- 相關(guān)推薦
三角形面積的分析及教學(xué)基本思路
一長(zhǎng)方形,正方形,平行四邊形,三角形和梯形,都是由三條或三條以上的線段,首尾順序相接而組成的封 閉圖形。它們相互之間不僅在特征上有著密切的聯(lián)系而且在推導(dǎo)面積計(jì)算公式的過(guò)程中也有著密切的聯(lián)系。三 角形面積計(jì)算公式的教學(xué)是在學(xué)生掌握了長(zhǎng)方形,正方形,平行四邊形的特征和面積計(jì)算的基礎(chǔ)上進(jìn)行的。學(xué) 生掌握了三角形面積的計(jì)算方法和獲取這些知識(shí)的能力又為進(jìn)一步學(xué)習(xí)梯形面積、圓的面積打下了良好的基礎(chǔ) 。
一節(jié)課的教學(xué)目標(biāo),要從知識(shí)、能力、思想品德教育三方面進(jìn)行考慮,以體現(xiàn)學(xué)科教學(xué)中的素質(zhì)教育思想 。本節(jié)課的教學(xué)目標(biāo)是:
(1)使學(xué)生理解、掌握三角形面積的計(jì)算公式, 并能運(yùn)用它正確計(jì)算三角形的面積;
(2)通過(guò)指導(dǎo)實(shí)際操作, 培養(yǎng)學(xué)生的抽象概括能力和思維的創(chuàng)造性;
(3)使學(xué)生明白事物之間是相互聯(lián)系、可以轉(zhuǎn)化和變換的。
完成這一教學(xué)目標(biāo),要根據(jù)學(xué)生的認(rèn)識(shí)規(guī)律,在指導(dǎo)學(xué)生進(jìn)行實(shí)踐活動(dòng)的過(guò)程中,把動(dòng)手操作與動(dòng)腦思考 、動(dòng)口表述結(jié)合起來(lái)。也就是說(shuō),首先把學(xué)習(xí)知識(shí)應(yīng)有的思維活動(dòng)“外化”為動(dòng)手操作,然后通過(guò)這個(gè)“外化 ”的活動(dòng)再“內(nèi)化”為思維活動(dòng)。因此在教學(xué)過(guò)程中,把操作、思維、表述緊密結(jié)合起來(lái),才能完成這一教學(xué) 目標(biāo)。
本節(jié)課的教學(xué)重點(diǎn)是理解、掌握三角形面積的計(jì)算公式。
教學(xué)難點(diǎn)是理解面積公式的算理。
華羅庚說(shuō)過(guò),“難處不在于有了公式去證明,而在于沒(méi)有公式之前,怎樣去找出公式來(lái)!币囵B(yǎng)學(xué)生的 空間觀念和創(chuàng)造能力,就必須重視推導(dǎo)公式的過(guò)程教學(xué),從學(xué)生的認(rèn)知特點(diǎn)出發(fā)組織學(xué)生去大膽地操作實(shí)踐, 探求規(guī)律,推導(dǎo)出公式。
二
學(xué)生掌握新知識(shí)的過(guò)程是在老師的引導(dǎo)下,充分利用已有知識(shí)和學(xué)習(xí)經(jīng)驗(yàn),積極主動(dòng)地參與探求的過(guò)程。 把教材的間接經(jīng)驗(yàn)通過(guò)自身的活動(dòng)去重新發(fā)現(xiàn)、完善和建立新的認(rèn)知結(jié)構(gòu)。
1.抓住新知識(shí)的基礎(chǔ),做好學(xué)習(xí)新知識(shí)的準(zhǔn)備
學(xué)習(xí)新知識(shí)的基礎(chǔ)是選取復(fù)習(xí)內(nèi)容的依據(jù),新舊知識(shí)的連接點(diǎn)是復(fù)習(xí)的重點(diǎn)。三角形面積這個(gè)新知識(shí)的基 礎(chǔ)是長(zhǎng)方形、正方形、平行四邊形的面積公式及三角形底和高的認(rèn)識(shí)。新舊知識(shí)的連接點(diǎn)是圖形的轉(zhuǎn)化和變換 。在教學(xué)新知識(shí)之前除了要復(fù)習(xí)好以上的內(nèi)容外,還要指導(dǎo)學(xué)生回憶平行四邊形面積公式的推導(dǎo)過(guò)程,喚起“ 轉(zhuǎn)化圖形、建立聯(lián)系、推導(dǎo)公式”的學(xué)習(xí)方法的認(rèn)識(shí)。為新知識(shí)的學(xué)習(xí)做好知識(shí)的、能力的以至情感方面的準(zhǔn) 備。
2.新知識(shí)的教學(xué)可以分為4個(gè)層次進(jìn)行
第一層,操作學(xué)具。啟發(fā)學(xué)生用學(xué)具袋中的兩個(gè)三角形拼成一個(gè)學(xué)過(guò)的圖形。學(xué)生動(dòng)手、動(dòng)腦相互交流, 得出“兩個(gè)完全一樣的(全等)三角形,可以拼成一個(gè)長(zhǎng)方形、正方形或平行四邊形。
第二層,觀察與思考。提出問(wèn)題引導(dǎo)學(xué)生觀察拼成的正方形、長(zhǎng)方形或平行四邊形與三角形的關(guān)系。三角 形的底和高與正方形的邊長(zhǎng)、長(zhǎng)方形的長(zhǎng)與寬,以及平行四邊形底和高的關(guān)系?
第三層,推導(dǎo)公式。利用圖形之間各部分的對(duì)應(yīng)關(guān)系,思考它們面積之間的關(guān)系,最終推導(dǎo)出:因?yàn)椋?行四邊形面積=底×高(平行四邊形的面積是兩個(gè)與它等底等高的三角形面積的2倍),所以, 三角形的面積 =底×高÷2
第四層,深化認(rèn)識(shí)。
為了使學(xué)生加深對(duì)三角形面積計(jì)算公式的理解,進(jìn)一步啟發(fā)學(xué)生,用一個(gè)三角形通過(guò)割補(bǔ)的辦法推導(dǎo)出三 角形的面積計(jì)算公式。學(xué)生再次動(dòng)手,動(dòng)腦,相互交流,得出(如下圖)如下計(jì)算公式:
(附圖 {圖})
三角形面積=底×(高÷2)
三角形面積=(底÷2)×高
經(jīng)過(guò)學(xué)生兩次動(dòng)手、動(dòng)腦、交流,運(yùn)用轉(zhuǎn)化和變換多向探索,把求三角形面積這一探索過(guò)程充分展示出來(lái) 。不僅深化了對(duì)公式的理解而且滲透了轉(zhuǎn)化和變換的數(shù)學(xué)思想,培養(yǎng)了學(xué)生操作能力和分析概括的能力,發(fā)展 了學(xué)生的空間觀念。
3.新知識(shí)教學(xué)后要及時(shí)組織練習(xí)。
練習(xí)可從4個(gè)方面進(jìn)行?诖痤}(理解算理的練習(xí)),(1)已知圖形的底和高,可以求出這個(gè)圖形的面積 。那么,這個(gè)圖形可能是什么形?這些圖形之間有什么共同點(diǎn)?面積有什么關(guān)系?(2 )三角形面積等于平行 四邊形面積的一半。對(duì)不對(duì)?為什么?看圖口算(運(yùn)用公式計(jì)算的練習(xí))。下圖中哪個(gè)三角形的面積可以用6× 5÷2求出, 為什么(選擇條件的練習(xí))?
(附圖 {圖})
已知三角形的面積是15平方厘米,高是5厘米。求它的底?如下圖, 在一個(gè)正方形和一個(gè)長(zhǎng)方形中,有一 個(gè)三角形(陰影部分),求三角形的面積(靈活運(yùn)用知識(shí)的練習(xí))。
(附圖 {圖})
新課后的練習(xí)一定要練在重點(diǎn)上和關(guān)鍵處,以加深學(xué)生對(duì)新知識(shí)的認(rèn)識(shí)和提高運(yùn)用知識(shí)的能力。
三
本節(jié)教學(xué)設(shè)計(jì)的基本思路是:
(1)發(fā)揮教師的主導(dǎo)作用,同時(shí)要為學(xué)生創(chuàng)造主動(dòng)的發(fā)展空間,引導(dǎo)學(xué)生創(chuàng)造性地參與教學(xué)的全過(guò)程。通 過(guò)操作,觀察, 推導(dǎo)和深化4個(gè)教學(xué)層次,使學(xué)生不僅在理解的基礎(chǔ)上掌握新知識(shí),而且進(jìn)一步體會(huì)運(yùn)用舊知 識(shí)去研究新問(wèn)題的學(xué)習(xí)方法,從“學(xué)會(huì)”逐步到“會(huì)學(xué)”,尋找到解決問(wèn)題的正確方法。
(2)在教學(xué)過(guò)程中,有目的的不失時(shí)機(jī)地培養(yǎng)學(xué)生操作能力, 觀察能力,分析推理的能力。使課堂教學(xué) 的過(guò)程成為既傳授知識(shí)又培養(yǎng)能力的過(guò)程。
附 三角形面積教案
一、教學(xué)內(nèi)容:三角形的面積
二、教學(xué)目標(biāo):
1.使學(xué)生理解、掌握三角形面積計(jì)算公式,并能運(yùn)用它正確計(jì)算三角形的面積;
2.通過(guò)指導(dǎo)實(shí)際操作,培養(yǎng)學(xué)生抽象、概括能力和思維的創(chuàng)造性,發(fā)展空間觀念;
3.使學(xué)生明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化和變換的。
三、教學(xué)過(guò)程:
(一)復(fù)習(xí)引入
1.出示平行四邊形,復(fù)習(xí)它的計(jì)算公式。
2.投影銳角三角形,直角三角形,鈍角三角形,看圖辨識(shí)三角形各條邊上的高?
師:我們已經(jīng)掌握了長(zhǎng)方形、正方形、平行四邊形面積的計(jì)算方法,那么怎樣計(jì)算三角形的面積呢?這節(jié) 課我們就來(lái)解決這個(gè)問(wèn)題。
(二)新授
1.操作學(xué)具。
師:你能用學(xué)具袋中的兩個(gè)三角形拼成一個(gè)熟知的平面圖形嗎?
學(xué)生拿出學(xué)具動(dòng)手操作拼成一個(gè)學(xué)過(guò)的圖形。
(附圖 {圖})
出示學(xué)生拼出的圖形。
2.觀察與思考。
師提出問(wèn)題引導(dǎo)學(xué)生觀察:①用兩個(gè)什么樣的三角形才能拼成一個(gè)學(xué)過(guò)的平面圖形?②平行四邊形、長(zhǎng)方 形、正方形的面積與三角形的面積有什么關(guān)系?為什么?③三角形的底和高與平行四邊形的底和高有什么關(guān)系 ?與長(zhǎng)方形的長(zhǎng)和寬有什么關(guān)系?與正方形的邊長(zhǎng)有什么關(guān)系?
學(xué)生觀察、討論、相互交流、弄清楚面積關(guān)系以及底、高之間的關(guān)系。
師小結(jié)板書(shū):
平行四邊形面積=底×高
長(zhǎng)方形面積=長(zhǎng)×寬
正方形面積=邊長(zhǎng)×邊長(zhǎng)
2個(gè)三角形面積=底×高
三角形面積=底×高÷2
3.推導(dǎo)公式。
(1)怎么求平行四邊形的面積?長(zhǎng)方形面積?正方形面積?
(2)平行四邊形面積,長(zhǎng)方形面積, 正方形面積都是由幾個(gè)完全一樣的三角形組成的?
(3)怎么求一個(gè)三角形的面積?
師隨著完成上面的板書(shū)并引導(dǎo)學(xué)生小結(jié):怎么求三角形面積?為什么?
4.深化認(rèn)識(shí)。
師啟發(fā)回憶
(附圖 {圖})
學(xué)習(xí)平行四邊形面積時(shí),我們運(yùn)用割補(bǔ)的辦法把平行四邊形轉(zhuǎn)化成了長(zhǎng)方形,那么運(yùn)用割補(bǔ)的辦法能不能 把一個(gè)三角形轉(zhuǎn)化成一個(gè)平行四邊形或長(zhǎng)方形呢?
學(xué)生動(dòng)手操作、研究、討論、相互交流,教師輔導(dǎo)提示,得出下圖。
(附圖 {圖})
積=底×高的一半 三角形面積=底的一半×高
=底×高÷2 =底×高÷2
(1)說(shuō)一說(shuō)你是怎么割補(bǔ)的?
(2)議一議平行四邊形的面積、 長(zhǎng)方形面積與三角形面積的關(guān)系,平行四邊形的底和高,長(zhǎng)方形的長(zhǎng)和 寬與三角形底和高的關(guān)系?得出什么結(jié)論?
(3)師整理公式(完成上面的板書(shū))
(4)師總結(jié):三角形面積等于底乘以高除以2。(板書(shū)字母公式:S=ah÷2),可以理解為底×高乘積的 一半,也可以理解為底×高的一半,還可以理解為底的一半×高。
四、鞏固練習(xí)
(一)理解性練習(xí)(口答)
1.三角形的底乘以高得到的是什么圖形的面積?再怎么求才能得到三角形面積?
2.三角形面積等于平行四邊形面積的一半;對(duì)不對(duì)?為什么?
(二)運(yùn)用公式的練習(xí)(口答列式)
(附圖 {圖})
(三)選擇條件的練習(xí)
(附圖 {圖})
哪個(gè)三角形的面積等于6×5÷2?其它兩個(gè)為什么不是?
(四)靈活運(yùn)用知識(shí)的練習(xí)
已知:(如右圖)正方形和一個(gè)長(zhǎng)方形求陰影面積?
(附圖 {圖})
五、全課總結(jié)
【三角形面積的分析及教學(xué)基本思路】相關(guān)文章:
對(duì)圓的認(rèn)識(shí)的分析及教學(xué)基本思路08-07
三角形面積教學(xué)反思08-25
三角形的面積教學(xué)反思11-04
《三角形的面積》教學(xué)反思03-15
《三角形的面積》數(shù)學(xué)教學(xué)反思04-12
數(shù)學(xué)《三角形的面積》教學(xué)反思04-20
三角形面積08-16