天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高一數(shù)學(xué)教案>高一數(shù)學(xué)必修二教案

高一數(shù)學(xué)必修二教案

時(shí)間:2024-10-21 10:02:07 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)必修二教案

  作為一名老師,很有必要精心設(shè)計(jì)一份教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案要怎么寫呢?下面是小編為大家整理的高一數(shù)學(xué)必修二教案,歡迎閱讀,希望大家能夠喜歡。

高一數(shù)學(xué)必修二教案

高一數(shù)學(xué)必修二教案1

  教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性。 了解有限集、無(wú)限集、空集概念,

  教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“ ?”的使用

  教學(xué)難點(diǎn):集合概念的理解;

  課 型:新授課

  教學(xué)手段:

  教學(xué)過(guò)程:

  一、引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問題中某些特定(是高一而不是高二)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。

  研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論是由德國(guó)數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。

  下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識(shí),為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。

  二、新課教學(xué)

  “物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。

  如:自然數(shù)的集合 0,1,2,3,……

  如:2x-1>3,即x>2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。

  如:幾何中,圓是到定點(diǎn)的`距離等于定長(zhǎng)的點(diǎn)的集合。

  1、一般地,指定的某些對(duì)象的全體稱為集合,標(biāo)記:A,B,C,D,…

  集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…

  2、元素與集合的關(guān)系

  a是集合A的元素,就說(shuō)a屬于集合A , 記作 a∈A ,

  a不是集合A的元素,就說(shuō)a不屬于集合A, 記作 a?A

  思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問題。

  例1:判斷下列一組對(duì)象是否屬于一個(gè)集合呢?

 。1)小于10的質(zhì)數(shù)(2)數(shù)學(xué)家(3)中國(guó)的直轄市(4)maths中的字母

  (5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2>x+3的全體實(shí)數(shù)

 。9)方程 的實(shí)數(shù)解

  評(píng)注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。

  3、集合的中元素的三個(gè)特性:

  1、元素的確定性:對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  2、元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合

  3、元素的無(wú)序性:集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  4、數(shù)的集簡(jiǎn)稱數(shù)集,下面是一些常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N 有理數(shù)集Q

  正整數(shù)集 N__或 N+ 實(shí)數(shù)集R

  整數(shù)集Z 注:實(shí)數(shù)的分類

  5、集合的分類 原則:集合中所含元素的多少

 、儆邢藜 含有限個(gè)元素,如A={-2,3}

  ②無(wú)限集 含無(wú)限個(gè)元素,如自然數(shù)集N,有理數(shù)

  ③空 集 不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ

  三、課堂練習(xí)

  1、用符合“∈”或“?”填空:課本P15練習(xí)慣1

  2、判斷下面說(shuō)法是否正確、正確的在( )內(nèi)填“√”,錯(cuò)誤的填“×”

 。1)所有在N中的元素都在N__中( )

 。2)所有在N中的元素都在Z中( )

  (3)所有不在N__中的數(shù)都不在Z中( )

 。4)所有不在Q中的實(shí)數(shù)都在R中( )

 。5)由既在R中又在N__中的數(shù)組成的集合中一定包含數(shù)0( )

 。6)不在N中的數(shù)不能使方程4x=8成立( )

  四、回顧反思

  1、集合的概念

  2、集合元素的三個(gè)特征

  其中“集合中的元素必須是確定的”應(yīng)理解為:對(duì)于一個(gè)給定的集合,它的元素的意義是明確的。

  “集合中的元素必須是互異的”應(yīng)理解為:對(duì)于給定的集合,它的任何兩個(gè)元素都是不同的。

  3、常見數(shù)集的專用符號(hào)。

  五、作業(yè)布置

  1、下列各組對(duì)象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數(shù)

 。2)好心的人

  (3)1,2,2,3,4,5.

  2、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是

  3、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( )

  (A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

  4、下列結(jié)論不正確的是( )

  A.O∈N B. Q C.O Q D.-1∈Z

  5、下列結(jié)論中,不正確的是( )

  A.若a∈N,則-a N B.若a∈Z,則a2∈Z

  C.若a∈Q,則|a|∈Q D.若a∈R,則

  6、求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;

高一數(shù)學(xué)必修二教案2

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

  2.過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

  二、教學(xué)難點(diǎn):

  重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

  三、學(xué)法指導(dǎo):

  觀察、動(dòng)手實(shí)踐、討論、類比。

  四、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭開課題

  展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

 。ǘ┲v授新課

  1、中心投影與平行投影:

  中心投影:光由一點(diǎn)向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對(duì)著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的`正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。

  長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;

  高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;

  寬相等:俯視圖與側(cè)視圖的寬度相等。

  3、畫長(zhǎng)方體的三視圖:

  正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

 。ㄈ╈柟叹毩(xí)

  課本P15 練習(xí)1、2; P20習(xí)題1.2 [A組] 2。

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┎贾米鳂I(yè)

  課本P20習(xí)題1.2 [A組] 1。

高一數(shù)學(xué)必修二教案3

  學(xué)習(xí)目標(biāo)

  1、 結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解歸納推理的含義;2. 能利用歸納進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

  2、 結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例,了解類比推理的含義;

  3、 能利用類比進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

  學(xué)習(xí)過(guò)程

  一、課前準(zhǔn)備

  問題3:因?yàn)槿切蔚膬?nèi)角和是 ,四邊形的內(nèi)角和是 ,五邊形的內(nèi)角和是

  ……所以n邊形的內(nèi)角和是

  新知1:從以上事例可一發(fā)現(xiàn):

  叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。

  新知2:類比推理就是根據(jù)兩類不同事物之間具有

  推測(cè)其中一類事物具有與另一類事物 的性質(zhì)的推理。

  簡(jiǎn)言之,類比推理是由 的推理。

  新知3歸納推理就是根據(jù)一些事物的 ,推出該類事物的

  的推理。 歸納是 的過(guò)程

  例子:哥德巴赫猜想:

  觀察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,

  16=13+3, 18=11+7, 20=13+7, ……,

  50=13+37, ……, 100=3+97,

  猜想:

  歸納推理的一般步驟

  1 通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì)。

  2 從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想)。

  ※ 典型例題

  例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項(xiàng)和Sn的歸納過(guò)程。

  變式1 觀察下列等式:1+3=4= ,

  1+3+5=9= ,

  1+3+5+7=16= ,

  1+3+5+7+9=25= ,

  ……

  你能猜想到一個(gè)怎樣的結(jié)論?

  變式2觀察下列等式:1=1

  1+8=9,

  1+8+27=36,

  1+8+27+64=100,

  ……

  你能猜想到一個(gè)怎樣的結(jié)論?

  例2設(shè) 計(jì)算 的值,同時(shí)作出歸納推理,并用n=40驗(yàn)證猜想是否正確。

  變式:(1)已知數(shù)列 的第一項(xiàng) ,且 ,試歸納出這個(gè)數(shù)列的通項(xiàng)公式

  例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)。

  圓的概念和性質(zhì) 球的類似概念和性質(zhì)

  圓的周長(zhǎng)

  圓的面積

  圓心與弦(非直徑)中點(diǎn)的連線垂直于弦

  與圓心距離相等的弦長(zhǎng)相等,

  ※ 動(dòng)手試試

  1、 觀察圓周上n個(gè)點(diǎn)之間所連的`弦,發(fā)現(xiàn)兩個(gè)點(diǎn)可以連一條弦,3個(gè)點(diǎn)可以連3條弦,4個(gè)點(diǎn)可以連6條弦,5個(gè)點(diǎn)可以連10條弦,由此可以歸納出什么規(guī)律?

  2 如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

  3 如果兩條直線同時(shí)垂直于第三條直線,則這兩條直線互相平行。

  三、總結(jié)提升

  ※ 學(xué)習(xí)小結(jié)

  1、歸納推理的定義。

  2、 歸納推理的一般步驟:①通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì);②從已知的相同性質(zhì)中推出一個(gè)明確表述的一般性命題(猜想)。

  3、 合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定真,但合情推理常常幫我們猜測(cè)和發(fā)現(xiàn)新的規(guī)律,為我們提供證明的思路和方法

高一數(shù)學(xué)必修二教案4

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能:

 。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

 。3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

 。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

  2.過(guò)程與方法:

 。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

  (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

  3.情感態(tài)度與價(jià)值觀:

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

  (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn):

  讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀察、思考、交流、討論、概括。

 。2)實(shí)物模型、投影儀。

  四、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))

  2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?

  3、展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體。

  問題:請(qǐng)根據(jù)某種標(biāo)準(zhǔn)對(duì)以上空間物體進(jìn)行分類。

 。ǘ、研探新知

  空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺(tái);

  旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺(tái)、球。

  1、棱柱的.結(jié)構(gòu)特征:

 。1)觀察棱柱的幾何物體以及投影出棱柱的圖片,

  思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?

 。▽W(xué)生討論)

 。2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):

  ①有兩個(gè)面互相平行;

 、谄溆喔髅娑际瞧叫兴倪呅危

 、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫小

 。3)棱柱的表示法及分類:

  (4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。

  2、棱錐、棱臺(tái)的結(jié)構(gòu)特征:

  (1)實(shí)物模型演示,投影圖片;

  (2)以類似的方法,根據(jù)出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。

  棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。

  棱臺(tái):且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結(jié)構(gòu)特征:

 。1)實(shí)物模型演示,投影圖片——如何得到圓柱?

 。2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。

  4、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征:

 。1)實(shí)物模型演示,投影圖片——如何得到圓錐、圓臺(tái)、球?

 。2)以類似的方法,根據(jù)圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。

  5、柱體、錐體、臺(tái)體的概念及關(guān)系:

  探究:棱柱、棱錐、棱臺(tái)都是多面體,它們?cè)诮Y(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?

  圓柱、圓錐、圓臺(tái)呢?

  6、簡(jiǎn)單組合體的結(jié)構(gòu)特征:

  (1)簡(jiǎn)單組合體的構(gòu)成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。

  (2)實(shí)物模型演示,投影圖片——說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征。

 。3)列舉身邊物體,說(shuō)出它們是由哪些基本幾何體組成的。

  (三)排難解惑,發(fā)展思維

  1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說(shuō)明)

  2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  (四)鞏固深化

  練習(xí):課本P7 練習(xí)1、2; 課本P8 習(xí)題1.1 第1、2、3、4、5題

 。ㄎ澹w納整理:

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

高一數(shù)學(xué)必修二教案5

  【考點(diǎn)闡述】

  兩角和與差的正弦、余弦、正切。二倍角的正弦、余弦、正切。

  【考試 要求】

  (3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式。

  (4)能正確運(yùn)用三角公式,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。

  【考題分類】

  (一)選擇題(共5題)

  1.(海南寧夏卷理7) =( )

  A. B. C. 2 D.

  解: ,選C。

  2.(山東卷 理5文10)已知cos(α- )+sinα=

  (A)- (B) (C)- (D)

  解: , ,

  3.(四川卷理3文4) ( )

  (A) (B) (C) (D)

  【解】:∵

  故選D;

  【點(diǎn)評(píng)】:此題重點(diǎn)考察各三角函數(shù)的`關(guān)系;

  4.(浙江卷理8)若 則 =( )

  (A) (B)2 (C) (D)

  解析:本小題主要考查三角 函數(shù)的求值問題。由 可知, 兩邊同時(shí)除以 得 平方得 ,解得 或用觀察法。

  5.(四川延考理5)已知 ,則 ( )

  (A) (B) (C) (D)

  解: ,選C

  (二)填空題(共2題)

  1.(浙江卷文12)若 ,則 _________。

  解析:本 小題主要考查誘導(dǎo)公式及二倍角公式的應(yīng)用。由 可知, ;而 。答案 :

  2.(上海春卷6)化簡(jiǎn): .

  (三)解答題(共1題)

  1.(上海春卷17)已知 ,求 的 值。

  [解] 原式 …… 2分

  . …… 5分

  又 , , …… 9分

  . …… 12分 文章

【高一數(shù)學(xué)必修二教案】相關(guān)文章:

高一數(shù)學(xué)必修二教案01-20

高一數(shù)學(xué)必修二教案 7篇01-21

高一數(shù)學(xué)必修二教案 (7篇)01-22

高一歷史必修二教案11-27

高一數(shù)學(xué)必修二教案 (匯編7篇)01-23

高一數(shù)學(xué)必修四教案11-13

高一語(yǔ)文必修二教案12-14

高二數(shù)學(xué)必修四教案11-03

高一數(shù)學(xué)必修一優(yōu)秀教案12-26