初中七年級數(shù)學教案
作為一位杰出的教職工,總不可避免地需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。教案應該怎么寫才好呢?以下是小編為大家收集的初中七年級數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
初中七年級數(shù)學教案1
教學目標
1. 使學生在了解代數(shù)式概念的基礎上,能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;
2. 初步培養(yǎng)學生觀察、分析和抽象思維的能力.
教學重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關系.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1?用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應用引導的方法啟發(fā)學生解答本題)
2?在代數(shù)里,我們經常需要把用數(shù)字或字母敘述的一句話或一些計算關系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學習這個問題?
二、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設出來,才能解決欲求的乙數(shù)?
解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本題應由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式?
解:設甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本題應由學生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2?
(這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?
例4 設字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?
分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力?)
例5 設教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個; (2)( m)m個?
三、課堂練習
1?設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的'和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、師生共同小結
首先,請學生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關鍵是什么?
其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不唯一);
(2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;
(3)把用日常生活語言敘述的數(shù)量關系,列成代數(shù)式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?
五、作業(yè)
1?用代數(shù)式表示:
(1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?
2?已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學法探究
已知圓環(huán)內直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.
當圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:
=99a+b(cm)
初中七年級數(shù)學教案2
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè)。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的`基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
初中七年級數(shù)學教案3
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數(shù)學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業(yè)課本15頁-16頁練習的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的`條件的應用.
學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初中七年級數(shù)學教案4
教學目標
使學生進一步理解立方根的概念,并能熟練地進行求一個數(shù)的立方根的運算;
能用有理數(shù)估計一個無理數(shù)的大致范圍,使學生形成估算的意識,培養(yǎng)學生的估算能力;
經歷運用計算器探求數(shù)學規(guī)律的過程,發(fā)展合情推理能力。
教學難點
用有理數(shù)估計一個無理的大致范圍。
知識重點
用有理數(shù)估計一個無理的大致范圍。
對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數(shù)量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數(shù)量間的關系,從而尋找出數(shù)量的變化關系。
使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數(shù)學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節(jié)課的課堂教學中綜合運用筆算、計算器和估算等培養(yǎng)學生的運算能力。知識點一:多邊形的概念
、哦噙呅味x:在平面內,由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的'大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
、贫噙呅蔚倪、頂點、內角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、
、嵌噙呅蔚膶蔷
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數(shù)
知識點三:多邊形的內角和公式推導
1、我們知道三角形的內角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果、從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>
。1)從五邊形的一個頂點出發(fā),可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______、
(2)從六邊形的一個頂點出發(fā),可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______、探究3:一般地,怎樣求n邊形的內角和呢?請?zhí)羁眨?/p>
從n邊形的一個頂點出發(fā),可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______、
綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數(shù)為n,則
n邊形的內角和等于______________、
想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關系、
自我檢測:
。ㄒ唬、判斷題、
1、當多邊形邊數(shù)增加時,它的內角和也隨著增加、()
2、當多邊形邊數(shù)增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發(fā),可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內角至少有一個角不小于直角、()
。ǘ⑻羁疹}、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內角都等于135°,則這個多邊形為
3、內角和等于外角和的多邊形是邊形、
4、內角和為1440°的多邊形是
5、若多邊形內角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內角和為4320°,則它的邊數(shù)為
8、多邊形每個內角都相等,內角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內角中,直角最多有個,鈍角最多有銳角最
。ㄈ┙獯痤}
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?
3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數(shù)。
4、一個多邊形的每一個內角都等于其相等外角的
5、一個多邊形少一個內角的度數(shù)和為2300°、
(1)求它的邊數(shù);
。2)求少的那個內角的度數(shù)、
初中七年級數(shù)學教案5
一、 基本情況分析
1、學生情況分析
這學期我承擔七(1)(2)兩班的數(shù)學教學,這些學生整體基礎參差不齊,小學沒有養(yǎng)成良好的學習習慣,所以任務艱巨。在小學所學知識的掌握程度上,對優(yōu)生來說,能夠透徹理解知識,知識間的內在聯(lián)系也較為清楚,但位數(shù)不多。對多數(shù)學生來說,簡單的基礎知識還不能有效掌握,成績稍差。學生的邏輯推理、邏輯思維能力,計算能力要得到加強,還要提升整體成績,適時補充課外知識,拓展學生的知識面,抽出一定的時間給強化幾何訓練,全面提升學生的數(shù)學素質。
2、教材分析:
1、第1章有理數(shù):本章主要學習有理數(shù)的基本性質及運算。本章重點內容是有理數(shù)的概念,性質和運算。本章的難點在于理解有理數(shù)的基本性質、運算法則,并將它們應用到解決實際問題和計算中。
2、第2章整式的加減:本章主要是學習單項式和多項式的加減運算。本章重點內容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。
3、第3章一元一次方程:本章主要學習一元一次方程的概念、等式的基本性質、一元一次方程的解法及應用。本章重點內容是理解等式的基本性質;掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。
4、第4章幾何圖形初步:本章主要學習線段和角有關的性質。本章的重點是區(qū)別直線、射線、線段,角的有關性質和計算;理解互為余角、互為補角的性質及應用。本章的難點在于線段和角的有關計算。
二、 教學目標和要求
(一)知識與技能
1、獲得數(shù)學中的基本理論、概念、原理和規(guī)律等方面的知識,了解并關注這些知識在生產、生活和社會發(fā)展中的應用。
2、學會將實踐生活中遇到的實際問題轉化為數(shù)學問題,從而通過數(shù)學問題解決實際問題。體驗幾何定理的探究及其推理過程并學會在實際問題進行應用。
3、初步具有數(shù)學研究操作的基本技能,一定的科學探究和實踐能力,養(yǎng)成良好的科學思維習慣。
。ǘ┻^程與方法
1、采用思考、類比、探究、歸納、得出結論的方法進行教學;
2、發(fā)揮學生的主體作用,作好探究性活動;
3、密切聯(lián)系實際,激發(fā)學生的學習的積極性,培養(yǎng)學生的類比、歸納的能力、
。ㄈ┣楦袘B(tài)度與價值觀
1、理解人與自然、社會的密切關系,和諧發(fā)展的主義,提高環(huán)境保護意識。
2、逐步形成數(shù)學的'基本觀點和科學態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎。
三、 提高教學質量的主要措施
1、認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業(yè),認真輔導,認真制作考試試試卷,也讓學生學會認真學習。
2、興趣是最好的老師,激發(fā)學生的興趣,給學生介紹數(shù)學家、數(shù)學史、介紹相應的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。
3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流的氛圍,分享快樂的學習課堂,讓學生體會學習的快樂,享受學習。
4、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
5、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。
6、加強學生解題速度和準確度的培養(yǎng)訓練,在新授課時,凡是能當堂完成的作業(yè),要求學生比速度和準確度,誰先完成誰就先交給老師批改,凡是做的全對的依次獲得前十名,以資鼓勵。
7、加強個別輔導,加強面批、面改,加強定時作業(yè)的訓練。并進行作業(yè)展覽,對作業(yè)書寫的好又全部正確的貼在學習園地中。
8、積極主動的與其他教師協(xié)同配合,認真鉆研教材,搞好集體備課。
初中七年級數(shù)學教案6
教學目標
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數(shù)的概念
教學過程(師生活動) 設計理念
探索新知 在前兩個學段,我們已經學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習.
此練習中出現(xiàn)了集合的概念,可向學生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,逐步得到如下的分類表?/p>
有理數(shù) 這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的`結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業(yè)
課堂小結 到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業(yè)
1, 必做題:教科書第18頁習題1.2第1題
2, 教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
初中七年級數(shù)學教案7
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數(shù)學方法和思想的重要性及其應用的廣泛性。體會數(shù)學的價值,培養(yǎng)對數(shù)學學習的`熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數(shù)學思想方法,建構知識網絡。
四、教學準備:多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節(jié)課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
(二)回顧整理,建構網絡
1.復習平行四邊形、三角形、梯形面積公式的推導過程。
、耪埓蠹一貞浺幌拢浩叫兴倪呅巍⑷切、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七,作業(yè)布置:練習十九
板書設計
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初中七年級數(shù)學教案8
一、教材分析:
反比例函數(shù)的圖象與性質是對正比例函數(shù)圖象與性質的復習和對比,也是以后學習二次函數(shù)的基礎。本課時的學習是學生對函數(shù)的圖象與性質一個再知的過程,由于初二學生是首次接觸雙曲線這種函數(shù)圖象,所以教學時應注意引導學生抓住反比例函數(shù)圖象的特征,讓學生對反比例函數(shù)有一個形象和直觀的認識。
二、教學目標分析
根據二期課改“以學生為主體,激活課堂氣氛,充分調動起學生參與教學過程”的精神。在教學設計上,我設想通過使用多媒體課件創(chuàng)設情境,在掌握反比例函數(shù)相關知識的同時激發(fā)學生的學習興趣和探究欲望,引導學生積極參與和主動探索。
因此把教學目標確定為:
1.掌握反比例函數(shù)的概念,能夠根據已知條件求出反比例函數(shù)的解析式;學會用描點法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質。
2.在教學過程中引導學生自主探索、思考及想象,從而培養(yǎng)學生觀察、分析、歸納的綜合能力。
3.通過學習培養(yǎng)學生積極參與和勇于探索的精神。
三、教學重點難點分析
本堂課的重點是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質;
難點則是如何抓住特征準確畫出反比例函數(shù)的圖象。
為了突出重點、突破難點。我設計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學生親手操作,積極參與并主動探索函數(shù)性質,幫助學生直觀地理解反比例函數(shù)的性質。
四、教學方法
鑒于教材特點及初二學生的年齡特點、心理特征和認知水平,設想采用問題教學法和對比教學法,用層層推進的提問啟發(fā)學生深入思考,主動探究,主動獲取知識。同時注意與學生已有知識的聯(lián)系,減少學生對新概念接受的困難,給學生充分的自主探索時間。通過教師的引導,啟發(fā)調動學生的積極性,讓學生在課堂上多活動、多觀察,主動參與到整個教學活動中來,組織學生參與“探究——討論——交流——總結”的學習活動過程,同時在教學中,還充分利用多媒體教學,通過演示,操作,觀察,練習等師生的共同活動中啟發(fā)學生,讓每個學生動手、動口、動眼、動腦,培養(yǎng)學生直覺思維能力。
五、學法指導
本堂課立足于學生的“學”,要求學生多動手,多觀察,從而可以幫助學生形成分析、對比、歸納的思想方法。在對比和討論中讓學生在“做中學”,提高學生利用已學知識去主動獲取新知識的能力。因此在課堂上要采用積極引導學生主動參與,合作交流的方法組織教學,使學生真正成為教學的主體,體會參與的樂趣,成功的喜悅,感知數(shù)學的奇妙。
六、教學過程
。ㄒ唬⿵土曇搿春瘮(shù)解析式
練習1:寫出下列各題的關系式:
。1)正方形的周長C和它的一邊的長a之間的關系
(2)運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關系
(3)矩形的面積為10時,它的長x和寬y之間的關系
。4)王師傅要生產100個零件,他的工作效率x和工作時間t之間的關系
問題1:請大家判斷一下,在我們寫出來的這些關系式中哪些是正比例函數(shù)?
問題1主要是復習正比例函數(shù)的定義,為后面學生運用對比的方法給出反比例函數(shù)的定義打下基礎。
問題2:那么請大家再仔細觀察一下,其余兩個函數(shù)關系式有什么共同點嗎?
通過問題2來引出反比例函數(shù)的解析式,請學生對比正比例函數(shù)的定義來給出反比例函數(shù)的定義,這不僅有助于對舊知識的復習和鞏固,同時還可以培養(yǎng)學生的對比和探究能力。
例題1:已知變量y與x成反比例,且當x=2時,y=9
。1)寫出y與x之間的函數(shù)解析式
(2)當x=時,求y的值
。3)當y=5時,求x的值
通過對例1的學習使學生掌握如何根據已知條件來求出反比例函數(shù)的解析式。在解題過程中,引導學生運用在求正比例函數(shù)的解析式時用到的“待定系數(shù)法”,先設反比例函數(shù)為,再把相應的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。
課堂練習:已知x與y成反比例,根據以下條件,求出y與x之間的函數(shù)關系式
(1)x=2,y=3 (2)x= ,y=
通過此題,對學生掌握如何根據已知條件去求反比例函數(shù)的解析式的學習情況做一個簡單的反饋。
(二)探究學習1——函數(shù)圖象的畫法
問題3:如何畫出正比例函數(shù)的圖象?
通過問題3來復習正比例函數(shù)圖象的畫法主要分為列表、描點、連線三個步驟,為學習反比例函數(shù)圖像的畫法打下基礎。
問題4:那反比例函數(shù)的圖象應該怎樣去畫呢?
在教學過程中可以引導學生仿照正比例函數(shù)圖象的.的畫法。
設想的教學設計是:
。1)引導學生運用在畫正比例函數(shù)圖象中所學到的方法,分小組討論嘗試,采用列表、描點、連線的方法畫出函數(shù)和的圖象;
。2)老師邊巡視,邊指導,用實物投影儀反映一些學生在函數(shù)圖象中出現(xiàn)的典型錯誤,和學生一起找出錯誤的地方,分析原因;
。3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導學生觀察其圖象特征(雙曲線有兩個分支)。
初二學生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設想學生可能會在下面幾個環(huán)節(jié)中出錯:
(1)在“列表”這一環(huán)節(jié)
在取點時學生可能會取零,在這里可以引導學生結合代數(shù)的方法得出x不能為零。也可能由于在取點時的不恰當,導致函數(shù)圖象的不完整、不對稱。在這里應該要指導學生在列表時,自變量x的取值可以選取絕對值相等而符號相反的數(shù),相應的就得到絕對相等而符號相反的對應的函數(shù)值,這樣可以簡化計算的手續(xù),又便于在坐標平面內找到點。
。2)在“連線”這一環(huán)節(jié)
學生畫的點與點之間連線可能會有端點,未能用光滑的線條連接。因而在這里要特別要強調在將所選取的點連結時,應該是“光滑曲線”,為以后學習二次函數(shù)的圖像打下基礎。為了使函數(shù)圖象清晰明顯,可以引導學生注意盡量選取較多的自變量x的值和對應的函數(shù)值y,以便在坐標平面內得到較多的“點”,畫出曲線。
從而引導學生畫出正確的函數(shù)圖象。
。3)圖象與x軸或y軸相交
在這里我認為可以埋下一個伏筆,給學生留下一個懸念,為后面學習函數(shù)的性質打下基礎。
需要說明的是:利用多媒體課件學習能吸引學生的注意力,引起學生進一步學習的興趣。不過,盡管多媒體的演示既快又準確,我認為在學生第一次學畫反比例函數(shù)圖象的過程中,老師還是應該在黑板上認真示范畫出圖象的每一個步驟,畢竟多媒體還是不能替代我們平時老師在黑板上板書。
鞏固練習:畫出函數(shù)和的圖象
通過鞏固練習,讓學生再次動手畫出函數(shù)圖象,改正在初次畫圖象時出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗證學生畫出的函數(shù)圖象的準確性。
。ㄈ┨骄繉W習2——函數(shù)圖象性質
1、圖象的分布情況
問題5:請大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?
提出問題5主要是起到鞏固復
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?
在這一環(huán)節(jié)中的設計:
(1)引導學生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學生充分考慮的時間;
。2)充分運用多媒體的優(yōu)勢進行教學,使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關系有一個直觀的了解;
(3)組織小組討論來歸納出反比例函數(shù)的一條性質:當k>0時,函數(shù)圖象的兩支分別在第一、三象限內;當k<0時,函數(shù)圖象的兩支分別在第二、四象限內。
2、圖象的變化情況
問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?
提出問題7主要是起到鞏固復
問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質呢?
在這一環(huán)節(jié)的教學設計是:
(1)回顧反比例函數(shù)和的圖象,通過實際觀察;
。2)根據解析式對行取值,比較x在取不同值時函數(shù)值的變化情況;
。3)電腦演示及學生小組討論,請學生給出結論。即這個問題必須分成兩種情況討論即當k>0時,自變量x逐漸增大時,y的值則隨著逐漸減;當k<0時,自變量x逐漸增大時,y的值也隨著逐漸增大。
(4)對于學生做出的結論,老師應該要給予肯定,同時可以提出:有沒有同學需要補充的呢?若沒有,則可以舉例:當k>0,分別比較在第三象限x=-2,第一象限x=2時的y的值的大小,則以上性質是否依然成立?學生的回答應該是:不成立。這時老師再請學生做小結:必須限定在每一個象限內,才有以上性質成立。
問題9:當函數(shù)圖象的兩個分支無限延伸時,它與x軸、y軸相交嗎?為什么?
在這個環(huán)節(jié)中,可以結合剛才學生所畫的錯誤圖象,引導學生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗證了反比例函數(shù)的圖象。當兩個分支無限延伸時,可以無限地逼近x軸、y軸,但永遠不會與兩軸相交。隨即強調畫圖時要注意準確性。
(四)備用思考題
1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍
2、
(1)當m為何值時,y是x的正比例函數(shù)
。2)當m為何值時,y是x的反比例函數(shù)
(五) 小結:
【初中七年級數(shù)學教案】相關文章:
初中七年級數(shù)學教案12-30
初中七年級下冊數(shù)學教案01-13
初中七年級數(shù)學教案[精品]11-26
初中七年級數(shù)學教案(11篇)12-30
初中七年級數(shù)學教案11篇12-30
初中數(shù)學教案11-15
【熱】初中數(shù)學教案01-12
初中數(shù)學教案【推薦】01-12
初中數(shù)學教案【薦】01-12