- 相關(guān)推薦
數(shù)學(xué)一元一次不等式和它的解法教案(通用10篇)
作為一名專為他人授業(yè)解惑的人民教師,時(shí)常需要用到教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。快來(lái)參考教案是怎么寫的吧!以下是小編精心整理的數(shù)學(xué)一元一次不等式和它的解法教案(通用10篇),希望對(duì)大家有所幫助。
數(shù)學(xué)一元一次不等式和它的解法教案 1
一、教學(xué)目標(biāo):
(一)知識(shí)與能力目標(biāo):(課件第2張)
1.體會(huì)解不等式的步驟,體會(huì)比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對(duì)數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實(shí)際問(wèn)題中能夠體會(huì)將文字語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,學(xué)會(huì)用數(shù)學(xué)語(yǔ)言表示實(shí)際的數(shù)量關(guān)系。
。ǘ┻^(guò)程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過(guò)對(duì)一元一次方程的解法的復(fù)習(xí)和對(duì)不等式性質(zhì)的利用,導(dǎo)入對(duì)解不等式的討論。
3.學(xué)生體會(huì)通過(guò)綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,從而解決實(shí)際問(wèn)題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來(lái)。
。ㄈ┣楦小B(tài)度與價(jià)值目標(biāo):(課件第3張)
1.在教學(xué)過(guò)程中,學(xué)生體會(huì)數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過(guò)類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹(shù)立辯證統(tǒng)一思想。
3.通過(guò)學(xué)生的討論,學(xué)生進(jìn)一步體會(huì)集體的作用,培養(yǎng)其集體合作的精神。
4.通過(guò)本節(jié)的學(xué)習(xí),學(xué)生體會(huì)不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點(diǎn):
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語(yǔ)言,從而完成對(duì)應(yīng)用問(wèn)題的解決。
三、教學(xué)突破:
教材中沒(méi)有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡(jiǎn)單不等式的過(guò)程,并通過(guò)學(xué)生的討論交流使學(xué)生經(jīng)歷知識(shí)的形成和鞏固過(guò)程。在解不等式的過(guò)程中,與上節(jié)課聯(lián)系起來(lái),重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會(huì)用數(shù)形結(jié)合的方法解決問(wèn)題。在研究中,鼓勵(lì)學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教具:
計(jì)算機(jī)輔助教學(xué)。
五、教學(xué)流程:
。ㄒ唬⿵(fù)習(xí):
1.給出方程:(x+4)/3=(3x-1)/2,抽學(xué)生演算。(注意步驟)
2.學(xué)生回憶不等式的性質(zhì),并說(shuō)出解不等式的關(guān)鍵在哪里。
3.讓學(xué)生舉一些不等式的例子。在學(xué)生歸納出一元一次不等式的概念后,據(jù)情況點(diǎn)評(píng)。
4.新課導(dǎo)入:通過(guò)上節(jié)課的學(xué)習(xí),我們已經(jīng)掌握了解簡(jiǎn)單不等式的方法。
這節(jié)課我們來(lái)共同探討解一元一次不等式的方法。
1.學(xué)生練習(xí),并說(shuō)出解一元一次方程的步驟。
2.認(rèn)真思考,用自己的語(yǔ)言描述不等式的性質(zhì),說(shuō)出解不等式的關(guān)鍵在于將不等式化為x≤a或x≥a的形式。
3.舉出不等式的例子,從中找出一元一次不等式的例子,歸納出一元一次不等式的概念。
4.明確本課目標(biāo),進(jìn)入對(duì)新課的學(xué)習(xí)。
1)復(fù)習(xí)解一元一次方程的解法和步驟。
2)讓學(xué)生回顧性質(zhì),以加強(qiáng)對(duì)性質(zhì)的理解、掌握。
3)運(yùn)用類比思維
4)自然過(guò)度
(二)新授:
1.學(xué)生觀察課本第61頁(yè)例3 ,教師說(shuō)明:解不等式就是利用不等式的三條基本性質(zhì)對(duì)不等式進(jìn)行變形的過(guò)程,提醒學(xué)生注意步驟。
2.分析學(xué)生的'解答,提醒學(xué)生在解不等式中常見(jiàn)的錯(cuò)誤:不等式兩邊同乘(除)同一個(gè)負(fù)數(shù)不等號(hào)方向要改變。
3.激勵(lì)學(xué)生完成對(duì)(2) 解答,并找學(xué)生上講臺(tái)演示。
4.強(qiáng)調(diào)在數(shù)軸上表示解集時(shí)的關(guān)鍵
5.出示練習(xí)。
6.鼓勵(lì)學(xué)生討論課本第61頁(yè)的例4 。提示學(xué)生:首先將簡(jiǎn)單的文字表達(dá)轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言。
7.指導(dǎo)學(xué)生歸納步驟。
8.補(bǔ)充適當(dāng)?shù)木毩?xí),以鞏固學(xué)生所學(xué)。
9.類比解一元一次方程,仔細(xì)觀察,理解用不等式的性質(zhì)(3)解不等式的原理,并掌握用數(shù)軸表示不等式的解的方法。
10.學(xué)生類比解一元一次方程的步驟,與解一元一次不等式的一般步驟,同時(shí)完成練習(xí)。
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教師提示,組內(nèi)討論后,檢查自己的解答過(guò)程,彌補(bǔ)不足,進(jìn)一步體會(huì)解一元一次不等式的方法。
12.理解、體會(huì)在數(shù)軸上表示解集的方法和關(guān)鍵。
13.學(xué)生組內(nèi)討論完成。
14.認(rèn)真完成對(duì)例題的解答,在教師的提示下找到不等量關(guān)系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
15.組內(nèi)討論并歸納后,看教師所出示的課件。
16.認(rèn)真完成練習(xí)。
17.電腦逐步演示,讓學(xué)生從演示過(guò)程中理解不等式的解法。
18.鞏固對(duì)一般解法的理解、掌握。
19.通過(guò)類比歸納,提高學(xué)生的自學(xué)能力。
20.讓學(xué)生明白不等式的解集是一個(gè)范圍,而方程的解是一個(gè)值。
21.培養(yǎng)學(xué)生的擴(kuò)展能力。
22.類比一元一次方程的解法以加深對(duì)一元一次不等式解法的理解。
23.通過(guò)動(dòng)手、動(dòng)腦使所學(xué)知識(shí)得到鞏固。
24.鞏固所學(xué)。
(三)小結(jié)與鞏固:
1.引導(dǎo)學(xué)生對(duì)本課知識(shí)進(jìn)行歸納。
2.學(xué)生完成后。
3.練習(xí)與鞏固。
數(shù)學(xué)一元一次不等式和它的解法教案 2
教學(xué)目標(biāo)
1.使學(xué)生知道一元一次不等式組及其解集的含義,會(huì)利用數(shù)軸求一元一次不等式組的解集;
2.使學(xué)生逐步學(xué)會(huì)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
掌握一元一次不等式組解集的含義。
難點(diǎn):
求不等式組中各不等式的解集的公共部分。
課堂教學(xué)過(guò)程設(shè)計(jì):
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.什么叫不等式?不等式的解?不等式的解集?解不等式?
3.將第2題中的不等號(hào)改為等號(hào)所得的一元一次方程的解是什么?不等式的解集與方程的解有什么不同?
4.(投影)在數(shù)軸上表示下列不等式的解集:
(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0
5.(投影)將下列各圖中數(shù)軸上的點(diǎn)的集合用不等式來(lái)表示.(學(xué)生口答完成)
在學(xué)生解答完上述各題的基礎(chǔ)上,教師指出,我們知道,物體A的重量x克大于2克,且小于3克,就是說(shuō),x的取值要使不等式x>2與x<3同時(shí)成立.
而將一元一次不等式x>2與x<3合在一起,就組成了一個(gè)一元一次不等式組,記作本節(jié)課,我們就來(lái)學(xué)習(xí)一元一次不等式組及其解法.
二、講授新課1.利用數(shù)軸的直觀性,師生共同得出一元一次不等式組解集的概念首先,在數(shù)軸上表示不等式①,②的解集,如下圖.
其次,可向?qū)W生提出如下問(wèn)題:
(1)通過(guò)觀察,要使不等式①,②同時(shí)成立,則x的取值范圍是什么?(2)這個(gè)取值范圍,是不等式①,②的解集的什么?進(jìn)一步追問(wèn),什么叫一元一次不等式組的解集?
最后,板書(shū)一元一次不等式組的解集的定義.
一般地,幾個(gè)一元一次不等式的解集的公共部分,叫做由它們所組成的一元一次不等式組的解集.
求不等式組的解集的過(guò)程,叫解不等式組.
例1(1)在同一數(shù)軸上表示x<2,x>-3的解集.(2)在同一數(shù)軸上表示x>-4,x>-1的解集.(3)在同一數(shù)軸上表示x<2,x<-3的解集.(4)在同一數(shù)軸上表示x>2,x<-1的解集.
若上述各題中的解集有公共部分,用不等式表示出來(lái).(此題可由學(xué)生板演來(lái)完成).解:
此時(shí),教師指出:由上例可以看出,由不等式x>-3或x<2合在類似的,上例中練習(xí)解不等式組:
(本練習(xí),應(yīng)繼續(xù)鞏固學(xué)生利用數(shù)軸的直觀性解不等式組的能力)2.啟發(fā)學(xué)生總結(jié)解一元一次不等式組的方法及步驟例2解不等式組:
師生共同分析:我們知道,解不等式組就是求不等式組解集的過(guò)程.那么如何求不等式組的解集呢?(讓學(xué)生想一想,然后請(qǐng)幾名學(xué)生回答)應(yīng)首先求出不等式①和②的'解集,然后利用數(shù)軸找出這兩個(gè)解集的公共部分,就是不等式組的解集.
解:解不等式①,得x>2,解不等式②,得x>3,在數(shù)軸上表示不等式①,②的解集.
所以這個(gè)不等式組的解集是x>3.
(首先讓兩名學(xué)生分別解出不等式①,②然后回答不等式組解集.教師板書(shū)解答過(guò)程,并用彩筆在數(shù)軸上把相應(yīng)的部分描述出來(lái),以使學(xué)生感到醒目,加深理解記憶)例3解不等式組:
解:解不等式①,得x<3,在數(shù)軸上表示為
(本題讓一名學(xué)生板演,其余學(xué)生在練習(xí)本上自己完成,教師巡視,并及時(shí)糾正學(xué)生在解題過(guò)程中出現(xiàn)的問(wèn)題)結(jié)合上面兩個(gè)例題,教師應(yīng)讓學(xué)生思考并回答,解一元一次不等式組的方法及步驟是什么?
解一元一次不等式組可以分為以下兩個(gè)步驟:
(1)求出這個(gè)不等式組中各個(gè)不等式的解集;
(2)利用數(shù)軸求出這些不等式的解集的公共部分,即求出這個(gè)不等式組的解集.(若各個(gè)不等式的解集無(wú)公共部分,則此不等式無(wú)解)
三、課堂練習(xí)
1.填表:(投影)
2.解下列不等式組:
四、師生共同小結(jié)
首先,讓學(xué)生回答以下問(wèn)題:
1.本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?
2.什么叫一元一次不等式組的解集?什么叫解不等式組?
3.解一元一次不等式組的步驟是什么?
4.若一元一次不等式組中,不等式的個(gè)數(shù)多于兩個(gè)時(shí),解集的求法有無(wú)變化?結(jié)合學(xué)生的回答,教師指出,一元一次不等式組的解集是這個(gè)不等式組中各個(gè)不等式的解集的公共部分;當(dāng)不等式個(gè)數(shù)多于兩個(gè)時(shí),求解方法沒(méi)有變化.
五、作業(yè)
解不等式組。
數(shù)學(xué)一元一次不等式和它的解法教案 3
教學(xué)目標(biāo)
1.知識(shí)與技能
理解一次函數(shù)與一元一次不等式的關(guān)系,發(fā)展學(xué)生的認(rèn)知體系.
2.過(guò)程與方法
經(jīng)歷探索一次函數(shù)與一元一次不等式的關(guān)系的過(guò)程,掌握其應(yīng)用方法.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的數(shù)學(xué)抽象思維,體會(huì)本節(jié)課知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系.
2.難點(diǎn):如何應(yīng)用一次函數(shù)性質(zhì)解決一元一次不等式的解集問(wèn)題.
3.關(guān)鍵:從一次函數(shù)的圖象出發(fā),直觀地呈現(xiàn)出一元一次不等式的.解的范圍.
教具準(zhǔn)備
采用“問(wèn)題解決”的教學(xué)方法.
教學(xué)過(guò)程
一、回顧交流,知識(shí)遷移
問(wèn)題提出:請(qǐng)思考下面兩個(gè)問(wèn)題:
。1)解不等式5x+6>3x+10;
。2)當(dāng)自變量x為何值時(shí),函數(shù)y=2x-4的值大于0?
學(xué)生活動(dòng)觀察屏幕,通過(guò)思考,得到(1)、(2)的答案,回答問(wèn)題.
教師活動(dòng)在學(xué)生充分探討的基礎(chǔ)上,引導(dǎo)學(xué)生思考:“一元一次不等式與一次函數(shù)之間有何內(nèi)在聯(lián)系?”
思路點(diǎn)撥在問(wèn)題(1)中,不等式5x+6>3x+10可以轉(zhuǎn)化為2x-4>0,解這個(gè)不等式得x>2;問(wèn)題(2)就是解不等式2x-4>0,得出x>2時(shí)函數(shù)y=2x-4的值大于0,因此這兩個(gè)問(wèn)題實(shí)際上是同一個(gè)問(wèn)題,從直線y=2x-4(如圖)可以看出.當(dāng)x>2時(shí),這條直線上的點(diǎn)在x軸的上方,即這時(shí)y=2x-4>0.
問(wèn)題探索
教師敘述:由上面兩個(gè)問(wèn)題的關(guān)系,能進(jìn)一步得到“解不等式ax+b>0”與“求自變量x在什么范圍內(nèi),一次函數(shù)y=ax+b的值大于0”有什么關(guān)系?
學(xué)生活動(dòng)小組討論,觀察上述問(wèn)題的圖象,聯(lián)系不等式、函數(shù)知識(shí),解決問(wèn)題.
師生共識(shí)由于任何一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看出:當(dāng)一次函數(shù)值大(。┯0時(shí),求自變量相應(yīng)的取值范圍.
教學(xué)形式師生互動(dòng)交流,生生互動(dòng).
二、范例點(diǎn)擊,領(lǐng)悟新知
例2用畫(huà)函數(shù)圖象的方法解不等式5x+4<2x+10.
教師活動(dòng)激發(fā)思考.
學(xué)生活動(dòng)小組合作討論,運(yùn)用兩種思維方法解決例2問(wèn)題.
解法1:原不等式化為3x-6<0,畫(huà)出直線y=3x-6(左圖),可以看出,當(dāng)x<2時(shí),這條直線上的點(diǎn)在x軸的下方,即這時(shí)y=3x-6<0,所以不等式的解集為x<2.
解法2:將原不等式的兩邊分別看作兩個(gè)一次函數(shù),畫(huà)出直線y=5x+4與直線y=2x+10(右圖),可以看出,它們交點(diǎn)的橫坐標(biāo)為2,當(dāng)x<2時(shí),對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)5x+4<2x+10,所以不等式的解集為x<2.
評(píng)析兩種解法都把解不等式轉(zhuǎn)化為比較直線上點(diǎn)的位置的高低.
三、隨堂練習(xí),鞏固深化
課本P216練習(xí).
四、課堂,發(fā)展?jié)撃?/p>
用一次函數(shù)圖象來(lái)解一元一次方程或一元一次不等式未必簡(jiǎn)單,但是從函數(shù)角度看問(wèn)題,能發(fā)現(xiàn)一次函數(shù)、一元一次方程與一元一次不等式之間的關(guān)系,能直觀地看到怎樣用圖形來(lái)表示方程的解與不等式的解,這種用函數(shù)觀點(diǎn)認(rèn)識(shí)問(wèn)題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)是重要的
五、布置作業(yè),專題突破
課本P129習(xí)題14.3第3,4,7,8,10題.
數(shù)學(xué)一元一次不等式和它的解法教案 4
<title> 從不同方向看</title>
教學(xué)目標(biāo)
本節(jié)在介紹不等式的基礎(chǔ)上,介紹了不等式的解集并用數(shù)軸表示,介紹了解簡(jiǎn)單不等式的方法,讓學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的作用。
知識(shí)與能力
1.使學(xué)生掌握不等式的解集的概念,以及什么是解不等式。
2.使學(xué)生育能夠借助數(shù)軸將不等式的解集直觀地表示出來(lái),初步理解數(shù)形結(jié)合的思想。
過(guò)程與方法
1.通過(guò)回憶給學(xué)生介紹不等式的解集的概念。
2.教會(huì)學(xué)生怎樣在數(shù)軸上表示不等式的解集。
情感、態(tài)度與價(jià)值觀
1.通過(guò)反復(fù)的訓(xùn)練使學(xué)生認(rèn)識(shí)到數(shù)軸的重要性,培養(yǎng)其數(shù)形結(jié)合的思想。
2.通過(guò)觀察、歸納、類比、推斷而獲得不等式的解集與數(shù)軸上的點(diǎn)之間的關(guān)系,體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索性與創(chuàng)造性。
教學(xué)重、難點(diǎn)及教學(xué)突破
重點(diǎn)
1.認(rèn)識(shí)不等式的解集的概念。
2.將不等式的解集表示在數(shù)軸上。
難點(diǎn)
學(xué)生對(duì)不等式的解是一個(gè)集合可能會(huì)不太理解。
教學(xué)突破
由于受方程思想的影響,學(xué)生對(duì)不等式的解集的接受和理解可能會(huì)有一定的困難,建議教師能結(jié)合簡(jiǎn)單的不等式和實(shí)際問(wèn)題讓學(xué)生體會(huì)不等式的解可以是一個(gè)集合,并組織學(xué)生討論舉例,加深理解。
另外,應(yīng)在本節(jié)的過(guò)程中讓學(xué)生能理解在數(shù)軸上表示不等式的解集,讓他們熟悉數(shù)形結(jié)合的思想。
教學(xué)步驟
一、新課導(dǎo)入
1.回顧提問(wèn):同學(xué)們,我們已經(jīng)學(xué)習(xí)了不等式,F(xiàn)在我們一起回顧一下什么是不等式,以及有關(guān)數(shù)軸的知識(shí)。
學(xué)生用自己的語(yǔ)言描述不等式的定義,并基本說(shuō)出數(shù)軸的三要素是:原點(diǎn)、正方向、單位長(zhǎng)度。能將有理數(shù)在數(shù)軸上表示出來(lái)。
2.創(chuàng)設(shè)情景:我們現(xiàn)在知道了不等式的解不唯一,那么我們?nèi)绾螌⒉坏仁降慕馊勘硎境鰜?lái)呢?這就是我們這節(jié)課要解決的問(wèn)題。
二、不等式的解集
1.講述不等式的解集的定義,引導(dǎo)學(xué)生觀察不等式x+2>5,并說(shuō)出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。
2.給出“解不等式”的概念,并就上述例題由不完全歸納法給出不等式x+2>5的解集是x>3 。
3.將x>3在數(shù)軸上表示出來(lái),并以此圖為例講述在數(shù)軸上表示基本不等式的方法:(1)在數(shù)軸上找到3;(2)向右表示比3大的點(diǎn);(3)空心點(diǎn)表示不含有3,所以有下圖。
讓學(xué)生自己動(dòng)手畫(huà)出x ≤ 3,并找學(xué)生上臺(tái)板演。
4.就學(xué)生在黑板上的板演,指出畫(huà)圖應(yīng)注意的事項(xiàng),并讓學(xué)生觀察前后兩圖的區(qū)別。
通過(guò)對(duì)比兩圖的'不同,發(fā)現(xiàn)區(qū)別是大于和小于導(dǎo)致圖上所取的方向不同,有等號(hào)和沒(méi)等號(hào)導(dǎo)致空心和實(shí)心的區(qū)別。
5.給出適當(dāng)?shù)睦},鞏固本節(jié)內(nèi)容。
本課總結(jié)
這節(jié)課主要學(xué)習(xí)了什么是不等式的解集,并教學(xué)生在數(shù)軸上表示不等式的解集,體會(huì)數(shù)形結(jié)合的思想。
教學(xué)探討與反思
為了提高數(shù)學(xué)課的教學(xué)效果,教師必須使課堂教學(xué)過(guò)程符合學(xué)生的認(rèn)知規(guī)律,并讓學(xué)生參與到課堂教學(xué)活動(dòng)中來(lái),使他們真正成為課堂教學(xué)的主體。教師對(duì)課堂教學(xué)的設(shè)計(jì),應(yīng)著眼在為學(xué)生個(gè)性品質(zhì)的優(yōu)化創(chuàng)設(shè)最佳課堂教學(xué)環(huán)境。教師引導(dǎo)學(xué)生參與的是數(shù)學(xué)思維活動(dòng)。
數(shù)學(xué)一元一次不等式和它的解法教案 5
[學(xué)習(xí)目標(biāo)]
1.進(jìn)一步鞏固一元一次不等式組的解法
2.會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問(wèn)題
3.理解一元一次不等式組應(yīng)用題的一般解題步驟
[學(xué)習(xí)重點(diǎn)]
一元一次不等式組的應(yīng)用
[學(xué)習(xí)難點(diǎn)]
在實(shí)際問(wèn)題中尋找不等關(guān)系,列出不等式組
[學(xué)習(xí)過(guò)程]
一、春耕(創(chuàng)設(shè)情境,導(dǎo)入新課)
在上課之前,老師請(qǐng)大家來(lái)幫一個(gè)忙,幫老師來(lái)解決一道難題:老師有一個(gè)熟人姓王,他有一個(gè)哥哥和一個(gè)弟弟,哥哥的年齡是20歲,小王的.年齡的2倍加上他弟弟年齡的5倍等于97.現(xiàn)在小王要老師猜猜他和他弟弟的年齡各是多少?俗話說(shuō)三個(gè)臭皮匠,可抵一個(gè)諸葛亮,現(xiàn)在我們?nèi)嗤瑢W(xué)可抵得上很多諸葛亮,所以老師相信大家一定有辦法的
二、夏耘(師生互動(dòng),課堂探究)
(一)提出問(wèn)題,引發(fā)討論
當(dāng)一個(gè)未知數(shù)同時(shí)滿足幾個(gè)不等關(guān)系時(shí),我們就按這些關(guān)系分別列幾個(gè)不等式,這樣就得到不等式組,用不等式組解決實(shí)際問(wèn)題時(shí),其公共解是否一定為實(shí)際問(wèn)題的解呢?請(qǐng)舉例說(shuō)明.
例:甲以5km/時(shí)的速度進(jìn)行跑步鍛煉,2小時(shí)后,乙騎自行車從同地出發(fā)沿同一條路追趕甲.但他們兩人約定,乙最快不早于1小時(shí)追上甲,最慢不晚于1小時(shí)15分追上甲.你能確定乙騎車的速度應(yīng)當(dāng)控制在什么范圍嗎?
(二)導(dǎo)入知識(shí),解釋疑難
1.教材內(nèi)容講解
如課本例2(P145)(請(qǐng)同學(xué)自己閱讀,動(dòng)手列不等式組進(jìn)行求解,再將自己答案與課本答案進(jìn)行比較)不等式組的解集為15
又如:將若干只雞放入若干個(gè)籠,若每個(gè)籠里放4只,則有1只雞無(wú)籠可放;若每個(gè)籠里放5只,則有1籠無(wú)雞可放,那么至少有多少只雞,多少個(gè)籠?
2.探究活動(dòng)
把16根火柴首尾相接,圍成一個(gè)長(zhǎng)方形(不包括正方形),怎樣找到圍出不同形狀的長(zhǎng)方形個(gè)數(shù)最多的辦法呢?最多個(gè)數(shù)又是多少呢?
三.秋收(歸納總結(jié),知識(shí)回顧)
1. 應(yīng)用不等式組解決實(shí)際問(wèn)題的步驟:1.審清題意;2.設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組;3.解不等式組;4.由不等式組的解確立實(shí)際問(wèn)題的解;5.作答.(與列方程組解應(yīng)用題進(jìn)行比較)
2.雙基練習(xí)
1.已知方程組 有正整數(shù)解,則k的取值范圍是_________.
2.若不等式組 無(wú)解,求a的取值范圍.
3.當(dāng)2(m-3)< 時(shí),求關(guān)于x的不等式 >x-m的解集.
4.某學(xué)校為學(xué)生安排宿舍,現(xiàn)有住房若干間,若每間5人還有14人安排不下,若每間7人,則有一間還余一些床位,問(wèn)學(xué)校有幾間房可以安排學(xué)生住宿?可以安排住宿的學(xué)生多少人?
四.冬藏(創(chuàng)新提升)
某商場(chǎng)為了促銷,開(kāi)展對(duì)顧客贈(zèng)送禮品活動(dòng),準(zhǔn)備了若干件禮品送給顧客,在一次活動(dòng)中,如果每人送5件,則還余8件,如果每人送7件,則最后一人還不足3件.設(shè)該商場(chǎng)準(zhǔn)備了m件禮品,有x名顧客獲贈(zèng),請(qǐng)回答下列問(wèn)題:
(1)用含x的代數(shù)式表示m.
(2)求出該次活動(dòng)中獲贈(zèng)顧客人數(shù)及所準(zhǔn)備的禮品數(shù)
數(shù)學(xué)一元一次不等式和它的解法教案 6
教學(xué)目標(biāo):
認(rèn)知目標(biāo):
1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問(wèn)題.
2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問(wèn)題的
能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問(wèn)題的探究過(guò)程,學(xué)習(xí)用聯(lián)系的`觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證.
教學(xué)重點(diǎn):
一次函數(shù)與一元一次不等式的關(guān)系的理解.
教學(xué)難點(diǎn):
利用一次函數(shù)的圖象確定一元一次不等式的解集.
教學(xué)過(guò)程:
一、探究新知:
通過(guò)上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問(wèn)題.現(xiàn)在我們來(lái)看看:
。ǎ保┮韵聝蓚(gè)問(wèn)題是否為同一個(gè)問(wèn)題?
、俳獠坏仁剑海玻-4>0
②當(dāng)x為何值時(shí),函數(shù)y=2x-4的值大于0?
(2)你如何利用函數(shù)的圖象來(lái)說(shuō)明②?
(3)“解不等式2x-4<0”可以與怎樣的一次函數(shù)問(wèn)題是同一的?怎樣在圖象上加以說(shuō)明?
歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.
二、應(yīng)用新知:
。.練習(xí):P42練習(xí)1(3)(4)
。.例2 用畫(huà)函數(shù)圖象的方法解不等式5x+4>2x+10.
思考:我們應(yīng)該畫(huà)出什么函數(shù)的圖象來(lái)解?
思路1:將不等式化為3x-6>0,然后畫(huà)出函數(shù)y=3x-6的圖象.
思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫(huà)出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)
。担+4>2x+10.
三、鞏固練習(xí)
1.P42練習(xí)2(2)
2.P45習(xí)題11.3第3、4題
四、布置作業(yè)
……
數(shù)學(xué)一元一次不等式和它的解法教案 7
教學(xué)目標(biāo)
1、會(huì)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型,會(huì)用一元一次不等式解決實(shí)際問(wèn)題;
2、通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷從實(shí)際中抽象出數(shù)學(xué)模型的過(guò)程,積累利用一元一次不等式解決實(shí)際問(wèn)題的經(jīng)驗(yàn),滲透分類討論思想,感知方程與不等式的內(nèi)在聯(lián)系;
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值,形成實(shí)事求是的態(tài)度和獨(dú)立思考的習(xí)慣。
教學(xué)重點(diǎn):
尋找實(shí)際問(wèn)題中的不等關(guān)系,建立數(shù)學(xué)模型。
教學(xué)難點(diǎn):
弄清列不等式解決實(shí)際問(wèn)題的思想方法,用去括號(hào)法解一元一次不等式。
教學(xué)過(guò)程(師生活動(dòng))
提出問(wèn)題某學(xué)校計(jì)劃購(gòu)實(shí)若干臺(tái)電腦,現(xiàn)從兩家商店了解到同一型號(hào)的電腦每臺(tái)報(bào)價(jià)均為6000元,并且多買都有一定的優(yōu)惠。甲商場(chǎng)的優(yōu)惠條件是:第一臺(tái)按原報(bào)價(jià)收款,其余每臺(tái)優(yōu)惠25%;乙商場(chǎng)的優(yōu)惠條件是:每臺(tái)優(yōu)惠20%。如果你是校長(zhǎng),你該怎么考慮,如何選擇?
探究新知1、分組活動(dòng)。先獨(dú)立思考,理解題意。再組內(nèi)交流,發(fā)表自己的觀點(diǎn)。最后小組匯報(bào),派代表論述理由。
2、在學(xué)生充分發(fā)表意見(jiàn)的基礎(chǔ)上,師生共同歸納出以下三種采購(gòu)方案:
(1)什么情況下,到甲商場(chǎng)購(gòu)買更優(yōu)惠?
(2)什么情況下,到乙商場(chǎng)購(gòu)買更優(yōu)惠?
(3)什么情況下,兩個(gè)商場(chǎng)收費(fèi)相同?
3、我們先來(lái)考慮方案:
設(shè)購(gòu)買x臺(tái)電腦,如果到甲商場(chǎng)購(gòu)買更優(yōu)惠。
問(wèn)題1:如何列不等式?
問(wèn)題2:如何解這個(gè)不等式?
在學(xué)生充分討論的基礎(chǔ)上,教師歸納并板書(shū)如下:解:設(shè)購(gòu)買x臺(tái)電腦,如果到甲商場(chǎng)購(gòu)買更優(yōu)惠,則6000+6000(1-25%)(x-1)<6000(1-20%)x
去括號(hào),得
去括號(hào),得:6000+4500x-45004<4800x
移項(xiàng)且合并,得:-300x<1500
不等式兩邊同除以-300,得<5
答:購(gòu)買5臺(tái)以上電腦時(shí),甲商場(chǎng)更優(yōu)惠。
4、讓學(xué)生自己完成方案(2)與方案(3),并匯報(bào)完成情況。
教師最后作適當(dāng)點(diǎn)評(píng)。
解決問(wèn)題甲、乙兩個(gè)商場(chǎng)以同樣的價(jià)格出售同樣的.商品,同時(shí)又各自推出不同的優(yōu)惠措施。甲商場(chǎng)的優(yōu)惠措施是:累計(jì)購(gòu)買100元商品后,再買的商品按原價(jià)的90%收費(fèi);乙商場(chǎng)則是:累計(jì)購(gòu)買50元商品后,再買的商品按原價(jià)的95%收費(fèi)。顧客選擇哪個(gè)商店購(gòu)物能獲得更多的優(yōu)惠?
問(wèn)題1:這個(gè)問(wèn)題比較復(fù)雜。你該從何入手考慮它呢?
問(wèn)題2:由于甲商場(chǎng)優(yōu)惠措施的起點(diǎn)為購(gòu)物100元,乙商場(chǎng)優(yōu)惠措施的起點(diǎn)為購(gòu)物50元,起點(diǎn)數(shù)額不同,因此必須分別考慮。你認(rèn)為應(yīng)分哪幾種情況考慮?
分組活動(dòng)。先獨(dú)立思考,再組內(nèi)交流,然后各組匯報(bào)討論結(jié)果。
最后教師總結(jié)分析:
1、如果累計(jì)購(gòu)物不超過(guò)50元,則在兩家商場(chǎng)購(gòu)物花費(fèi)是一樣的;
2、如果累計(jì)購(gòu)物超過(guò)50元但不超過(guò)100元,則在乙商場(chǎng)購(gòu)物花費(fèi)小。
3、如果累計(jì)購(gòu)物超過(guò)100元,又有三種情況:
(1)什么情況下,在甲商場(chǎng)購(gòu)物花費(fèi)小?
(2)什么情況下,在乙商場(chǎng)購(gòu)物花費(fèi)小?
(3)什么情況下,在兩家商場(chǎng)購(gòu)物花費(fèi)相同?
上述問(wèn)題,在討論、交流的基礎(chǔ)上,由學(xué)生自己解決,教師可適當(dāng)點(diǎn)評(píng)。
總結(jié)歸納:
通過(guò)體驗(yàn)買電腦、選商場(chǎng)購(gòu)物,感受實(shí)際生活中存在的不等關(guān)系,用不等式來(lái)表示這樣的關(guān)系可為解決問(wèn)題帶來(lái)方便。由實(shí)際問(wèn)題中的不等關(guān)系列出不等式,就把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,再通過(guò)解不等式可得到實(shí)際問(wèn)題的答案。
布置作業(yè):
教科書(shū)第126頁(yè)習(xí)題9.2第1題(1)(2)第3題1、2。
數(shù)學(xué)一元一次不等式和它的解法教案 8
教學(xué)目標(biāo):
知識(shí)與技能:會(huì)解含有分母的一元一次不等式;能夠用不等式表達(dá)數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。
過(guò)程與方法:經(jīng)歷解方程和解不等式兩種過(guò)程的比較,體會(huì)類比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。
情感態(tài)度、價(jià)值觀:通過(guò)一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認(rèn)真、堅(jiān)持等良好學(xué)習(xí)習(xí)慣。.
教材分析:
本節(jié)教材首先讓學(xué)生動(dòng)手做一做解兩個(gè)不等式;之后讓大家談?wù)劷庖辉淮尾坏仁脚c解一元一次方程的異同點(diǎn);最后是關(guān)于通過(guò)列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問(wèn)題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯(cuò),可以采用通過(guò)學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問(wèn)題,學(xué)生確實(shí)會(huì)有一定困難,主要是思考不夠認(rèn)真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。
教學(xué)重點(diǎn):
1、含有分母的一元一次不等式的解法
2、用不等式表達(dá)數(shù)量之間的不等關(guān)系
3、確定不等式的'整數(shù)解
教學(xué)難點(diǎn):
1、解含有分母的一元一次不等式時(shí),去分母這一部的準(zhǔn)確性。
2、不等式的整數(shù)解的確定
教學(xué)流程:
一、直接引入
我們學(xué)習(xí)了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯(lián)系呢今天我們來(lái)探究一下。
二、探究新知
(一)解一元一次方程和解一元一次不等式的異同點(diǎn)
1、出示問(wèn)題,讓學(xué)生板演
找兩名同學(xué),分別解下面兩個(gè)問(wèn)題:
(1)解方程:﹦
(2)解不等式:
2、小組討論解一元一次方程和解一元一次不等式的過(guò)程的異同點(diǎn)。
3、師生交流。
相同點(diǎn):解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號(hào)移項(xiàng),合并同類項(xiàng)化系數(shù)為1。
不同點(diǎn):在解一元一次不等式的化系數(shù)為1時(shí),要注意不等式兩邊乘或除以同一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向。
4、運(yùn)用新知。
將下列不等式中的分母化去。
數(shù)學(xué)一元一次不等式和它的解法教案 9
教學(xué)目標(biāo)
知識(shí)與技能:
1、了解一元一次不等式組的概念。
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。
3、會(huì)解一元一次不等式組。
過(guò)程與方法:通過(guò)具體問(wèn)題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個(gè)不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過(guò)解幾個(gè)有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。
情感態(tài)度:運(yùn)用數(shù)軸確定不等式組的解集是行之有效的方法、這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。
教學(xué)重點(diǎn):
一元一次不等式組的解法。
教學(xué)難點(diǎn):
確定一元一次不等式組的解集。
教學(xué)過(guò)程:
一、情境導(dǎo)入,初步認(rèn)識(shí)
問(wèn)題1:現(xiàn)有兩根木條a和b,a長(zhǎng)10cm,b長(zhǎng)3cm,如果要再找一根木條c,用這三根木條釘成一個(gè)三角形木框,那么木條c的長(zhǎng)度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的`長(zhǎng)為xcm,則x<____,①
x>____,②
合起來(lái),組成一個(gè)__________
由①解得_____________
由②解得_____________
在數(shù)軸上表示就是________________
容易看出:x的取值范圍是____________________
這就是說(shuō),當(dāng)木條c比____cm長(zhǎng)并且比____cm短時(shí),它能與木條a和b一起釘成三角形木框、
問(wèn)題2:由上面的解不等式組的過(guò)程用自己的語(yǔ)言歸納出一元一次不等式組的解法
教學(xué)說(shuō)明:全班同學(xué)可獨(dú)立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
歸納結(jié)論
1、定義:
(1)一元一次不等式組:幾個(gè)含有相同未知數(shù)的一元一次不等式合起來(lái)組成一個(gè)一元一次不等式組、(2)一元一次不等式組的解集:幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集、(3)解不等式組:求一元一次不等式組的解集的過(guò)程叫解一元一次不等式組、
2、一元一次不等式組的解法:
(1)求出每個(gè)一元一次不等式的解集、
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集。
數(shù)學(xué)一元一次不等式和它的解法教案 10
一、教材分析
《一元一次不等式組》是華東師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)七年級(jí)下冊(cè)第八章第三節(jié),我把本節(jié)內(nèi)容分為兩個(gè)課時(shí),第一課時(shí)是一元一次不等式組的概念及解法,第二課時(shí)是不等式組的實(shí)踐與探索。今天,我說(shuō)課的內(nèi)容是第一課時(shí)。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)本節(jié)的要求是:充分感受生活中存在著大量的不等關(guān)系,了解不等式組的意義;會(huì)解簡(jiǎn)單的一元一次不等式組,并會(huì)用數(shù)軸確定解集。
《一元一次不等式》的主要內(nèi)容是一元一次不等式(不等式組)的解法及其簡(jiǎn)單應(yīng)用。是在學(xué)習(xí)了有理數(shù)的大小比較、等式及其性質(zhì)、一元一次方程的基礎(chǔ)上,開(kāi)始學(xué)習(xí)簡(jiǎn)單的數(shù)量之間的不等關(guān)系,進(jìn)一步探究現(xiàn)實(shí)世界數(shù)量關(guān)系的重要內(nèi)容,是繼一元一次方程和二元一次方程組之后,又一次數(shù)學(xué)建模思想的學(xué)習(xí),也是后繼學(xué)習(xí)一元二次方程、函數(shù)及進(jìn)一步學(xué)習(xí)不等式的重要基礎(chǔ),具有承前啟后的重要作用。
《一元一次不等式組》是本章的最后一節(jié),是一元一次不等式知識(shí)的綜合運(yùn)用和拓展延伸,是進(jìn)一步刻畫(huà)現(xiàn)實(shí)世界數(shù)量關(guān)系的數(shù)學(xué)模型,是下一節(jié)利用一元一次不等式組解決實(shí)際問(wèn)題的關(guān)鍵。因此,我把本節(jié)課的教學(xué)重點(diǎn)確定為一元一次不等式組的解法。
數(shù)學(xué)課程應(yīng)當(dāng)從學(xué)生熟悉的現(xiàn)實(shí)生活開(kāi)始,沿著數(shù)學(xué)發(fā)現(xiàn)過(guò)程中人類的活動(dòng)軌跡,從生活中的問(wèn)題到數(shù)學(xué)問(wèn)題,從具體問(wèn)題到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過(guò)學(xué)生自己的發(fā)現(xiàn)去學(xué)習(xí)數(shù)學(xué)、獲取知識(shí)。得到抽象化的數(shù)學(xué)知識(shí)之后,再及時(shí)地把它們應(yīng)用到新的現(xiàn)實(shí)問(wèn)題上去。按照這樣的途徑發(fā)展,數(shù)學(xué)教育才能較好地溝通生活中的數(shù)學(xué)與課堂上的數(shù)學(xué)的`聯(lián)系,才能有益于學(xué)生理解數(shù)學(xué),熱愛(ài)數(shù)學(xué)和使數(shù)學(xué)成為生活中有用的本領(lǐng)。
本節(jié)課,既有概念教學(xué)又有解題教學(xué),而概念教學(xué),應(yīng)該從生活、生產(chǎn)實(shí)例或?qū)W生熟悉的已有知識(shí)引入,引導(dǎo)學(xué)生通過(guò)觀察、比較、分析、綜合,抽取共性,得到概念的本質(zhì)屬性。在此基礎(chǔ)上歸納概括出概念的定義,并引導(dǎo)學(xué)生弄清定義中每一個(gè)字、詞的確切含義。華師版的教科書(shū)中,只設(shè)計(jì)了一個(gè)問(wèn)題情境,我感覺(jué)還不夠,不能從一個(gè)問(wèn)題抽象出概念的本質(zhì)。因此,在這里我又增加了一個(gè)問(wèn)題情境,以增加對(duì)不等式組概念的理解,加強(qiáng)數(shù)學(xué)應(yīng)用意識(shí)的培養(yǎng)。
二、學(xué)情分析
從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來(lái)說(shuō),學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡(jiǎn)單的實(shí)際問(wèn)題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化能力。但學(xué)生將兩個(gè)一元一次不等式的解集在同一數(shù)軸上表示會(huì)產(chǎn)生一定的困惑。這個(gè)年齡段的學(xué)生,以感性認(rèn)識(shí)為主,并向理性認(rèn)知過(guò)渡,所以,我對(duì)本節(jié)課的設(shè)計(jì)是通過(guò)兩個(gè)學(xué)生所熟悉的問(wèn)題情境,讓學(xué)生獨(dú)立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
基于對(duì)學(xué)情的分析,我確定了本節(jié)課的教學(xué)難點(diǎn)是:正確理解不等式組的解集。
三、教學(xué)目標(biāo)
在教材分析和學(xué)情分析的基礎(chǔ)上,結(jié)合預(yù)設(shè)的教學(xué)方法,確定了本節(jié)課的教學(xué)目標(biāo)如下:
1、通過(guò)實(shí)例體會(huì)一元一次不等式組是研究量與量之間關(guān)系的重要模型之一。
2、了解一元一次不等式組及解集的概念。
3、會(huì)利用數(shù)軸解較簡(jiǎn)單的一元一次不等式組。
4、培養(yǎng)學(xué)生分析、解決實(shí)際問(wèn)題的能力。
5、通過(guò)實(shí)際問(wèn)題的解決,體會(huì)數(shù)學(xué)知識(shí)在生活中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣。能在解決問(wèn)題過(guò)程中勤于思考、樂(lè)于探究,體驗(yàn)解決問(wèn)題策略的多樣性,體驗(yàn)數(shù)學(xué)的價(jià)值。
四、教學(xué)手段
本節(jié)課采用多媒體教學(xué),利用多媒體教學(xué)信息容量大、操作簡(jiǎn)單、形象生動(dòng)、反饋及時(shí)等優(yōu)點(diǎn),直觀地展示教學(xué)內(nèi)容,這樣不但可以提高學(xué)習(xí)效率和質(zhì)量,而且容易激發(fā)學(xué)生學(xué)習(xí)的興趣,調(diào)動(dòng)積極性。
五、教學(xué)過(guò)程
本節(jié)課的教學(xué)流程如下:實(shí)際問(wèn)題——一元一次不等式組——解集——解法——應(yīng)用。
本節(jié)課我設(shè)計(jì)了五個(gè)活動(dòng)。
活動(dòng)一、實(shí)際問(wèn)題,創(chuàng)設(shè)情境
問(wèn)題1:小寶和爸爸,媽媽三人在操場(chǎng)上玩蹺蹺板,爸爸體重為72千克,體重只有媽媽一半的小寶和媽媽一同坐在蹺蹺板的另一端,這時(shí)爸爸的一端仍然著地后來(lái),小寶借來(lái)一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果爸爸被蹺起離地.猜猜小寶的體重約是多少?在這個(gè)問(wèn)題中,如果設(shè)小寶的體重為x千克
。1)從蹺蹺板的狀況你可以找出怎樣的不等關(guān)系?
。2)你認(rèn)為怎樣求x的范圍,可以盡可能地接近小寶的體重?
我提出問(wèn)題(1),學(xué)生獨(dú)立思考,回答問(wèn)題。
考察學(xué)生對(duì)應(yīng)用一元一次不等式解決實(shí)際問(wèn)題的能力,并引出新知。
教師提出問(wèn)題(2),學(xué)生小組合作、探索交流,回答問(wèn)題。
我預(yù)計(jì)學(xué)生對(duì)于這個(gè)問(wèn)題會(huì)產(chǎn)生兩種不同的看法:一種方法是利用估算的方法將特殊值代入來(lái)求出適合不等式組的特殊解;另一種方法是求出兩個(gè)不等式的解集,并分別將這兩個(gè)解集在數(shù)軸上表示。因此教師應(yīng)引導(dǎo)學(xué)生進(jìn)一步理解本題的實(shí)際意義,能將兩個(gè)不等式的解集綜合分析。
這里是通過(guò)對(duì)數(shù)量關(guān)系的分析、抽象,突出數(shù)學(xué)建模思想的教學(xué),注重對(duì)學(xué)生進(jìn)行引導(dǎo),讓學(xué)生充分發(fā)表意見(jiàn),并鼓勵(lì)學(xué)生提出不同的解法。
問(wèn)題2:現(xiàn)有兩根木條,一根長(zhǎng)為10厘米,另一根長(zhǎng)為30厘米,如果再找一根木條,用這三根木條釘一個(gè)三角形木框,那么第三根木條的長(zhǎng)度有什么要求?
教師提出問(wèn)題,學(xué)生獨(dú)立思考,回答問(wèn)題。
教學(xué)效果預(yù)估與對(duì)策:預(yù)計(jì)學(xué)生對(duì)三角形三邊關(guān)系可能有所遺忘,教師應(yīng)給予提示。
設(shè)計(jì)意圖:這是一個(gè)與三角形相關(guān)的問(wèn)題,要求學(xué)生能綜合運(yùn)用已有的知識(shí),獨(dú)立思考、自主探索、嘗試解決,促使學(xué)生在探索和解決問(wèn)題的過(guò)程中獲得體驗(yàn)、得到發(fā)展,學(xué)會(huì)新的東西,發(fā)展自己的思維能力。
活動(dòng)二、總結(jié)歸納,得出概念
1一元一次不等式組
通過(guò)上面兩個(gè)實(shí)際問(wèn)題的探究,歸納概括出一元一次不等式組的概念和一元一次不等式組解集的概念。
即:把兩個(gè)(或兩個(gè)以上)一元一次不等式合在一起,就得到了一個(gè)一元一次不等式組(linearinequalitiesofoneunknown)。2一元一次不等式組的解集
同時(shí)滿足不等式(1)、(2)的未知數(shù)x應(yīng)是這兩個(gè)不等式解集的公共部分。在同一數(shù)軸上表示出這兩個(gè)解集,找到公共部分,就是所列不等式組的解集。
不等式組中幾個(gè)不等式的解集的公共部分,叫做這個(gè)不等式組的解集。
師生活動(dòng):在活動(dòng)一的基礎(chǔ)上,將學(xué)生得出的結(jié)論進(jìn)行歸納總結(jié)。教師要注意傾聽(tīng)學(xué)生敘述問(wèn)題的準(zhǔn)確性和全面性。
教學(xué)效果預(yù)估與對(duì)策:估計(jì)多數(shù)學(xué)生在經(jīng)歷了上述的探索過(guò)程后,能夠?qū)@個(gè)結(jié)論有所認(rèn)識(shí),但是未必能夠全面得出結(jié)論。因此,教師要耐心加以引導(dǎo)。
通過(guò)學(xué)生的自主探究,合作交流,培養(yǎng)學(xué)生的總結(jié)歸納能力。
活動(dòng)三、解釋應(yīng)用、拓展延伸
例題:解下列不等式組,并把它們的解集在數(shù)軸上表示出來(lái):
師生活動(dòng):師生共同完成,教師板書(shū)。
在對(duì)一元一次不等式意義理解的基礎(chǔ)上,會(huì)解一元一次不等式組。(2)是對(duì)解一元一次不等式組的拓展延伸。
練習(xí)1:用每分鐘可抽30噸水的抽水機(jī)來(lái)抽污水管道里積存的污水,估計(jì)積存的污水不少于1200噸且不超過(guò)1500噸,那么大約多少時(shí)間能將污水抽完?
練習(xí)2:某次知識(shí)競(jìng)賽有50道選擇題,評(píng)分標(biāo)準(zhǔn)為:答對(duì)一題得2分,答錯(cuò)一題扣1分,不答題不得分也不扣分,某學(xué)生4道題沒(méi)答,但得分超過(guò)70分,他可能答對(duì)了多少道題?
師生活動(dòng):教師展示多媒體課件,學(xué)生獨(dú)立完成。
設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析、解決實(shí)際問(wèn)題的能力。
練習(xí)3:求不等式組的解集。
練習(xí)4:求不等式組的正整數(shù)解。
師生活動(dòng):教師展示多媒體課件,學(xué)生獨(dú)立完成。
設(shè)計(jì)意圖:這兩道習(xí)題的設(shè)置讓學(xué)生進(jìn)一步理解一元一次不等式組解集的概念,會(huì)用數(shù)軸表示一元一次不等式組的解集。
活動(dòng)四、課堂小結(jié)
我提出了三個(gè)問(wèn)題:
1、通過(guò)本課的學(xué)習(xí),你學(xué)到了哪些新的知識(shí)?
2、一元一次不等式組與不等式在解法和解集上有什么聯(lián)系?
3、在學(xué)習(xí)這些知識(shí)的過(guò)程中,你的經(jīng)驗(yàn)與教訓(xùn)是什么?
在學(xué)生回答的基礎(chǔ)上,教師作如下的歸納總結(jié):
1、學(xué)習(xí)一元一次不等式組是數(shù)學(xué)知識(shí)拓展的需要,也是現(xiàn)實(shí)生活的需要,不等式組的知識(shí)源于生活實(shí)際,要學(xué)會(huì)分析現(xiàn)實(shí)世界中量與量的不等關(guān)系,解一元一次不等式組。
2、將一元一次不等式組的解集在數(shù)軸上表示可以加深對(duì)一元一次不等式組解集的理解,也便于直觀地得到一元一次不等式組的解集,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法。
在課堂小結(jié)的過(guò)程中,教師提出問(wèn)題,學(xué)生回答,互相補(bǔ)充.
教學(xué)效果預(yù)估與對(duì)策:預(yù)計(jì)學(xué)生在利用本節(jié)知識(shí)解決所提出的問(wèn)題的過(guò)程中,能夠總結(jié)出經(jīng)驗(yàn)和教訓(xùn),有所收獲。教師要加以引導(dǎo),師生之間相互加以完善。
設(shè)計(jì)意圖:學(xué)生通過(guò)第一個(gè)問(wèn)題,可以回顧出本節(jié)課所學(xué)到的知識(shí);通過(guò)第二個(gè)問(wèn)題,使學(xué)生在與一元一次不等式的對(duì)比中加深對(duì)一元一次不等式組的理解,并形成知識(shí)網(wǎng)絡(luò)。通過(guò)第三個(gè)問(wèn)題,培養(yǎng)學(xué)生克服困難的自信心、意志力,并獲得成功的體驗(yàn),有助于學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的價(jià)值。
活動(dòng)五、課后作業(yè)
1、教材P53練習(xí)1、2、4;
2、P55復(fù)習(xí)題A組5、6。
教師布置作業(yè),學(xué)生記錄作業(yè).
估計(jì)大部分學(xué)生可以較為順利完成作業(yè)1;作業(yè)2具有一定的難度,需要學(xué)生首先進(jìn)行判斷,如果思維上存在障礙,可降低思維難度。
作業(yè)的設(shè)計(jì),可以讓學(xué)生鞏固所學(xué)知識(shí),讓學(xué)生在這個(gè)環(huán)節(jié)中,進(jìn)一步理解和體會(huì)數(shù)學(xué)建模思想在實(shí)際問(wèn)題中的應(yīng)用。
【數(shù)學(xué)一元一次不等式和它的解法教案】相關(guān)文章:
《一元二次不等式解法》高中數(shù)學(xué)教案01-20
一元一次不等式教學(xué)反思01-15
《一元一次不等式》說(shuō)課稿(精選10篇)07-05
《一次函數(shù)與一元一次不等式》教學(xué)反思01-16
一次函數(shù)與一元一次不等式教學(xué)反思(精選10篇)07-24
一元一次方程數(shù)學(xué)教案02-23
一元一次方程數(shù)學(xué)教案06-13
數(shù)學(xué)教案不等式的解集06-07