簡易方程
教學(xué)目標(biāo)
1.會解簡易方程,并能用簡易方程解簡單的應(yīng)用題;
2.通過代數(shù)法解簡易方程進一步培養(yǎng)學(xué)生的運算能力,發(fā)展學(xué)生的應(yīng)用意識;
3.通過解決問題的實踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的鉆研精神。
教學(xué)建議
一、教學(xué)重點、難點
重點:簡易方程的解法;
難點:根據(jù)實際問題中的數(shù)量關(guān)系正確地列出方程并求解。
二、重點、難點分析
解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當(dāng)?shù)臄?shù);將方程兩邊同時乘以(或除以)同一個適當(dāng)?shù)臄?shù)。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數(shù)是否“適當(dāng)”,關(guān)鍵是看運算的第一步能否使方程的一邊只含有帶有未知數(shù)的那個數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結(jié)果。
列簡易方程解應(yīng)用題是以列代數(shù)式為基礎(chǔ)的,關(guān)鍵是在弄清楚題目語句中各種數(shù)量的意義及相互關(guān)系的基礎(chǔ)上,選取適當(dāng)?shù)奈粗獢?shù),然后把與數(shù)量有關(guān)的語句用代數(shù)式表示出來,最后利用題中的相等關(guān)系列出方程并求解。
三、知識結(jié)構(gòu)
導(dǎo)入 方程的概念 解簡易方程 利用簡易方程解應(yīng)用題。
四、教法建議
。1)在本節(jié)的導(dǎo)入部分,須使學(xué)生理解的是算術(shù)運算只對已知數(shù)進行加、減、乘、除,而代數(shù)運算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進行加、減、乘、除運算。對于方程、方程的解、解方程的概念讓學(xué)生了解即可。
。2)解簡易方程,要在學(xué)生積極參與的基礎(chǔ)上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個數(shù),以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個數(shù)。另一個重要的問題就是“適當(dāng)?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗,但為了學(xué)生從一開始就養(yǎng)成自我檢查的好習(xí)慣,可以讓學(xué)生在草稿紙上檢驗,同時也是對前面學(xué)過的求代數(shù)式的值的復(fù)習(xí)。
。3)教材給出了三道應(yīng)用題,其中例4是一道有關(guān)公式應(yīng)用的方程問題。列簡易方程解應(yīng)用題,關(guān)鍵在引導(dǎo)學(xué)生加深對代數(shù)式的理解基礎(chǔ)上,認真讀懂題意,弄清楚題目中的關(guān)鍵語句所包含的各種數(shù)量的意義及相互關(guān)系。恰當(dāng)?shù)卦O(shè)未知數(shù),用代數(shù)式表示數(shù)學(xué)語句,依據(jù)相等關(guān)系正確的列出方程并求解。
。4)教學(xué)過程中,應(yīng)充分發(fā)揮多媒體技術(shù)的輔助教學(xué)作用,可以參考運用相關(guān)課件提高學(xué)生的學(xué)習(xí)興趣,加深對列簡易方程解簡單的應(yīng)用題的整個分析、解決問題過程的理解。此外,通過應(yīng)用投影儀、幻燈片可以提高課堂效率,有利于對知識點的掌握。
五、列簡易方程解應(yīng)用題
列簡易方程解應(yīng)用題的一般步驟
(1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個未知數(shù).
。2)找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.
(3)根據(jù)這個相等關(guān)系列出需要的代數(shù)式,從而列出方程.
。4)解這個方程,求出未知數(shù)的值.
。5)寫出答案(包括單位名稱).
概括地說,列簡易方程解應(yīng)用題,一般有“設(shè)、列、解、驗、答”五個步驟,審題可在草稿紙上進行.其中關(guān)鍵是“列”,即列出符合題意的方程.難點是找等量關(guān)系.要想抓住關(guān)鍵、突破難點,一定要開動腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.
教學(xué)設(shè)計示例
簡易方程(一)
教學(xué)目標(biāo)
1.能解簡易方程,并能用簡易方程解簡單的應(yīng)用題。
2.初步培養(yǎng)學(xué)生方程的思想及分析解決問題的能力。
教學(xué)重點和難點
重點:簡易方程的解法和根據(jù)實際問題列出方程。
難點:正確地列出方程。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
1.針對以往學(xué)過的一些知識,教師請學(xué)生回答下列問題:
(1)什么叫等式?等式的兩個性質(zhì)是什么?
(2)下列等式中x取什么數(shù)值時,等式能夠成立?
2.在學(xué)生回答完上述問題的基礎(chǔ)上,引出課題
在小學(xué)學(xué)習(xí)方程時,學(xué)生們已知有關(guān)方程的三個重要概念,即方程、方程的解和解方程.現(xiàn)在學(xué)習(xí)了等式之后,我們就可以更深刻、更全面地理解這些概念,并同時板書課題:簡易方程.
二、講授新課
1.方程
在等式4+x=7中,我們將字母x稱為未知數(shù),或者說是待定的數(shù).像這樣含有未知數(shù)的等式,稱為方程.并板書方程定義.
例1 (投影)判斷下列各式是否為方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.
(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.
分析:本題在解答時需注意兩點:一是已知數(shù)應(yīng)包括它的符號在內(nèi);二是未知數(shù)的系數(shù)若是1,這個省寫的1也可看作已知數(shù).
(本題的解答應(yīng)由學(xué)生口述,教師利用投影片打出來完成)
2.簡易方程
簡易方程這一小節(jié)的前面主要是復(fù)習(xí)、歸納小學(xué)學(xué)過的 有關(guān)方程的基本知識,提出了算術(shù)解法與代數(shù)解法的說法,以便以后逐步講述代數(shù)解法的優(yōu)越性。
例2 解下列方程:
(1) 。2)
分析 方程(1)的左邊需減去 ,根據(jù)等式的性質(zhì)(2),必須兩邊同時減去 ,得 ,方程的左邊需要乘以3,使 的系數(shù)化為1,根據(jù)等式的性質(zhì)(3),必須兩邊同時乘以3,得 ,方程(2)的解題思路與(1)類似。
解(1)方程兩邊都減去 ,得
兩邊都乘以3,得 。
(2)方程兩邊都加上6,得 。
方程兩邊都乘以 ,得 ,即 。
注意:(1)根據(jù)方程的解的概念,我們可以將所得結(jié)果代入原方程檢驗,如果左邊=右邊,說明結(jié)果是正確的,否則,左邊≠右邊,說明你求得的x的值,不是原方程的解,肯定計算有錯誤,這時,一定要細心檢查,或者再重解一遍.
。2)解簡易方程時,不要求寫出檢驗這一步.
例3 甲隊有54人,乙隊有66人,問從甲隊調(diào)給乙隊幾人能使甲隊人數(shù)是乙隊人數(shù)的 ?
分析此題必須弄清:一、甲、乙兩隊原來各有多少人;二、變動后甲、乙兩隊各有多少人(注意:甲隊減少的人數(shù)正是乙隊增加的人數(shù));三、題中的等量關(guān)系是:變動后甲隊人數(shù)是乙隊人數(shù)的 ,即變動后甲隊人數(shù)的3倍等于乙隊人數(shù).
解 設(shè)從甲隊調(diào)給乙隊x人,
則變動后甲隊有 人,乙隊有 人,根據(jù)題意,得:
答:從甲隊調(diào)給乙隊24人。
三、課堂練習(xí)(投影)
1.判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.
(1)3y-1=2y; (2)3+4x+5x2; (3)7×8=8×7 (4)6=0.
2.根據(jù)條件列出方程:
(l)某數(shù)的一半比某數(shù)的3倍大4;
(2)某數(shù)比它的平方小42.
3.檢驗下列各小題括號里的數(shù)是不是它前面的方程的解:
四、師生共同小結(jié)
1.請學(xué)生回答以下問題:
(1)本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
(2)方程與代數(shù)式,方程與等式的區(qū)別是什么?
(3)如何列方程?
2.教師在學(xué)生回答完上述問題的基礎(chǔ)上,應(yīng)指出:
(1)方程、等式、代數(shù)式,這三者的定義是正確區(qū)分它們的唯一標(biāo)準(zhǔn);
(2)方程的解是一個數(shù)值(或幾個數(shù)值),它是使方程左、右兩邊的值相等的未知數(shù)的值它是根據(jù)未知數(shù)與已知數(shù)之間的相等關(guān)系確定的.而解方程是指確定方程的解的過程,是一個變形過程.
五、作業(yè)
1.根據(jù)所給條件列出方程:
(1)某數(shù)與6的和的3倍等于21;
(2)某數(shù)的7倍比某數(shù)大5;
(3)某數(shù)與3的和的平方等于這數(shù)的15倍減去5;
(4)矩形的周長是40,長比寬多10,求矩形的長與寬;
(5)三個連續(xù)整數(shù)之和為75,求這三個數(shù).
2.檢驗下列各小題括號里的數(shù)是否是它前面的方程的解:
(3)x(x+1)=12,(x=3,x=4).
簡易方程(二)
一、教學(xué)目標(biāo)
。ㄒ唬┲R教學(xué)點
1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。
2.掌握:代數(shù)解法解簡易方程。
。ǘ┠芰τ(xùn)練點
1.通過代數(shù)解法解簡易方程的學(xué)習(xí)使學(xué)生認識問題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。
2.通過代數(shù)法解簡易方程進一步培養(yǎng)學(xué)生運算能力和邏輯思維能力。
。ㄈ┑掠凉B透點
1.培養(yǎng)學(xué)生實事求是的科學(xué)態(tài)度,用發(fā)展的眼光看問題的辯證唯物主義思想。
2.滲透化“未知”為“已知”的化歸思想。
。ㄋ模┟烙凉B透點
通過用新的方法解簡易方程,使學(xué)生初步領(lǐng)略數(shù)學(xué)中的方法美。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識和學(xué)生的主體作用的體現(xiàn)。
2.學(xué)生學(xué)法:識記→練習(xí)反饋
三、重點、難點、疑點及解決辦法
1.重點:代數(shù)解法解簡易方程。
2.難點:解方程時準(zhǔn)確把握兩邊都加上(或減去)、乘以(或除以)同一適當(dāng)?shù)臄?shù)。
3.疑點:代數(shù)解法解簡易方程的依據(jù)。
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片。
六、師生互動活動設(shè)計
教師創(chuàng)設(shè)情境,學(xué)生解決問題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
。ǔ鍪就队1)
引例:班上有37名同學(xué),分成人數(shù)相等的兩隊進行拔河比賽,恰好余3人當(dāng)裁判員,每個隊有多少人?
師:該問題如何解決呢?請同學(xué)們考慮好后寫在練習(xí)本上.
學(xué)生活動:解答問題,一個學(xué)生板演.
師生共同訂正,對照板演學(xué)生的做法,師問:有無不同解法?
學(xué)生活動:回答問題,一個學(xué)生板演,其他學(xué)生比較兩種解法.
問;這兩種解法有什么不同呢?
學(xué)生活動:積極思索,回答問題.(一是列算式的解法,二是列方程的解法).
師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法.小學(xué)學(xué)過的應(yīng)用題可用算術(shù)方法也可用代數(shù)方法解.有時算術(shù)方法簡便,有時代數(shù)方法簡便,但是隨著學(xué)習(xí)的逐步展開,遇到的問題越來越復(fù)雜,使用代數(shù)解法的優(yōu)越性將會體現(xiàn)的越來越充分,因此,在初中代數(shù)課上,將把方程的知識作為一個重要的內(nèi)容來學(xué)習(xí).當(dāng)然,在開始學(xué)習(xí)方程時,還是要從簡單的方程入手,即簡易方程.引出課題.
[板書]1.5簡易方程
。ǘ┨剿餍轮,講授新課
師:談到方程,同學(xué)們并不陌生,你能說明什么叫方程嗎?
學(xué)生活動:踴躍舉手,回答問題。
[板書] 含有未知數(shù)的等式叫方程
接問:你還知道關(guān)于方程的其他概念嗎?
學(xué)生活動:積極思考并回答。
[板書] 方程的解;解方程
追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說明.學(xué)生活動:互相討論后回答.(使方程左右兩邊相等的未知數(shù)的值叫做方程的解;求方程的解的過程叫解方程,例如方程: 是方程的解,求 的過程叫解方程.)
師:很好.怎樣解方程呢?
例如 解方程
學(xué)生活動:一個學(xué)生回答,師板書,并要求學(xué)生說出根據(jù)。
解:第一步 ,(把 看作一個數(shù),根據(jù)一個加數(shù)等于和減去另一個數(shù))
第二步 (根據(jù)一個因數(shù)等于積除以另一個因數(shù))
師:好!這是小學(xué)學(xué)的解方程的方法。在初中代數(shù)課上,我們要從另一角度來解,還以上邊這個方程為例。
[板書]
解:第一步看作方程兩邊都減去9,得
第二步看作方程兩邊都除以3,得
問:這種解法合理嗎?
學(xué)生活動:相互討論達成共識(合理。因把 代入方程 ,左邊=右邊,所以 是方程的解)
【教法說明】先復(fù)習(xí)小學(xué)有關(guān)方程的幾個概念和解法,再提代數(shù)解法,形成對比,使學(xué)生認識到同一問題可從不同角度去考慮,即培養(yǎng)了發(fā)散思維。正是因為認識問題的不同側(cè)面,導(dǎo)致學(xué)生感到疑惑,這時讓學(xué)生自己去檢驗新方法的合理性,不但可消除疑慮,而且還有助于發(fā)展學(xué)生的創(chuàng)造能力。
師:以前的方法只能解很簡單的方程,而后者則可以解較復(fù)雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。
。ㄈ﹪L試反饋,鞏固練習(xí)
例1 解方程
問:你認為第一步方程兩邊應(yīng)加上(或減去)什么數(shù)最合適?為什么?
學(xué)生活動:思考并回答.(師板書)
問:你認為第二步方程兩邊應(yīng)乘以(或除以)什么數(shù)最合適?為什么?
學(xué)生活動:思考并回答(師板書)
解:方程兩邊都加上5,得
,
方程兩邊都乘以2,得
,
x=32
問:這個結(jié)果正確嗎?請同學(xué)們自己檢驗.
學(xué)生活動:練習(xí)本上檢驗并回答問題.(正確)
師:這種新方法解方程時,第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數(shù),該乘以(或除以)怎樣的數(shù)更合適.
學(xué)生活動:回答這兩個問題.
【教法說明】雖然解方程的過程由教師板書,但整個思路是由學(xué)生形成的,使新方法在學(xué)生頭腦中越來越清晰,直到真正認識并掌握它,這樣也體現(xiàn)了學(xué)生的主體性,由“學(xué)會”型向“會學(xué)”型轉(zhuǎn)化,對培養(yǎng)學(xué)生的思維能力很有幫助.
師:上題在我們共同努力下得以解決,下面看你們自己的表現(xiàn)怎樣?
例2 解方程 。
學(xué)生活動:在練習(xí)本上做,一個學(xué)生板演.
師生共同訂正.
師:這里雖不要求同學(xué)們檢驗,但今后希望同學(xué)們養(yǎng)成自我檢查的良好習(xí)慣.
【教法說明】通過例2的教學(xué)訓(xùn)練學(xué)生的判斷能力及運算能力,樹立矛盾轉(zhuǎn)化思想.
。ㄋ模┳兪接(xùn)練,培養(yǎng)能力
。ǔ鍪就队2)
1.(口答)解下列方程
。1) ; 。2) ;
。3) ; 。4)
2.判斷,并說明理由
(1) 不是方程( )
。2) 與 的解都是 ( )
。3)不同方程的解一定不同( )
3.解方程:(1) ; (2)
。3)
4.求 使 的值等于27。
學(xué)生活動:1、2題口答,3、4題在練習(xí)本上書寫,可互相討論,3、4題師巡回指導(dǎo)。
【教法說明】1題讓學(xué)生困難同學(xué)回答,增強自信心;2題澄清模糊認識,可充分討論,讓學(xué)生各抒已見;3題較1題稍復(fù)雜,一是讓學(xué)生體會新解法的優(yōu)越性,二是培養(yǎng)學(xué)生觀察分析解決問題的能力;4題其實也是解方程,目的是開闊學(xué)生思路,培養(yǎng)學(xué)生勇于探索、大膽求異的創(chuàng)新精神。
(五)歸納小結(jié)
。ㄓ蓪W(xué)生歸納)
1.按照新方法解方程,一般采用下面兩點:
。1)方程兩邊都加上(或減去)同一適當(dāng)?shù)臄?shù);
。2)方程兩邊都乘以(或除以)同一適當(dāng)?shù)臄?shù)。
2.為了保證運算準(zhǔn)確,養(yǎng)成檢驗的習(xí)慣。
八、隨堂練習(xí)
1.選擇題
。1)在(1) ;(2) ;(3) ;(4) 中方程有( )
A.1個 B.2個 C.3個 D.4個
。2)2是( )方程的解
A. B.
C. D.
2.解方程
。1) ;。2) ; (3)
3.求 ,使 與 互為倒數(shù)。
九、布置作業(yè)
(一)必做題:課本第31頁A組1.(2)(4)、 2.(1)(3)(5)
(二)選做題:思考課本B組1、2。
十、板書設(shè)計
附:1.5 簡易方程
隨堂練習(xí)答案
1.B C. 2. 3.
作業(yè)答案
1.(2)8; (4)6 2.(1) ;(3) ;(5)
探究活動
甲、乙二人從相距30m的兩地同向而行,甲每秒走7m,乙每秒走6.5m,如果甲先出發(fā)1秒鐘后,乙才出發(fā),求甲出發(fā)后幾秒鐘追上乙?
解法(-)設(shè)甲出發(fā)后 秒追上乙,則甲走的路程為 m,乙比甲晚1秒鐘出發(fā),乙少走1秒鐘,此時,乙走的路程為 m,甲追上乙表示甲比乙多走30m。根據(jù)題意列出方程是:
解得 (秒)
答:甲出發(fā)后47秒追上乙.
解法(二)設(shè)甲出發(fā)后 秒追上乙,甲先走1秒鐘,甲先走了 m,這樣甲追上己只需多走 (m).這時甲、乙二人都走了( )秒,甲走的路程為 m,乙走的路程為 m,乙比甲走的路程少 (m),根據(jù)題意列出方程是:
解得 (秒)
答:甲出發(fā)后47秒追上乙.
解法(三)設(shè)已出發(fā)后 秒,甲追上乙,因為甲先走1秒,所以甲走了 ,乙走了 秒,甲走的路程比已走的路程多30m,依據(jù)此等量關(guān)系列出方程為:
解得 秒
甲走的時間為 (秒)
答:甲出發(fā)后47秒追上乙.
【簡易方程】相關(guān)文章:
簡易方程教學(xué)反思05-17
簡易方程教學(xué)反思06-26
《簡易方程》教學(xué)反思03-11
《解簡易方程》說課稿范文05-09
簡易方程教學(xué)反思范文04-22
解簡易方程教學(xué)反思04-07
《解簡易方程》教學(xué)反思03-10
數(shù)學(xué)簡易方程教學(xué)反思03-10
解簡易方程的教學(xué)反思02-22
數(shù)學(xué)教案:簡易方程01-19