- 相關推薦
多功能車輛總線控制器芯片(MVBC)的幀收發(fā)器設計
摘要:簡要的介紹了MVB總線及多功能車輛總線控制器芯片(MVBC)的功能和結構,以及幀收發(fā)器在MVBC中的重要作用;詳細論述了幀收發(fā)器中曼徹斯特編碼、譯碼器的設計,CRC校驗電路的電路設計,以及負責幀發(fā)送、接收的Encoder模塊、Decoder模塊的設計實現(xiàn);最后介紹了該模塊的驗證方案。關鍵詞:MVB;WTB;MVBC;CRC;曼徹斯特碼
1 前言
隨著嵌入式微機控制技術和現(xiàn)場總線技術的發(fā)展,現(xiàn)代列車的過程控制已從集中型的直接數(shù)字控制系統(tǒng)發(fā)展成為基于網絡的分布式控制系統(tǒng);诜植际娇刂频腗VB(多功能車輛總線)是IEC61375-1(1999)TCN(列車通信網絡國際標準)的推薦方案,它與WTB(絞線式列車總線)構成的列車通訊總線具有實時性強、可靠性高的特點。列車車輛的現(xiàn)代化的發(fā)展趨勢與可靠性、安全性、通訊實時性的要求使MVB逐漸成為下一代車輛的通訊總線標準。
MVB 是主要用于有互操作性和互換性要求的互聯(lián)設備之間的串行數(shù)據(jù)通訊總線,除用于車輛通訊,也可用作其它現(xiàn)場總線。
MVB與MVBC密不可分,MVBC(多功能車輛總線控制器)是MVB總線上的新一代核心處理器,它獨立于物理層和功能設備,為在總線上的各個設備提供通訊接口和通訊服務。MVBC與上一代MVB通信控制器BAP15-2/3在性能上有了很大的提高,是目前MVB總線上最先進的通信控制器。
MVB總線通過總線適配器與MVBC相連,根據(jù)IEC-61375,MVB總線上采用曼徹斯特碼,并每64位幀數(shù)據(jù)后加以8位CRC校驗碼。MVB的幀分為主幀和從幀,分別由幀頭、數(shù)據(jù)、校驗碼以及幀尾構成,不同幀的類型通過幀頭來判別。
MVB與MVBC之間數(shù)據(jù)通信在MVBC中由幀收發(fā)器來完成,包括幀的發(fā)送接收控制、曼徹斯特編解碼以及CRC校驗碼的產生與數(shù)據(jù)校驗。幀收發(fā)器在MVBC中起著數(shù)據(jù)鏈路層的底層數(shù)據(jù)處理的作用,是MVBC芯片的設計難點之一,該模塊的設計實現(xiàn)對于整個MVBC的開發(fā)有著重要的作用。
本文主要介紹位于MVBC總線物理層接口的幀收發(fā)器模塊的算法和實現(xiàn)方法。
2 MVBC簡介
MVBC可通過配置應用在IEC.TCN標準的Class1,2,3,4設備當中?偩連接可編程車載電子設備,也連接一些簡單的傳感器及執(zhí)行機構,最多可尋址4096個設備。
MVBC把來自于MVB總線的串行化信號轉換為并行的數(shù)據(jù)字節(jié),也把需發(fā)送的字節(jié)交由串行化電路發(fā)送到傳輸介質上。MVBC可根據(jù)配置實現(xiàn)總線主與總線從的功能,實現(xiàn)數(shù)據(jù)鏈路層以及一部分傳輸層的數(shù)據(jù)處理,并通過通訊存儲器來與上層軟件交互?偩控制器內部包含編碼/譯碼電路和控制通信存儲器所需的邏輯電路,用來控制幀的發(fā)送和接收(如沖突檢測、幀的前導比特處理、CRC校驗位的處理等);對輸入幀譯碼并檢驗其有效性;把數(shù)據(jù)存放到相應的通信存儲器中。
圖2-1:MVBC結構框圖
3 幀收發(fā)器的設計
MVBC中的幀收發(fā)器主要負責幀的發(fā)送、接收,包括曼徹斯特碼的編碼、解碼,CRC(循環(huán)冗余檢測碼)的產生與校驗,不同類型幀的構建與識別,以及碼錯的識別和沖突的檢測等。其中曼徹斯特編解碼以及CRC校驗為主要的算法。
3.1 曼徹斯特編碼、解碼器的設計
MVB總線上的串行數(shù)據(jù)采用曼徹斯特碼,曼徹斯特編碼中的每個數(shù)據(jù)位應用以下規(guī)范編碼:
a)一個“1”的編碼在位元的前半部分位“高”,后半部分為“低”;
b)一個“0”的編碼在位元的前半部分位“低”,后半部分為“高”;
如圖2-4所示:
圖2-4:曼徹斯特編碼規(guī)范示意圖
如果曼徹斯特碼中出現(xiàn)整個位元的高電平(NH)或整個位元的低電平(NL),則被認為非數(shù)據(jù)符,用于特殊場合,如:幀頭,幀尾標識。
(1)曼徹斯特編碼器
根據(jù)曼徹斯特碼的編碼要求,曼徹斯特編碼器其電路實現(xiàn)如圖2-5所示:
(范文先生網m.gymyzhishaji.com收集整理)
串行數(shù)據(jù)在1.5M時鐘的上升沿處從上一級的移位寄存器輸出,在高、低電平時與1.5M時鐘相異或,結果得到與上面編碼規(guī)則相符的曼徹斯特碼。
(2)曼徹斯特譯碼器
曼徹斯
特譯碼過程主要是將串行曼徹斯特碼轉變成串行的電平信號,并把串行電平信號組合成并行信號輸出,以便進一步處理。如果輸入的碼字不符合曼徹斯特碼編碼規(guī)則(由沖突或其它原因引起),譯碼器將報告錯誤信息。
曼徹斯特譯碼器設計電路如圖3-3:
曼徹斯特碼輸入后經過三級寄存器同步,消除亞穩(wěn)態(tài)。如果總線在空閑狀態(tài)之后出現(xiàn)下降沿,則被認為幀的開始位,總線上再出現(xiàn)高電平時使能16位計數(shù)器計數(shù)。如果把曼徹斯特碼每個bit周期分為16個部分,如圖3-4:
則在數(shù)據(jù)采樣1處得到的采樣值即為曼徹斯特編碼前的原數(shù)據(jù),數(shù)據(jù)采樣2是用來幀頭幀尾檢測;總線沖突檢測的原則為:總線上曼徹斯特碼的半個bit周期之內的電平應一致,前后半個周期電平應相異,否則被認為碼錯。
3.2 CRC校驗
CRC的全稱為Cyclic Redundancy Check,中文名稱為循環(huán)冗余校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領域廣泛地用于實現(xiàn)差錯控制。在各種通信系統(tǒng)中,CRC有bit型算法、字節(jié)型算法以及基于查找表的算法。前者適合串行數(shù)據(jù)通信的校驗,后兩者常用于高速并行通訊領域。
MVBC可以獨立的完成CRC校驗碼的產生與數(shù)據(jù)的校驗而無需軟件參與。其中:
G(x) = x7+x6+x5+x2+1
電路實現(xiàn)方法上我們選擇bit型算法,CRC發(fā)生電路采用LFSR,主體由一組移位寄存器和模2加法器(異或單元)組成即在數(shù)據(jù)串行發(fā)出的同時,數(shù)據(jù)經過帶有異或單元的移位寄存器產生CRC校驗碼,實際電路圖如圖3-5:
串行數(shù)據(jù)的CRC校驗電路也與CRC發(fā)生電路一樣,不同的是前者CRC電路在移位寄存器之前,而后者在后。
3.3 總線接口模塊的設計實現(xiàn)
總線接口模塊包括上述的Encoder、Decoder。
3.3.1 Encoder
Encoder模塊主要有以下功能:
(1)構建幀頭幀尾;
(2)按照傳輸層指示進行CRC校驗;
(3)對數(shù)據(jù)進行曼徹斯特編碼;
(4)實現(xiàn)主、從幀的發(fā)送;
在Class 1 mode以及其它Class mode下,Encoder分別由Class1模塊和MCU控制。
如果當前配置允許發(fā)送,且控制模塊告訴Encoder有幀要發(fā)送,以及幀類型、幀長度,則Encoder先將配置好的幀頭發(fā)送,然后將幀數(shù)據(jù)、產生的CRC校驗碼移位后經曼徹斯特編碼輸出,最后發(fā)送幀尾,這樣完成主、從幀的發(fā)送。電路實現(xiàn)如圖3-6所示:
圖3-6:Encoder模塊結構圖
3.3.2 Decoder
MVB總線采用冗余介質,因此MVBC需要冗余的接收模塊來完成幀的接收。
(1)兩個Decoder根據(jù)選擇各自完成信號檢測(信任線)或冗余檢測(冗余線)功能,完成各自幀數(shù)據(jù)的起始位判定、數(shù)據(jù)采樣、數(shù)據(jù)解碼和數(shù)據(jù)移位功能;
(2)Decoder從信任線上接收數(shù)據(jù),并監(jiān)視冗余線;
(3)判斷幀類型,從幀中提取數(shù)據(jù)和校驗序列(非CRC校驗,可選)并存入RXBuffer中;
(4)實現(xiàn)CRC校驗,并報告接收狀態(tài)。
初始化時ICA,ICB分別置為信任線和冗余線(LAA=1),如果信任線超時、寂靜,或用戶強制,則信任線與監(jiān)視線互相交換。接收幀的同時,ICA、ICB兩個線路上的Decoder將是否接到幀、何種幀類型、接收是否完成、結果對錯等信息告訴線路控制模塊,該模塊將這些信息與哪一個BUFFER有效上報至上層模塊進行報文分析。Decoder線路控制圖如圖3-8:
4 總線接口模塊的驗證
驗證的思想是通過不同的控制信號,來模擬不同的工作環(huán)境下,幀的收發(fā)正確性:曼徹斯特編碼、幀頭、幀尾以及幀數(shù)據(jù)、幀類型、CRC碼的正確性。驗證實現(xiàn)結構如圖4-1所示:
控制模塊將一幀數(shù)據(jù)寫入Txbuffer,并控制Encoder開始發(fā)送,此時Encoder發(fā)送的幀被Decoder接收;控制模塊同時監(jiān)控Encoder、Decoder的狀態(tài),當接收完成后,控制模塊將解收到的數(shù)據(jù)從Rxbuffer讀出,從Decoder的接收狀態(tài)來驗證幀的屬性:幀是否有效、幀類型、幀長度,并從讀出的數(shù)據(jù)來驗證數(shù)據(jù)的正確性。
5 結束語
MVB總線伴隨著下一代列車通信系統(tǒng)的廣泛應用將被普遍采用,同時MVBC也將具有巨大的市場前景。本文主要介紹MVBC與MVB總線接口部分的幀收發(fā)器模塊的算法分析、設計實現(xiàn)及驗證方案。通過作者近期對該模塊進行的FPGA驗證,充分論證了該設計工作和驗證方案的可行性。
【多功能車輛總線控制器芯片(MVBC)的幀收發(fā)器設計】相關文章:
ARINC429總線收發(fā)器芯片DEI1016的原理及應用08-06
CAN總線控制器與DSP的接口08-06
PCI總線接口芯片9050及其應用08-06
如何給PCI卡選用合適的總線控制器08-06
內嵌8051的FSK收發(fā)器芯片CC101008-06
USB總線接口芯片CH371及其應用08-06
PCI總線通用接口芯片CH361及其應用08-06