精選高一上冊數(shù)學教學計劃4篇
時光飛逝,時間在慢慢推演,我們將帶著新的期許奔赴下一個挑戰(zhàn),做好教學計劃,讓自己成為更有競爭力的人吧。是不是無從下筆、沒有頭緒?以下是小編為大家收集的高一上冊數(shù)學教學計劃4篇,歡迎大家分享。
高一上冊數(shù)學教學計劃 篇1
一、教學目標
1.知識與技能目標
(1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.
(2).發(fā)展學生運用數(shù)學語言的能力;培養(yǎng)學生分析、比較、歸納的邏輯思維能力.
2.過程與方法目標
、偻ㄟ^實例抽象概括集合的共同特征,從而引出集合的概念是本節(jié)課的重要任務(wù)之一。因此教學時不僅要關(guān)注集合的基本知識的學習,同時還要關(guān)注學生抽象概括能力的培養(yǎng)。
、诮虒W過程中應(yīng)努力創(chuàng)造培養(yǎng)學生的思維能力,提高學生理解掌握概念的能力,訓練學生分析問題和處理問題的能力
情感態(tài)度與價值觀目標 感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣;學習從數(shù)學的角度認識世界;通過合作學習增強合作意識;培養(yǎng)數(shù)學的特有文化——簡潔精煉,體會從感性到理性的思維過程。
2、教材分析 本節(jié)課位于我,F(xiàn)行教材≤中等職業(yè)教育國家規(guī)劃教材≥數(shù)學第一章第一節(jié)≤集合≥的第二課時,這節(jié)課主要學習集合的表示方法。
集合語言是現(xiàn)代數(shù)學的基本語言。通過集合語言的學習,有利于學生簡明準確地表達學習的數(shù)學內(nèi)容。集合的初步知識是學生學習、掌握和使用數(shù)學語言的基礎(chǔ),是中職數(shù)學學習的出發(fā)點。
在中職數(shù)學中,這部分知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎(chǔ)。例如,在后續(xù)學習的集合的相關(guān)內(nèi)容和第二章≤不等式≥、
第三章≤函數(shù)≥,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集,都離不開集合。也是研究數(shù)學問題不可缺少的工具。這一課在本章的學習有很重要的意義,也是本章后續(xù)學習和后續(xù)學習的基礎(chǔ),起到承上啟下的作用。
3、學情分析
學生在初中階段的學習中,雖然已經(jīng)有了對集合的初步認知,由于中職學生的現(xiàn)狀,學生基礎(chǔ)比較弱,學習習慣比較差,根據(jù)我校的現(xiàn)行教材結(jié)合學生的實際情況,為了培養(yǎng)學
生良好的學習習慣,打好基礎(chǔ),對集合的兩種表示方法:列舉法和描述法通過講練結(jié)合、不斷地鞏固練習、提高練習來達到標準要求,鼓勵學生理解的基礎(chǔ)上記憶的學習方法來學習。
二、方法與手段
本節(jié)課采用新知識講授課的教學模式,教學策略為先熟悉再深入,采用啟發(fā)式、講練結(jié)合等教學方法,并采用多媒體教學手段輔助教學。
3、教學重難點
重點:列舉法、描述法。
難點:運用集合的三種常用表示方法正確表示一些簡單的集合
4、教學方法:實例歸納、學生的自主探究、主動參與與教師的引導相結(jié)合,充分體現(xiàn)學生在課堂中的主體作用和教師的主導作用。
5、教學手段:多媒體輔助教學——主要是利用多媒體展示圖片來增加學生的學習興趣和對集合知識的直觀理解。
6、教學思路:
7、教學過程
7.1創(chuàng)設(shè)情境,引入課題
【活動】多媒體展示:1、草原一群大象在緩步走來。
2、藍藍的天空中,一群鳥在飛翔
3、一群學生在一起玩。
引導學生舉出一些類似的例子問題
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學生)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
【設(shè)計意圖】通過多媒體展示,極大地調(diào)動起了學生的積極性,吸引學生的注意力,設(shè)置輕松的學習氣氛。
7.2步步探索,形成概念
【活動1】觀察下列對象:
①1~20以內(nèi)的所有質(zhì)數(shù);
、谖覈鴱1991—20xx年的13年內(nèi)所發(fā)射的所有人造衛(wèi)星
③金星汽車廠20xx年生產(chǎn)的所有汽車;
④20xx年1月1日之前與我國建立外交關(guān)系的所有國家;
、菟械恼叫;
、薜街本l的距離等于定長d的所有的點;
⑦方程x2+3x—2=0的所有實數(shù)根;
、嘈氯A中學20xx年9月入學的所有的高一學生。
師生共同概括8個例子的特征,得出結(jié)論,給出集合的含義:把研究對象統(tǒng)稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母A,B,C….來表示。
【設(shè)計意圖】使學生自己明確集合的含義,培養(yǎng)學生的概括能力。
【活動2】要求每個學生舉出一些集合的例子,選出具有代表性的幾個問題,比
如:
1)A={1,3},3、5哪個是A的元素?
2)B={身材較高的人},能否表示成集合?
3)C={1,1,3}表示是否準確?
4)D={中國的直轄市},E={北京,上海,天津,重慶}是否表示同一集合?
5)F={a,b,c}與G={c,b,a}這兩個集合是否一樣?
【分析】1)1,3是A的元素,5不是
2)我們不能準確的規(guī)定多少高算是身材較高,即不能確定集合的元素,
所以B不能表示集合
3)C中有二個1,因此表達不準確
4)我們知道E中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個,因此不相等。
5)F和G的元素相同,只不過順序不同,但還是表示同一個集合
通過上述分析引導學生自由討論、探究概括出集合中各種元素的特點,并讓學生再舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,要求說明理由。師生一起得出集合的特征:
1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.
2)互異性:同一集合中不應(yīng)重復出現(xiàn)同一元素.
3)無序性:集合中的元素沒有順序
4)集合相等:構(gòu)成兩個集合的元素完全一樣
【設(shè)計意圖】引導學生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養(yǎng)學生的抽象概括能力,同時使學生能更好的了解集合。
7.3集合與元素的關(guān)系
【問題】高一(4)班里所有學生組成集合A,a是高一(4)班里的同學,b是
高一(5)班的'同學,a、b與A分別有什么關(guān)系?
引導學生閱讀教科書中的相關(guān)內(nèi)容,思考上述問題,發(fā)表學生自己的看法。 得出結(jié)論:①如果a是集合A的元素,就說a屬于集合A,記作a∈A。
、谌绻鸼不是集合A的元素,就說b不屬于集合A,記作b?A。
再讓學生舉一些例子說明這種關(guān)系。
【設(shè)計意圖】使學生發(fā)揮想象,明確元素與集合的關(guān)系。
【活動】熟記數(shù)學中一些常用的數(shù)集及其記法
引導學生回憶數(shù)集擴充過程,閱讀教科書第3頁表格中的內(nèi)容,認識常用數(shù)集記號。
【設(shè)計意圖】使學生熟記常用數(shù)集的記號,以免日后做題時混淆。
7.4集合的表示方法
【問題】由以上內(nèi)容我們可以知道用自然語言可以描述一個集合,那么有沒有其他方式表示集合呢?
7.4.1集合的列舉法表示
【活動】嘗試用列舉法第4頁例1中的集合:
1)小于10的所有自然數(shù)組成的集合;
2)方程x2?x的所有實數(shù)根組成的集合;
3)由1到20以內(nèi)的所有素數(shù)組成的集合;
并思考列舉法的特點。
引導學生閱讀教科書,自主學習列舉法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通過上述講解請同學說說列舉法的特點:
1)用花括號{}把元素括起來
2)集合的元素可以具體一一列出
【設(shè)計意圖】使學生學習基本了解用列舉法表示集合的方法,并了解列舉法的特點。
7.4.2集合的描述法表示
【活動1】提出教科書中的思考題:
1)你能用自然語言描述集合{2,4,6,8}嗎?
2)你能用列舉法表示不等式x—7<3的解集嗎?
學生討論,師生總結(jié):
1)從2開始到8的所有偶數(shù)組成的集合
2)這個集合中的元素不能一一列出,因此不可以用列舉法表示
引導學生思考、討論用列舉法表示相應(yīng)集合的困難,激發(fā)學生學習描述法的積極性。
引導學生閱讀教科書中描述法的相關(guān)內(nèi)容,讓學生討論交流,歸納描述法的特點。
例如2)可以用描述法表示為:A={x?R|x<10}
【設(shè)計意圖】使學生體會用描述法表示集合的必要性,會用描述法表示集合。
【活動2】引導學生完成第5頁例2
1) 方程x2?2?0的所有實數(shù)根組成的集合
2) 由大于10小于20的所有整數(shù)組成的集合
討論應(yīng)當如何根據(jù)問題選擇適當?shù)募媳硎痉。學生回答,老師進行總結(jié):
1)描述法:A={ x?R|x2?2?0}
列舉法:
2)描述法:A={ x?Z|10
列舉法:A={11,12,13,14,15,16,17,18,19}
【設(shè)計意圖】使學生掌握好兩種表示法各自的特點,根據(jù)題目靈活選擇。
7.5課堂小結(jié),學習反思
【問題】1)集合與元素的含義?
2)集合的特點?
3)集合的不同表示方法
引導學生整理概括這一節(jié)課所學的知識
【設(shè)計意圖】歸納整理知識,形成知識網(wǎng)絡(luò),并培養(yǎng)學生自主對所學知識進行總結(jié)的能力。
8、作業(yè)布置,鞏固新知
課后作業(yè):習題1.1A組第4題
課后思考作業(yè): ①結(jié)合實例,試比較用自然語言、列舉法和描述法表示集合時各自的特點和適用的對象。
、谧约号e出幾個集合的例子,并分別用自然語言、列舉法和描述法表示出來。
9、板書設(shè)計
1.1.1集合的含義與表示
1、元素的含義:把研究對象統(tǒng)稱為元素
2、集合的含義:一些元素組成的總體。
3、集合元素的三個特性:確定性,互異性,無序性,集合相等
4、元素與集合的關(guān)系:a?A,a?A
5、常用數(shù)集與記法
6、列舉法
7、描述法
8、課堂小結(jié)
高一上冊數(shù)學教學計劃 篇2
本學期擔任高一5、6兩班的數(shù)學教學工作,兩班學生共有110人,初中的基礎(chǔ)參差不齊,但兩個班的學生整體水平還可以;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養(yǎng)學生 的學習的興趣。
(2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權(quán)給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的`對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生 的運算能力。
(1)通過概率的訓練,培養(yǎng)學生 的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生 的運算能力。
(3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生 的思維能力。
(1)通過對簡易邏輯的教學,培養(yǎng)學生 思維的周密性及思維的邏輯性。
(2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過不等式、函數(shù)的引伸、推廣,培養(yǎng)學生 的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學生 的數(shù)形結(jié)合的能力。
(5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉(zhuǎn)化思想方法。
(三)知識目標
1.集合、簡易邏輯
(1)理解集合、子集、補訂、交集、交集的概念.了解空集和全集的意義.了解屬于、包含、相等關(guān)系的意義.掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合.
(2)理解邏輯聯(lián)結(jié)詞"或"、"且"、"非"的含義.理解四種命題及其相互關(guān)系.掌握充分條件、必要條件及充要條件的意義.
(3)掌握一元二次不等式、絕對值不等式的解法。
2.函數(shù)
(1)了解映射的概念,理解函數(shù)的概念.
(2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性、奇偶性的方法.
(3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù).
(4)理解分數(shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì).掌握指數(shù)函數(shù)的概念、圖像和性質(zhì).
(5)理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì).掌握對數(shù)函數(shù)的概念、圖像和性質(zhì).
(6)能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題.
3.數(shù)列
(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.
(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.
二、教學重點
1、集合、子集、補集、交集、并集.一元二次不等式的解法
四種命題.充分條件和必要條件.
2.映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用.
3.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.
等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.
三、教學難點
1. 四種命題.充分條件和必要條件
2. 反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)
3. 等差、等比數(shù)列的性質(zhì)
四、工作措施.
1、抓好課堂教學,提高教學效益。
課堂教學是教學的主要環(huán)節(jié),因此,抓好課堂教學是教學之根本,是大面積提高數(shù)學成績的主途徑。
(1)、扎實落實集體備課,通過集體討論,抓住教學內(nèi)容的實質(zhì),形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。
(2)、加大課堂教改力度,培養(yǎng)學生 的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養(yǎng)學生 自主探究的精神,通過“知識的產(chǎn)生,發(fā)展”,逐步形成知識體系;通過“知識質(zhì)疑、展活”遷移知識、應(yīng)用知識,提高能力。同時要養(yǎng)成學生良好的學習習慣,不斷提高學生的數(shù)學素養(yǎng),從而提高數(shù)學素養(yǎng),并大面積提高數(shù)學成績。
高一上冊數(shù)學教學計劃 篇3
、
Ⅰ.教學內(nèi)容解析
本節(jié)課的教學內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學重點是指數(shù)函數(shù)的圖像與性質(zhì).
這是指數(shù)函數(shù)在本章的位置.
指數(shù)函數(shù)是學生在學習了函數(shù)的概念、圖象與性質(zhì)后,學習的第一個新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐.指數(shù)函數(shù)的學習,一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學習起著承上啟下的作用,也是學生體驗數(shù)學思想與方法應(yīng)用的過程.
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學研究有著緊密的聯(lián)系,因此,學習這部分知識還有著一定的現(xiàn)實意義.
、颍虒W目標設(shè)置
1.學生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學符號表示,建構(gòu)指數(shù)函數(shù)的概念.
2.學生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小.
3.學生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法.
4.在探究活動中,學生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習慣,提升自主學習能力.
、螅畬W生學情分析
授課班級學生為南京師大附中實驗班學生.
1.學生已有認知基礎(chǔ)
學生已經(jīng)學習了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認識.學生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力.學生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗.學生數(shù)學基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學習習慣.
2.達成目標所需要的認知基礎(chǔ)
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.
3.難點及突破策略
難點:1. 對研究函數(shù)的一般方法的認識.
2. 自主選擇底數(shù)不當導致歸納所得結(jié)論片面.
突破策略:
1.教師引導學生先明確研究的內(nèi)容與方法,從總體上認識研究的目標與手段.
2.組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思.
3.對猜想進行適當?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.
、簦虒W策略設(shè)計
根據(jù)學生已有學習基礎(chǔ),為提升學生的學習能力,本節(jié)課的教學,采用自主學習方式.通過教師引領(lǐng)學生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段.
學生的自主學習,具體落實在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學生自選底數(shù),開展自主研究,并通過匯報交流相互提升.
(3)性質(zhì)應(yīng)用階段,學生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開.從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明.
、酰虒W過程設(shè)計
1.創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學習了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系.你能用函數(shù)的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應(yīng)的細胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導學生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系.引導學生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學符號表示.初步得到y(tǒng)=ax這個形式后,引導學生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.
[教學預(yù)設(shè)]學生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進而提出這類函數(shù)一般形式y(tǒng)=ax.
方案1:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學生舉例(停頓),好像有不同意見.
生:底數(shù)不能取負數(shù).
師:為什么?
生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.
師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,我們希望這些函數(shù)的定義域就是R.
(若沒有學生注意到底數(shù)的取值范圍,可引導學生關(guān)注例舉函數(shù)的定義域.若有同學提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)
師:這些函數(shù)有什么共同特點?
生:都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.
(若有學生舉出類似y=max的例子,引導學生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)
師:具備上述特征的函數(shù)能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)
方案2:
生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)
生:函數(shù)y=0.5x,y= x,…
師:這些函數(shù)的自變量是什么?它們有什么共同特點?
生:(可用文字語言或符號語言概括)都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.
師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?
生:底數(shù)不能取負數(shù).
師:為什么?
生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.
師:為了研究的方便,我們要求底數(shù)a>0.當a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)
[階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.
[意圖分析]概念教學應(yīng)當讓學生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.
2.實驗探索匯報交流
(1)構(gòu)建研究方法
師:我們定義了一個新的函數(shù),接下來,我們研究什么呢?
生:研究函數(shù)的性質(zhì).
〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?
[設(shè)計意圖]學生已經(jīng)學習了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認識.在此認知基礎(chǔ)上,引導學生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學生的思維個性,提供自主探究的平臺,通過匯報交流活動達成共識實現(xiàn)殊途同歸.中學階段,特別是高一新授課階段,提倡學生以形象思維作為抽象思維的支撐.
[師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.
[教學預(yù)設(shè)]學生能夠根據(jù)已有知識和經(jīng)驗,在教師的啟發(fā)引導下,明確研究的內(nèi)容以及研究的方法.部分學生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.
師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?
生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.
師:(板書學生回答)怎樣研究這些性質(zhì)呢?
生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).
生:先研究幾個具體的指數(shù)函數(shù),再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個值,那我們怎么辦呢?)
(若有學生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導學生從具體指數(shù)函數(shù)圖象入手.))
[意圖分析]學習的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學生提供由自己提出問題、確定研究方法的機會,逐漸學會研究問題,促進能力發(fā)展.
(2)自主探究匯報交流
師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.
〖問題3選取數(shù)據(jù),畫出圖象,觀察特點,歸納性質(zhì).
[設(shè)計意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學生對于圖象的認識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學生認知水平的差異,仍可能會造成部分學生被動接受.學生自主選擇底數(shù),雖有得到片面認識的可能,但通過討論交流,學生能相互驗證結(jié)論,仍能得到正確認識.并且學生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.
由于描點作圖時列舉點的個數(shù)的限制,學生對x→∞時函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個數(shù)的限制,學生對于歸納的結(jié)論缺乏一般性的認識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗證猜想.
數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學生參與研究的每個過程,得到直接體驗.
[師生活動]學生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).
[教學預(yù)設(shè)]學生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實物投影儀展示學生所畫圖象,學生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學生說明過程中,教師引導學生對結(jié)論進行適當?shù)恼f明,進而引導學生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導學生關(guān)注列表描點作圖的過程,引導學生通過反思過程,并通過動態(tài)圖象驗證猜想,促進學生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導學生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強加于學生.對于⑥,要引導學生在同一坐標系中畫出圖象,啟發(fā)學生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的.圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導,也可布置為課后作業(yè),繼續(xù)研究.
生:自主選擇數(shù)據(jù),在坐標紙上列表作圖,列出函數(shù)性質(zhì).
師:(巡視,必要時參與討論,及時提示任務(wù),待大部分學生有結(jié)論后,鼓勵學生交流,請學生匯報.)有條理地整理一下結(jié)論,討論交流所得.(同時用實物投影儀展示學生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現(xiàn)的情況)(1)在兩個坐標系中畫圖;(2)所取底數(shù)均大于1;(3)兩個底數(shù)大于1,一個底數(shù)小于1;(4)關(guān)于y軸對稱的兩個指數(shù)函數(shù).
師:(過程性引導)底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個坐標系中畫圖?為什么不也取兩個底數(shù)小于1?
師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?
生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(0, 1).
師:(引導學生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(0, 1).
師:指數(shù)函數(shù)還有其它性質(zhì)嗎?
師:也就是說值域為(0, +∞).
生:指數(shù)函數(shù)是非奇非偶函數(shù).
師:有不同意見嗎?
生:當0
(其它預(yù)設(shè):
(1)當a>1時,若x>0,則y>1;若x<0,則y<1.
當00,則y<1;若x<0 y="">1.
(2)學生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)
師:(板書學生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學生試圖說明結(jié)論的合理性,可提供機會.)大家認為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
、俣x域為R.
、谥涤驗(0, +∞).
③圖象過定點(0, 1).
、芊瞧娣桥己瘮(shù).
⑤當a>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當0
、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.
、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;
x=0時,兩圖象相交;
x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動,使學生獲得對指數(shù)函數(shù)圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結(jié)提升學習方法,優(yōu)化學習策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發(fā)學生的相互學習能力,能有效幫助學生突破難點.
3.新知運用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個函數(shù)值的大小.
師:那你能舉出運用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計算比較.
師:那比較30.2與30.3的大小呢?能不能不計算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說明嗎?(引導學生規(guī)范表達)我們再試一試.
(出示例1)
【例1】比較下列各組數(shù)中兩個值的大。
、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計意圖] 引導學生運用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調(diào)性,也可能直接運用單調(diào)性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.
[師生活動]學生板演,教師組織學生點評.
[教學預(yù)設(shè)] ①②兩題,學生能運用指數(shù)函數(shù)單調(diào)性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達,正確運用性質(zhì).③學生可能運用不同方法,應(yīng)給予充分的時間,并在具體問題解決后引導學生總結(jié)一般方法.
師:(引導學生規(guī)范表達)你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對③的引導)你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導學生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過點(0, 1).
師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.
【例2】
、僖阎3x≥30.5,求實數(shù)x的取值范圍;
②已知0.2x<25,求實數(shù)x的取值范圍.
[設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.
4.概括知識總結(jié)方法
〖問題4本節(jié)課我們學習了哪些知識?你還學會了哪些方法?
[設(shè)計意圖] 回顧所學內(nèi)容,深化認知.開放式小結(jié),不同學生有不同的收獲.
[師生活動]學生發(fā)言總結(jié),交流所得.
[教學預(yù)設(shè)]
通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:
、僦笖(shù)函數(shù)的定義與性質(zhì);
、谘芯亢瘮(shù)的一般方法和步驟.
師:本節(jié)課我們學習了什么知識?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對所學知識的簡單回顧,應(yīng)讓學生在知識、方法和策略上多層次地整理,促進學生理解所用學習方法的合理性與普遍性,使學生獲得知識與能力的共同進步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁,習題2.2(2):1,2,3,4;
(2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運用”提供學生運用函數(shù)研究的一般方法自主研究的機會.
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.
二、對于培養(yǎng)學生思維習慣的考慮
在學生自主探索的過程中,教師應(yīng)注意培養(yǎng)學生良好的思維習慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明.學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法.
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學設(shè)計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應(yīng)采用不同的教學策略.如果學生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程.、
高一上冊數(shù)學教學計劃 篇4
一、設(shè)計理念
新課標指出:學生的數(shù)學學習活動不應(yīng)只是接受、記憶、模仿、練習,教師應(yīng)引導學生自主探究、合作學習、動手操作、閱讀自學,應(yīng)注重提升學生的數(shù)學思維能力,注重發(fā)展學生的數(shù)學應(yīng)用意識。
二、教材分析
本節(jié)課選自人教版《普通高中課程標準實驗教課書》必修1,第一章1.1.2集合間的基本關(guān)系。集合是數(shù)學的基本和重要語言之一,在數(shù)學以及其他的領(lǐng)域都有著廣泛的應(yīng)用,用集合及對應(yīng)的語言來描述函數(shù),是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學習非常重要。本節(jié)內(nèi)容主要是集合間基本關(guān)系的學習,重在讓學生類比實數(shù)間的關(guān)系,來進行探究,同時培養(yǎng)學生用數(shù)學符號語言,圖形語言進行交流的能力,讓學生在直觀的基礎(chǔ)上,理解抽象的概念,同時它也是后續(xù)學習集合運算的知識儲備,因此有著至關(guān)重要的作用。
三、學情分析
【年齡特點】:
假設(shè)本次的授課對象是普通高中高一學生,高一的學生求知欲強,精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學活動。
【認知優(yōu)點】
一方面學生已經(jīng)學習了集合的概念,初步掌握了集合的三種表示法,對于本節(jié)課的學習有利一定的認知基礎(chǔ)。
【學習難點】
但是,本節(jié)課這種類比實數(shù)關(guān)系研究集合間的關(guān)系,這種類比學習對于學生來說還有一定的難度。
四、教學目標
? 知識與技能:
1. 理解子集、V圖、真子集、空集的概念。
2. 掌握用數(shù)學符號語言以及V圖語言表示集合間的基本關(guān)系。
3. 能夠區(qū)分集合間的包含關(guān)系與元素與集合的屬于關(guān)系。
? 過程與方法:
1. 通過類比實數(shù)間的關(guān)系,研究集合間的關(guān)系,培養(yǎng)學生類比、觀察、
分析、歸納的能力。
2. 培養(yǎng)學生用數(shù)學符號語言、圖形語言進行交流的能力。
? 情感態(tài)度與價值觀:
1.激發(fā)學生學習的興趣,圖形、符號所帶來的魅力。
2.感悟數(shù)學知識間的聯(lián)系,養(yǎng)成良好的思維習慣及數(shù)學品質(zhì)。
五、教學重、難點
重點:
集合間基本關(guān)系。
難點:
類比實數(shù)間的關(guān)系研究集合間的關(guān)系。
六、教學手段
PPT輔助教學
七、教法、學法
? 教法:
探究式教學、講練式教學
遵循“教師主導作用與學生主體地位相結(jié)合的”教學規(guī)律,引導學生自主探究,合作學習,在教學中引導學生類比實數(shù)間關(guān)系,來研究集合間的關(guān)系,降低了學生學習的難度,同時也激發(fā)了學生學習的興趣,充分體現(xiàn)了以學生為本的教學思想。
? 學法:
自主探究、類比學習、合作交流
教師的“教”其本質(zhì)是為了“不教”,教師除了讓學生獲得知識,提高解題能力,還應(yīng)該讓學生學會學習,樂于學習,充分體現(xiàn)“以學定教”的教學理念。通過引導學生類比學習,同學間的合作交流,讓學生更好的學習集合的知識。
八、課型、課時
課型:新授課
課時:一課時
九、教學過程
(一)教學流程圖
(二)教學詳細過程
1..回顧就知,引出新知
問題一:實數(shù)間有相等、不等的關(guān)系,例如5=5,3﹤7,那么集合之間會有什么關(guān)系呢?
2.合作交流,探究新知
問題二:大家來仔細觀察下面幾個例子,你能發(fā)現(xiàn)集合間的關(guān)系嗎?
(1)A={1,2,3},B={1,2,3,4,5};
(2)設(shè)A為新華中學高一(2)班女生的全體組成集合;B為這個班學生的全體組成集合;
(3)設(shè)C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}
【師生活動】:學生觀察例子后,得出結(jié)論,在(1)中集合A中的任何一個元素都是集合B中的元素,教師總結(jié),這時我們說集合A與集合B 有包含關(guān)系。(2)中的`集合也是這種關(guān)一般地,對于兩個集合A,B,如果集合A中任意一個元素都是集合B中的元素,我們就說這兩集合有包含關(guān)系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.
在數(shù)學中我們經(jīng)常用平面上封閉的曲線內(nèi)部代表集合,這樣上述集合A與集合B的包含關(guān)系,可以用下圖來表示:
問題三:你能舉出幾個集合,并說出它們之間的包含關(guān)系嗎?
【師生活動】:學生自己舉出些例子,并加以說明,教師對學生的回答進行補充。
問題四:對于題目中的第3小題中的集合,你有什么發(fā)現(xiàn)嗎?
【師生活動1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個元素都是集合D的元素 ,同時集合D任意一個元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。
用集合的概念對相等做進一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此時集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。
強調(diào):如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B
【師生活動2】:教師引導學生以(1)為例,指出A?B,但4∈B, 4?A,教師總結(jié)所以集合A是集合B的真子集。
【師生活動】?,并規(guī)定空集是任何集合的
4.思維拓展,討論新知
問題六:包含關(guān)系{a}?A與屬于關(guān)系a∈A有什么區(qū)別?請大家用具體例子來說明
【師生活動1】:學生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關(guān)系,后者是
問題七:經(jīng)過以上集合之間關(guān)系的學習,你有什么結(jié)論?
【師生活動】:師生討論得出結(jié)論:
(1)任何一個集合都是它本身的子集,即A?A
5.練習反饋,培養(yǎng)能力
例1寫出集合{a,b}的所有子集,并指出哪些是真子集
例2用適當?shù)姆柼羁?/p>
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.課堂小結(jié),布置作業(yè)
這節(jié)課你學到了哪些知識?
小結(jié) 知識上:
能力上:
情感上:
作業(yè):必做題:P8,3
思考題:實數(shù)間有運算,那集合呢?
十、板書設(shè)計
十一、教學反思
【高一上冊數(shù)學教學計劃】相關(guān)文章:
高一數(shù)學上冊教學計劃02-08
高一數(shù)學上冊教學計劃03-20
高一上冊數(shù)學教學計劃5篇08-28
高一上冊數(shù)學教學計劃五篇05-25
精選高一上冊數(shù)學教學計劃四篇06-12
精選高一上冊數(shù)學教學計劃3篇03-22
高一上冊數(shù)學教學計劃匯總5篇08-30
高一上冊數(shù)學教學計劃合集五篇06-07
高一上冊數(shù)學教學計劃匯編六篇06-18