- 相關推薦
數(shù)學教案-畫正多邊形
教學設計示例1
教學目標:
。1)了解用量角器等分圓心角來等分圓;掌握用尺規(guī)作圓內接正方形和正六邊形,能作圓內接正八邊形、正三角形、正十二邊形;
。2)通過畫圖培養(yǎng)學生的畫圖能力;
。3)對學生進行審美教育,提高學生的審美能力,促進學生對幾何學習的熱情.
教學重點:
(1)量角器等分圓心角來等分圓;
(2)尺規(guī)作圓內接正方形和正六邊形.
教學難點:
準確作圖.
教學活動設計:
。ㄒ唬┨岢鰡栴}:
由于正多邊形在生產、生活實際中有廣泛的應用性,所以會畫正多邊形應是學生必備能力之一.
問題1:已知⊙O的半徑為2cm,求作圓的內接正三角形.
教師組織學生進行,方法不限.
目的:充分發(fā)展學生的發(fā)散思維.
。ǘ┙鉀Q問題:
以下為解決問題的參考方案:(上課時教師歸納學生的方法)
(1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.
、谟昧拷瞧鞫攘,使∠AOB=∠BOC=∠COA=120°.
(2)尺規(guī)法:(如上右圖)用圓規(guī)在⊙O上截取長度等于半徑(2cm)的弦,連結AB、BC、CA即可.
(3)計算與尺規(guī)結合法:由正三角形的半徑與邊長的關系可得,正三角形的邊長= R=2(cm),用圓規(guī)在⊙O上截取長度為2(cm)的弦AB、AC,連結AB、BC、CA即可.
。ㄈ┭芯、歸納
1、用量角器等分圓:
依據(jù):等圓中相等的圓心角所對應的弧相等.
操作:兩種情況:其一是依次畫出相等的圓心角來等分圓,這種方法比較準確,但是麻煩;其二是先用量角器畫一個圓心角,然后在圓上依次截取等于該圓心角所對弧的等弧,于是得到圓的等分點,這種方法比較方便,但畫圖的誤差積累到最后一個等分點,使畫出的正多邊形的邊長誤差較大.
問題2:把半徑為2cm⊙O九等份.
。ㄏ犬嫲霃2cm的圓,然后把360°的圓心角9等份,每一份40°)
歸納:用量角器等分圓,方法簡便,可以把圓任意n等分,但有誤差.
2、用尺規(guī)等分圓:
。1)問題3:作正四邊形、正八邊形.
教師組織學生,分析、作圖.
歸納:只要作出已知⊙O的互相垂直的直徑即得圓內接正方形,再過圓心作各邊的垂線與⊙O相交,或作各中心角的角平分線與⊙O相交,即得圓接正八邊形,照此方法依次可作正十六邊形、正三十二邊形、正六十四邊形……
。2)問題4:作正六、三、十二邊形.
教師組織學生,分析、作圖.
歸納:先作出正六邊形,則可作正三角形,正十二邊形,正二十四邊形………理論上我們可以一直畫下去,但大家不難發(fā)現(xiàn),隨著邊數(shù)的增加,正多邊形越來越接近于圓,正多邊形將越來越難畫.
(四)總結
。1)用量角器等分圓周作正n邊形;
。2)用尺規(guī)作正方形及由此擴展作正八邊形、用尺規(guī)作正六邊形及由此擴展作正12邊形、正三角形.
(五)作業(yè) 教材P173中13.
教學設計示例2
教學目標:
1、能應用畫正多邊形解決實際問題;會畫正五邊形的近似圖;了解等分圓的美麗圖形;
2、通過運用正多邊形的有關計算和畫圖解決實際問題培養(yǎng)學生分析問題、解決問題的能力;
3、對學生進行審美教育和文化傳統(tǒng)教育和愛國教育;
4、滲透數(shù)學建模思想.
教學重點:
應用正多邊形的計算與畫圖解決實際問題.
教學難點:
數(shù)學模型的建立,和正多邊形的有關計算問題.
教學活動設計:
(一)知識回顧:
分別畫半徑2cm的圓內接正六邊形、內接正三角形、內接正十二邊形、內接正方形、內接正八邊形.
要求①尺規(guī)作圖;②說明畫法;③指出作圖依據(jù);④學生獨立完成.
教師巡視,對畫的好的學生給于表揚,對有問題的學生給于指導.
(二)畫圖應用:
例1、有一個亭子,它的地基是半徑為4m的正八邊形,(1)用1∶200的比例尺畫出地基平面圖;(2)求地基的邊長a8(精確到0.01m)和面積S8(精確到0.1m2)
教師引導學生分析:①比例尺= ;②正八邊形的半徑R=2cm;③如何解正八邊形和近似計算.
。1)畫法:1.以任意一點O為圓心,以4m的 ,即2cm為半徑畫⊙O(如圖).
2.作⊙O的直徑AC、BD,使AC⊥BD.
3.作平分 、的直徑EG、FH.
4.順次連結AE、EB、BF、FC、CG、GD、DH、HA.
八邊形AEBFCGDH就是亭子地基的正八邊形.
(2)解(學生分析解題方法):
(m)
(m)
(m2)
答:(略)
我國民間相傳有五邊形的近似畫法,畫法口訣是:“九五頂五九,八五兩邊分”,它的意義如圖:如果正五邊形的邊長為10,作它的中垂線AF,取AF=15.4,在AF上取FM=9.5,則AM=5.9,過點M作BE⊥AF,在BE上取BM=ME=8.連結AB、BC、DE、EA即可.
例2、用民間相傳畫法口訣,畫邊長為20mm的正五邊形.
分析:要畫邊長20mm的正五邊形,關鍵在于計算出口訣中各部分的尺寸,由于要畫的正五邊形與口訣正五邊形相似,所以要畫的正五邊形的各部分應與口訣正五邊形各部分對應成比例.由已知知道要畫正五邊形的邊CD=20mm.請同學們算出各部分的尺寸,并按口訣畫出正五邊形ABCDE.
。ó嫹ǎ郝裕畢⒖唇滩腜170)
說明:雖然這種畫法是近似畫法,但是這種畫法的精確度卻是很高的.有能力的學生課下可以探究和計算.
通過正五邊形的民間近似畫法的教學弘揚民族文化,揭示其科學性,滲透實踐出真知的觀點.
(三)優(yōu)美圖案欣賞和畫法:
請學生欣賞下列圖案,分析圖案結構,畫出圖案.
組織學生進行,可以讓學生獨立完成,也可以讓學生協(xié)作完成,對畫的較好的同學給予表彰.
。ㄋ模┛偨Y
1、運用正多邊形的知識解決實際問題;
2、學習了民間畫正五邊形的近似畫法;
3、學習了分解與組合有關正多邊形的幾何圖案.
(五)作業(yè)
教材P171中練習1;P173中12;P173中14.
探究活動
圖案設計
某學校在教學樓前的圓形廣場中,準備建造一個花園,并在花園內分別種植牡丹、月季和杜鵑三種花卉。為了美觀,種植要求如下:
。1)種植4塊面積相等的牡丹、4塊面積相等的月季和一塊杜鵑。(注意:面積相等必須由數(shù)學知識作保證)
。2)花卉總面積等于廣場面積
(3)花園邊界只能種植牡丹花,杜鵑花種植在花園中間且與牡丹花沒有公共邊。
請你設計種植方案:(設計的方案越多越好;不同的方案類型不同.)
【數(shù)學教案-畫正多邊形】相關文章:
畫正多邊形教學反思02-03
畫梅花的作文:畫心中之梅08-17
畫鼻子08-17
畫箱08-18
畫嘴巴09-04
畫鼻子作文08-24
畫優(yōu)秀作文08-24
《畫》教學反思08-23
與畫共舞作文08-25
畫林的作文08-30