所學(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問(wèn)題。
(在新授課里面一定要表下出講課的大體流程,但是不必太過(guò)詳細(xì)。)
(3)課堂小結(jié)
教師提問(wèn),學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。
6.教學(xué)板書(shū)
2.高中數(shù)學(xué)教案格式
一.課題(說(shuō)明本課名稱)
二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說(shuō)明本課所要完成的教學(xué)任務(wù))
三.課型(說(shuō)明屬新授課,還是復(fù)習(xí)課)
四.課時(shí)(說(shuō)明屬第幾課時(shí))
五.教學(xué)重點(diǎn)(說(shuō)明本課所必須解決的關(guān)鍵性問(wèn)題)
六.教學(xué)難點(diǎn)(說(shuō)明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))
七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維
八.教學(xué)過(guò)程(或稱課堂結(jié)構(gòu),說(shuō)明教學(xué)進(jìn)行的內(nèi)容、方法步驟)
九.作業(yè)處理(說(shuō)明如何布置書(shū)面或口頭作業(yè))
十.板書(shū)設(shè)計(jì)(說(shuō)明上課時(shí)準(zhǔn)備寫(xiě)在黑板上的內(nèi)容)
十一.教具(或稱教具準(zhǔn)備,說(shuō)明輔助教學(xué)手段使用的工具)
十二.教學(xué)反思:(教者對(duì)該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)
3.高中數(shù)學(xué)教案范文
【教學(xué)目標(biāo)】
1.知識(shí)與技能
(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:
(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。
2.過(guò)程與方法
在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價(jià)值觀
通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點(diǎn)】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項(xiàng)公式
【教學(xué)難點(diǎn)】
①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;
、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
【設(shè)計(jì)思路】
1、教法
、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.
、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).
2、學(xué)法
引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚(yú)類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú).如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?
3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢(qián),年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?
教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的.是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點(diǎn)?
思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.
(設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.
注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.
(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項(xiàng)
1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?
2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?
教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五、應(yīng)用通項(xiàng),解決問(wèn)題
1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)
教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式
(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)
六、反饋練習(xí):教材13頁(yè)練習(xí)1
七、歸納總結(jié):
1、一個(gè)定義:
等差數(shù)列的定義及定義表達(dá)式
2、一個(gè)公式:
等差數(shù)列的通項(xiàng)公式
3、二個(gè)應(yīng)用:
定義和通項(xiàng)公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)
【設(shè)計(jì)反思】
本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.
高中數(shù)學(xué)教案13
一、教學(xué)目標(biāo)
【知識(shí)與技能】
在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的'圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過(guò)程與方法】
通過(guò)對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。
【情感態(tài)度與價(jià)值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點(diǎn)】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教案14
一. 學(xué)習(xí)目標(biāo)
(1)通過(guò)實(shí)例體會(huì)分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過(guò)程中,學(xué)會(huì)列頻率分布表,畫(huà)頻率分布直方圖,頻率折線圖; (3)通過(guò)實(shí)例體會(huì)頻率分布直方圖,頻率折線圖,莖葉圖的各自特點(diǎn),從而恰當(dāng)?shù)倪x擇上述方法分析樣本的分布,準(zhǔn)確的作出總體估計(jì)。
二. 學(xué)習(xí)重點(diǎn)
三.學(xué)習(xí)難點(diǎn)
能通過(guò)樣本的頻率分布估計(jì)總體的分布。
四.學(xué)習(xí)過(guò)程
(一)復(fù)習(xí)引入
(1 )統(tǒng)計(jì)的核心問(wèn)題是什么?
(2 )隨機(jī)抽樣的幾種常用方法有哪些?
(3)通過(guò)抽樣方法收集數(shù)據(jù)的目的是什么?
(二)自學(xué)提綱
1.我們學(xué)習(xí)了哪些統(tǒng)計(jì)圖?不同的統(tǒng)計(jì)圖適合描述什么樣的數(shù)據(jù)?
2.如何列頻率分布表?
3.如何畫(huà)頻率分布直方圖?基本步驟是什么?
4.頻率分布直方圖的縱坐標(biāo)是什么?
5.頻率分布直方圖中小長(zhǎng)方形的面積表示什么?
6.頻率分布直方圖中小長(zhǎng)方形的面積之和是多少?
(三)課前自測(cè)
1.從一堆蘋(píng)果中任取了20只,并得到了它們的質(zhì)量(單位:g)數(shù)據(jù)分布表如下:
分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋(píng)果中,質(zhì)量不小于120g的蘋(píng)果數(shù)約占蘋(píng)果總數(shù)的xxx%. 2.關(guān)于頻率分布直方圖,下列說(shuō)法正確的是( ) a.直方圖的高表示該組上的個(gè)體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的個(gè)體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學(xué) 典例:城市缺水問(wèn)題(自學(xué)教材65頁(yè)~68頁(yè))
問(wèn)題1.你認(rèn)為為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識(shí)整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:
2.畫(huà)頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫(huà)頻率分布直方圖 問(wèn)題: .
1.月平均用水量在2.5—3之間的頻率是多少?
2.月均用水量最多的`在哪個(gè)區(qū)間?
3.月均用水量小于4.5 的頻率是多少?
4.小長(zhǎng)方形的面積=?
5.小長(zhǎng)方形的面積總和=?
6.如果希望85%以上居民不超出標(biāo)準(zhǔn),如何制定標(biāo)準(zhǔn)?
7.直方圖有那些優(yōu)點(diǎn)和缺點(diǎn)?
例題講解: 例1有一個(gè)容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫(huà)出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計(jì),數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?
3.頻率分布折線圖、總體密度曲線 問(wèn)題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:
問(wèn)題2:在城市缺水問(wèn)題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會(huì)有什么變化?假如增至10000呢?
總體密度曲線的概念:
注:用樣本分布直方圖去估計(jì)相應(yīng)的總體分布時(shí),一般樣本容量越大,頻率分布直方圖就會(huì)無(wú)限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個(gè)范圍內(nèi)1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計(jì)總體的分布。
4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:
小結(jié):.總體的分布分兩種情況:當(dāng)總體中的個(gè)體取值很少時(shí),用莖葉圖估計(jì)總體的分布;當(dāng)總體中的個(gè)體取值較多時(shí),將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。
課堂小結(jié):
當(dāng)堂檢測(cè):
1. 一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人, 并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系, 要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步 調(diào)查,則 [2500,3000)(元)月收入段應(yīng)抽取 人。
2、為了解某校高三學(xué)生的視力情況,隨機(jī)抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則
a+b= . 3.在抽查產(chǎn)品的尺寸過(guò)程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個(gè)體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=xx. 4.為了了解中學(xué)生的身高情況,對(duì)育才中學(xué)同齡的50名男學(xué)生的身高進(jìn)行了測(cè)量,結(jié)果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出樣本的頻率分布表。
(2)畫(huà)出頻率分布直方圖。
(3)畫(huà)頻率分布折線圖;
高中數(shù)學(xué)教案15
課題:
等比數(shù)列的概念
教學(xué)目標(biāo)
1、通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、
2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、
3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話法、
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn)、(幻燈片)
①—2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
、1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題、假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)
這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
等比數(shù)列(板書(shū))
1、等比數(shù)列的定義(板書(shū))
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ)、
請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):
2、對(duì)定義的認(rèn)識(shí)(板書(shū))
。1)等比數(shù)列的首項(xiàng)不為0;
。2)等比數(shù)列的每一項(xiàng)都不為0,即
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?
。3)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列
①、在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成
,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第
項(xiàng)的'數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、
3、等比數(shù)列的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng)
①不完全歸納法
、诏B乘法,…,,這個(gè)式子相乘得,所以(板書(shū))
(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書(shū))
(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
、俸瘮(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已)、
這里強(qiáng)調(diào)方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;
2、注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍,比如紙?、001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。
【高中數(shù)學(xué)教案】相關(guān)文章:
高中數(shù)學(xué)教案12-30
高中數(shù)學(xué)教案02-21
高中數(shù)學(xué)教案【熱門(mén)】01-25
高中數(shù)學(xué)教案【推薦】01-25
高中數(shù)學(xué)教案【薦】01-25
高中數(shù)學(xué)教案【熱】01-25
高中數(shù)學(xué)教案模板02-02
高中數(shù)學(xué)教案(通用)10-27
高中數(shù)學(xué)教案(精品)06-28