天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>高一數(shù)學教案>高一數(shù)學教案最新

高一數(shù)學教案最新

時間:2024-08-27 07:16:15 高一數(shù)學教案 我要投稿

高一數(shù)學教案最新

  作為一位兢兢業(yè)業(yè)的人民教師,時常需要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。怎樣寫教案才更能起到其作用呢?下面是小編收集整理的高一數(shù)學教案最新,歡迎閱讀與收藏。

高一數(shù)學教案最新

高一數(shù)學教案最新1

  教學目標

  1.了解函數(shù)的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。

  (1)了解并區(qū)分增函數(shù),減函數(shù),單調性,單調區(qū)間,奇函數(shù),偶函數(shù)等概念。

  (2)能從數(shù)和形兩個角度認識單調性和奇偶性。

  (3)能借助圖象判斷一些函數(shù)的單調性,能利用定義證明某些函數(shù)的單調性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

  2.通過函數(shù)單調性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從特殊到一般的數(shù)學思想。

  3.通過對函數(shù)單調性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度。

  教學建議

  一、知識結構

  (1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系。

  (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

  二、重點難點分析

  (1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數(shù)單調性, 奇偶性的本質,掌握單調性的證明。

  (2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的`形成上重點下功夫。單調性的證明是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點。

  三、教法建議

  (1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。

  (2)函數(shù)單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。

  函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學教案最新2

  教學目標:

  1、理解對數(shù)的概念,能夠進行對數(shù)式與指數(shù)式的互化;

  2、滲透應用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學發(fā)現(xiàn)能力。

  教學重點:

  對數(shù)的概念

  教學過程:

  一、問題情境:

  1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

 。2)假設20xx年我國國民生產總值為a億元,如果每年平均增長8%,那么經過多少年國民生產總值是20xx年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?

  二、學生活動:

  1、討論問題,探究求法、

  2、概括內容,總結對數(shù)概念、

  3、研究指數(shù)與對數(shù)的關系、

  三、建構數(shù)學:

  1)引導學生自己總結并給出對數(shù)的`概念、

  2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、

  3)指數(shù)式與對數(shù)式的關系、

  4)常用對數(shù)與自然對數(shù)、

  探究:

 、咆摂(shù)與零沒有對數(shù)、

 、,、

 、菍(shù)恒等式(教材P58練習6)

 、伲虎凇

 、葍煞N對數(shù):

 、俪S脤(shù):;

 、谧匀粚(shù):、

  (5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、

  四、數(shù)學運用:

  1、例題:

  例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:

 。1);(2)3=—2;(3);(4)(補充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

 、牛虎;⑶(補充)、

  2、練習:

  P58(練習)1,2,3,4,5、

  五、回顧小結:

  本節(jié)課學習了以下內容:

 、艑(shù)的定義;

 、浦笖(shù)式與對數(shù)式互換;

 、乔髮(shù)式的值(利用計算器求對數(shù)值)、

  六、課外作業(yè):P63習題1,2,3,4、

高一數(shù)學教案最新3

  學習目標

  1.能根據(jù)拋物線的定義建立拋物線的標準方程;

  2.會根據(jù)拋物線的標準方程寫出其焦點坐標與準線方程;

  3.會求拋物線的標準方程。

  一、預習檢查

  1.完成下表:

  標準方程

  圖形

  焦點坐標

  準線方程

  開口方向

  2.求拋物線的焦點坐標和準線方程.

  3.求經過點的拋物線的標準方程.

  二、問題探究

  探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標準方程?

  探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.

  例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.

  例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標準方程,準線方程.

  例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.

  三、思維訓練

  1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.

  2.拋物線的焦點到其準線的距離是.

  3.設為拋物線的焦點,為該拋物線上三點,若,則=.

  4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.

  5.(理)已知拋物線,有一個內接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。

  四、課后鞏固

  1.拋物線的準線方程是.

  2.拋物線上一點到焦點的距離為,則點到軸的距離為.

  3.已知拋物線,焦點到準線的`距離為,則.

  4.經過點的拋物線的標準方程為.

  5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.

  6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.

  7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。

【高一數(shù)學教案最新】相關文章:

高一數(shù)學教案課后反思最新01-06

最新高一下冊數(shù)學教案優(yōu)秀06-23

最新數(shù)學教案02-14

高一優(yōu)秀數(shù)學教案09-28

高一數(shù)學教案11-08

高一數(shù)學教案11-05

高一數(shù)學教案【推薦】11-30

【精】高一數(shù)學教案12-01

高一數(shù)學教案【熱】12-03

高一數(shù)學教案【精】11-29