高一數(shù)學(xué)教案精選15篇
作為一名為他人授業(yè)解惑的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。來(lái)參考自己需要的教案吧!下面是小編收集整理的高一數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
高一數(shù)學(xué)教案1
學(xué)習(xí)目標(biāo)
1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
2.會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
3.會(huì)求拋物線的標(biāo)準(zhǔn)方程。
一、預(yù)習(xí)檢查
1.完成下表:
標(biāo)準(zhǔn)方程
圖形
焦點(diǎn)坐標(biāo)
準(zhǔn)線方程
開口方向
2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
3.求經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
二、問(wèn)題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
例1.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
例3.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,它與圓相交,公共弦的長(zhǎng)為.求該拋物線的方程,并寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
三、思維訓(xùn)練
1.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的.橫坐標(biāo)為.
2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
5.(理)已知拋物線,有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長(zhǎng)為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準(zhǔn)線方程是.
2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的距離為.
3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
4.經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,過(guò)焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長(zhǎng)為8,求拋物線的方程.
7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。
高一數(shù)學(xué)教案2
一、課標(biāo)要求:
理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.
二、知識(shí)與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來(lái)否定結(jié)論
5、化歸思想:
表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;
這里要注意原命題 逆否命題、逆命題 否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.
6、數(shù)形結(jié)合思想:
利用韋恩圖(即集合的包含關(guān)系)來(lái)判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎(chǔ)訓(xùn)練:
1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 設(shè)集合M,N為是全集U的兩個(gè)子集,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 若 是實(shí)數(shù),則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
四、例題講解
例1 已知實(shí)系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )
(1) 是這個(gè)方程有實(shí)根的充分不必要條件
(2) 是這個(gè)方程有實(shí)根的必要不充分條件
(3) 是這個(gè)方程有實(shí)根的充要條件
(4) 是這個(gè)方程有實(shí)根的充分不必要條件
A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)
例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問(wèn)甲是乙的 ( )
(2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的. ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
變式:a = 0是直線 與 平行的 條件;
例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.
例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
例5 設(shè) 是方程 的兩個(gè)實(shí)根,試分析 是兩實(shí)根 均大于1的什么條件?并給予證明.
五、課堂練習(xí)
1、設(shè)命題p: ,命題q: ,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③ 若r則﹁s
、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;
3、是否存在實(shí)數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說(shuō)明理由.
六、課堂小結(jié):
七、教學(xué)后記:
高三 班 學(xué)號(hào) 姓名 日期: 月 日
1、 A B是AB=B的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 2x2-5x-30的一個(gè)必要不充分條件是 ( )
A.-
4、2且b是a+b4且ab的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
5、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
6、若命題A: ,命題B: ,則命題A是B的 條件;
7、設(shè)條件p:|x|=x,條件q:x2-x,則p是q的 條件;
8、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是 ;
9、關(guān)于x的方程x2+mx+n = 0有兩個(gè)小于1的正根的一個(gè)充要條件是 ;
10、已知 ,求證: 的充要條件是 ;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)m的取值范圍。
12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有兩個(gè)正根的充要條件;
(2)方程至少有一正根的充要條件.
高一數(shù)學(xué)教案3
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過(guò)程:
、.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:
問(wèn)題一:y=1(xR)是函數(shù)嗎?
問(wèn)題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問(wèn)題,因此,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)概念(板書課題).
、.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的.關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語(yǔ)言敘述后,我們就很容易回答前面所提出的兩個(gè)問(wèn)題.
y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說(shuō)y是x的函數(shù).
Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問(wèn)題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
②符號(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
、奂螦中數(shù)的任意性,集合B中數(shù)的惟一性.
、躥表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來(lái)表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-20,即x2時(shí),1x-2 有意義
這個(gè)函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時(shí)3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問(wèn)題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為x m,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問(wèn)題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來(lái)表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來(lái)看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說(shuō)是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過(guò)要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬(wàn)萬(wàn)不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說(shuō),判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語(yǔ):是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無(wú)人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問(wèn)題都要多問(wèn)幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎](méi)想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當(dāng)x[-3,1]時(shí),得y[-1,8]
、.課堂練習(xí)
課本P24練習(xí)17.
Ⅴ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問(wèn)題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來(lái)歸納)
、.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來(lái)
高一數(shù)學(xué)教案4
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的'角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)教案5
數(shù)學(xué)課堂教學(xué)
三維目標(biāo)的具體內(nèi)容和層次劃分
請(qǐng)闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
知識(shí)與技能掌握應(yīng)用,既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。教與學(xué),都要通過(guò)知識(shí)與技能來(lái)體現(xiàn)的。那么,什么是三維目標(biāo)內(nèi)容呢?
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過(guò)程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過(guò)程中,需要學(xué)生掌握什么,哪些些問(wèn)題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問(wèn)題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的'優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過(guò)度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過(guò)程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)!斑^(guò)程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過(guò)程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過(guò)程與方法是一個(gè)體驗(yàn)的過(guò)程、發(fā)現(xiàn)的過(guò)程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過(guò)程,我們更多地要讓學(xué)生掌握過(guò)程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)。“情感、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂(lè)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過(guò)程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來(lái)回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問(wèn)題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
高一數(shù)學(xué)教案6
教學(xué)目的:
。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類型:新授課
課時(shí)安排:1課時(shí)
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號(hào)?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。
定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.
1、集合的概念
(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)
。2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合 記作Z ,
。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0
。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的.元素,就說(shuō)a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒(méi)有重復(fù)
。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對(duì)象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù) (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )
。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
(1) 當(dāng)x∈N時(shí), x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無(wú)序性
3、常用數(shù)集的定義及記法
高一數(shù)學(xué)教案7
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線的方程、圓的方程以及點(diǎn)到直線的距離公式;掌握利用方程組的方法來(lái)求直線的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識(shí)與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線的距離的方法簡(jiǎn)單判斷出直線與圓的關(guān)系。
(二)過(guò)程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的'能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。
設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見解的分析及對(duì)該學(xué)生的鼓勵(lì)。
判斷方法:
(1)定義法:看直線與圓公共點(diǎn)個(gè)數(shù)
即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點(diǎn)到直線的距離,便可以直接利用點(diǎn)到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點(diǎn)的方法,聯(lián)立直線與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線l與圓C相交;
當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線l與圓C相切;
當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線l與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。
七、板書設(shè)計(jì)
我的板書本著簡(jiǎn)介、直觀、清晰的原則,這就是我的板書設(shè)計(jì)。
高一數(shù)學(xué)教案8
【內(nèi)容與解析】
本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
。1)理解函數(shù)的概念;
。2)了解區(qū)間的概念;
2、目標(biāo)解析
。1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問(wèn)題診斷分析】
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過(guò)程】
問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的.依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。
問(wèn)題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。
問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?
【例題】:
例1求下列函數(shù)的定義域
分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3下列函數(shù)中哪個(gè)與函數(shù)相等?
例4在下列各組函數(shù)中與是否相等?為什么?
分析:
。1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;
。2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.
【課堂目標(biāo)檢1測(cè)】
教科書第19頁(yè)1、2.
【課堂小結(jié)】
1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。
高一數(shù)學(xué)教案9
本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性
課題:1.3.2函數(shù)的奇偶性
一、三維目標(biāo):
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操. 通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
二、學(xué)習(xí)重、難點(diǎn):
重點(diǎn):函數(shù)的奇偶性的概念。
難點(diǎn):函數(shù)奇偶性的判斷。
三、學(xué)法指導(dǎo):
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的`體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
四、知識(shí)鏈接:
1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:
2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說(shuō)出圖象的對(duì)稱性。
五、學(xué)習(xí)過(guò)程:
函數(shù)的奇偶性:
(1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:
如果______________________________________,那么函數(shù) 為奇函數(shù);
如果______________________________________,那么函數(shù) 為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。
(3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的增減性 。
六、達(dá)標(biāo)訓(xùn)練:
A1、判斷下列函數(shù)的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .
B3、已知 ,其中 為常數(shù),若 ,則
_______ .
B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )
(A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)
B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .
C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)
時(shí), =_______ .
D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .
七、學(xué)習(xí)小結(jié):
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
八、課后反思:
高一數(shù)學(xué)教案10
一、教材
首先談?wù)勎覍?duì)教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。
三、教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過(guò)程與方法
在經(jīng)歷兩條直線平行與垂直的判定過(guò)程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀
在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
四、教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線平行與垂直的判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的`一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢(shì)提問(wèn):能否通過(guò)直線的斜率,來(lái)判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識(shí)進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)教案11
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了教育要面向世界,面向未來(lái),面向現(xiàn)代化和教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)生狀況分析
本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識(shí)掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績(jī)以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來(lái)看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問(wèn)問(wèn)題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
教材簡(jiǎn)析
使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問(wèn)題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章 集合
通過(guò)本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語(yǔ)言表示數(shù)學(xué)對(duì)象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng)
2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;
4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的'并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過(guò)程中,培養(yǎng)學(xué)生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問(wèn)題入手,以問(wèn)題為背景,按照問(wèn)題情境數(shù)學(xué)活動(dòng)意義建構(gòu)數(shù)學(xué)理論數(shù)學(xué)應(yīng)用回顧反思的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問(wèn)題。通過(guò)本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語(yǔ)言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問(wèn)題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問(wèn)題和解決問(wèn)題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章 三角函數(shù)
通過(guò)本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問(wèn)題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問(wèn)題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章 平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語(yǔ)言和方法表述和解決數(shù)學(xué)和物理中的一些問(wèn)題,發(fā)展運(yùn)算能力和解決實(shí)際問(wèn)題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問(wèn)題。
第三章 三角恒等變換
通過(guò)推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過(guò)程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)新 課 標(biāo)
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要內(nèi)容,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識(shí)的過(guò)程中逐步培養(yǎng)起來(lái)的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。
加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識(shí),培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
7、加強(qiáng)學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng)
六、教學(xué)時(shí)間大致安排
集合與函數(shù)概念 13 課時(shí)
基本初等函數(shù) 15
課時(shí)
函數(shù)的應(yīng)用 8
課時(shí)
三角函數(shù) 24
課時(shí)
平面向量 14
課時(shí)
三角恒等變換 9
課時(shí)
高一數(shù)學(xué)教案12
教學(xué)目標(biāo)
1.理解分?jǐn)?shù)指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義。
2.掌握有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),靈活的運(yùn)用乘法公式進(jìn)行有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn),會(huì)進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的相互轉(zhuǎn)化。
教學(xué)重點(diǎn)
1.分?jǐn)?shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解。
3.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。
教學(xué)難點(diǎn)
1.分?jǐn)?shù)指數(shù)冪含義的理解。
2.有理數(shù)指數(shù)冪的運(yùn)算和化簡(jiǎn)。
教學(xué)過(guò)程
一.問(wèn)題情景
上節(jié)課研究了根式的意義及根式的性質(zhì),那么根式與指數(shù)冪有什么關(guān)系?整數(shù)指數(shù)冪有那些運(yùn)算性質(zhì)?
二.學(xué)生活動(dòng)
1.說(shuō)出下列各式的意義,并指出其結(jié)果的指數(shù),被開方數(shù)的指數(shù)及根指數(shù)三者之間的關(guān)系
。1)=(2)=
2.從上述問(wèn)題中,你能得到的結(jié)論為
3.(a0)及(a0)能否化成指數(shù)冪的形式?
三.?dāng)?shù)學(xué)理論
正分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
負(fù)分?jǐn)?shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))
1.規(guī)定:0的正分?jǐn)?shù)指數(shù)冪仍是0,即=0
0的負(fù)分?jǐn)?shù)指數(shù)冪無(wú)意義。
3.規(guī)定了分?jǐn)?shù)指數(shù)冪的`意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于有理數(shù)指數(shù)冪。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.?dāng)?shù)學(xué)運(yùn)用
例1求值:
(1)(2)(3)(4)
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式(a0)
。1)(2)
例3化簡(jiǎn)
。1)
(2)(3)
例4化簡(jiǎn)
例5已知求(1)(2)
五.回顧小結(jié)
1.分?jǐn)?shù)指數(shù)冪的意義。=(0,m,n)
無(wú)意義
2.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)
3.整式運(yùn)算律及乘法公式在分?jǐn)?shù)指數(shù)冪運(yùn)算中仍適用
4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實(shí)數(shù)指數(shù)冪,請(qǐng)同學(xué)們閱讀P47的閱讀部分
練習(xí)P47-48練習(xí)1,2,3,4
六.課外作業(yè)
P48習(xí)題2.2(1)2,4
高一數(shù)學(xué)教案13
重點(diǎn)
理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.
難點(diǎn)
理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.
一、創(chuàng)設(shè)情境,導(dǎo)入新知
展示實(shí)物:時(shí)鐘,圓規(guī),折扇等.
(1)觀察實(shí)物與圖片,你發(fā)現(xiàn)其中有什么相同圖形嗎?學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生.
(2)你能把觀察得到的圖形畫在本子上或黑板上嗎?這是一些什么圖形?思考,動(dòng)手畫一畫.
(3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點(diǎn)嗎?
學(xué)生相互交流并回答,挖掘和利用現(xiàn)實(shí)生活中與角相關(guān)的背景,讓學(xué)生在現(xiàn)實(shí)背景中認(rèn)識(shí)角,培養(yǎng)學(xué)生的動(dòng)手能力.引導(dǎo)學(xué)生觀察并歸納角的共同點(diǎn),進(jìn)而引入課題.
二、自主合作,感受新知
回顧以前學(xué)的知識(shí)、閱讀課文并結(jié)合生活實(shí)際,完成“預(yù)習(xí)導(dǎo)學(xué)”部分.
三、師生互動(dòng),理解新知
探究點(diǎn)一:角的概念及表示方法
活動(dòng)一:從生活中認(rèn)識(shí)角
我們看物體時(shí),有視角,鐘表的指針轉(zhuǎn)動(dòng)也形成角.請(qǐng)同學(xué)們看課本后回答下面問(wèn)題.
(1)角是一個(gè)幾何圖形,請(qǐng)大家說(shuō)說(shuō),角是由什么圖形構(gòu)成的?(學(xué)生回答,教師點(diǎn)評(píng),注意鼓勵(lì)學(xué)生)
(2)如果我們把角看作是一條射線繞它的端點(diǎn)旋轉(zhuǎn)圍成的圖形,那么始邊和終邊又指什么?
教師總結(jié):角有兩個(gè)定義,一個(gè)是靜態(tài)的定義,把角看作由一點(diǎn)出發(fā)的兩條射線組成的圖形;另一個(gè)定義是動(dòng)態(tài)的,把角看作一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形,把開始位置的射線叫做始邊,把終止位置的射線叫做終邊.
(3)請(qǐng)同學(xué)們說(shuō)一說(shuō),我們?nèi)粘I钪,哪些地方有角?學(xué)生舉例)
活動(dòng)二:角的表示方法
我們?cè)鯓颖硎窘悄??qǐng)同學(xué)們看課本上說(shuō)了幾種表示方法?(學(xué)生先看書,后回答)
教師總結(jié):(1)用三個(gè)大寫字母可以表示一個(gè)角,比如∠AOB.
練習(xí):誰(shuí)能指出下列各角的頂點(diǎn)和兩條邊?
注意:①三個(gè)字母的順序有規(guī)定,頂點(diǎn)的字母必須寫在中間.
②頂點(diǎn)的字母不一定用O,角的始邊與終邊的字母也可以隨意.
(2)當(dāng)一個(gè)頂點(diǎn)只有一個(gè)角時(shí),也可以用頂點(diǎn)的`字母表示.比如,下面的角可以表示為∠O.
練習(xí):判斷下列角可以用頂點(diǎn)的字母表示嗎?
(3)用數(shù)字或小寫的希臘字母表示角.(注意:角中不能有角)
練習(xí):下面表示角的方法,哪個(gè)是正確的?哪個(gè)是錯(cuò)誤的?
探究點(diǎn)二:角的度量
活動(dòng)三:角的度量
(1)請(qǐng)同學(xué)們借助量角器畫出下列各角:
、30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°
學(xué)生畫圖,教師指導(dǎo).(根據(jù)需要教師可先做示范)
(2)任意畫一個(gè)角,用量角器測(cè)量角的大。釂(wèn):如果這個(gè)角的度數(shù)不是整數(shù),應(yīng)該怎樣表示這個(gè)角的度數(shù)呢?引出角的度量單位是度、分、秒.
教師總結(jié):它們之間的關(guān)系是:1°=60′,1′=60″ (強(qiáng)調(diào)度、分、秒是60進(jìn)制,不是十進(jìn)制).
(3)還有什么單位是60進(jìn)制?
(4)讓學(xué)生畫一個(gè)1°角,感受1°角有多大.
四、應(yīng)用遷移,運(yùn)用新知
1.角的定義
例1 下列說(shuō)法中,正確的是( )
A.兩條射線組成的圖形叫做角
B.有公共端點(diǎn)的兩條線段組成的圖形叫做角
C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形
D.角可以看作是由一條線段繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形
解析:A.有公共端點(diǎn)的兩條射線組成的圖形叫做角,故錯(cuò)誤;B.根據(jù)A可得B錯(cuò)誤;C.角可以看作是由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形,正確;D.據(jù)C可得D錯(cuò)誤.
方法總結(jié):此題考查了角的定義,有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角.這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊.
2.角的表示方法
例2 下列四個(gè)圖形中,能用∠1、∠AOB、∠O三種方法表示同一個(gè)角的圖形是( )
A B C D
解析:在角的頂點(diǎn)處有多個(gè)角時(shí),用一個(gè)字母表示這個(gè)角,這種方法是錯(cuò)誤的.所以A、C、D錯(cuò)誤.
方法總結(jié):角的兩個(gè)基本元素中,邊是兩條射線,
頂點(diǎn)是這兩條射線的公共端點(diǎn).
3.判斷角的數(shù)量
例3 如圖所示,在∠AOB的內(nèi)部有3條射線,則圖中角的個(gè)數(shù)為( )
A.10 B.15 C.5 D.20
解析:可以根據(jù)圖形依次數(shù)出角的個(gè)數(shù);或者根據(jù)公式求圖中角的個(gè)數(shù)是12×5×(5-1)=10.
方法總結(jié):若從一點(diǎn)發(fā)出n條射線,則構(gòu)成12n(n-1)個(gè)角.
4.角的度量
例4 見課本P144例1.
方法總結(jié):用度、分、秒表示的角度和用度表示的角度的相互轉(zhuǎn)化的過(guò)程正好相反:大單位化小單位,乘以進(jìn)率;而小單位化大單位要除以進(jìn)率.
五、嘗試練習(xí),掌握新知
課本P144練習(xí)第1、2題、P145練習(xí)第1、2題.
“隨堂演練”部分.
六、課堂小結(jié),梳理新知
通過(guò)本節(jié)課的學(xué)習(xí),我們都學(xué)到了哪些數(shù)學(xué)知識(shí)和方法?
本節(jié)課學(xué)習(xí)了角及角的有關(guān)概念,并會(huì)表示角;知道角的度量單位,并能進(jìn)行單位的轉(zhuǎn)換;會(huì)把角的知識(shí)與現(xiàn)實(shí)生活相聯(lián)系,用角的知識(shí)解釋生活中的一些現(xiàn)象.
七、深化練習(xí),鞏固新知
課本P145~146習(xí)題4.4第1~4題.
“課時(shí)作業(yè)”部分.
高一數(shù)學(xué)教案14
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡(jiǎn)單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過(guò)函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題、認(rèn)識(shí)問(wèn)題的能力.通過(guò)例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過(guò)本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.
教學(xué)過(guò)程設(shè)計(jì)
一、引入新課
師:請(qǐng)同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線移動(dòng))對(duì).他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們?cè)趯W(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過(guò)函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)
二、對(duì)概念的分析
。ò鍟n題:)
師:請(qǐng)同學(xué)們打開課本第51頁(yè),請(qǐng)××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W(xué)生朗讀.)
師:好,請(qǐng)坐.通過(guò)剛才閱讀增函數(shù)和減函數(shù)的定義,請(qǐng)同學(xué)們思考一個(gè)問(wèn)題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說(shuō)得非常正確.定義中用了兩個(gè)簡(jiǎn)單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
。ㄍㄟ^(guò)教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請(qǐng)同學(xué)們和我一起來(lái)看剛才的兩組圖中的第一個(gè)函數(shù)y=f1(x)和y=f2(x)的'圖象,體會(huì)這種魅力.
。ㄖ笀D說(shuō)明.)
師:圖中y=f1(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說(shuō)明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來(lái),使新舊知識(shí)融為一體,加深對(duì)概念的理解.滲透數(shù)形結(jié)合分析問(wèn)題的數(shù)學(xué)思想方法.)
師:因此我們可以說(shuō),增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)……
。ú话言捳f(shuō)完,指一名學(xué)生接著說(shuō)完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)較小的函數(shù)值的函數(shù).
。▽W(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說(shuō)完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過(guò)閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語(yǔ),才能更透徹地認(rèn)識(shí)定義?
(學(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會(huì)遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語(yǔ),是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會(huì)學(xué)生如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生分析問(wèn)題,認(rèn)識(shí)問(wèn)題的能力.
。ń處熢趯W(xué)生思索過(guò)程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語(yǔ)處適當(dāng)加重語(yǔ)氣.在學(xué)生感到無(wú)從下手時(shí),給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個(gè)詞“給定區(qū)間”是定義中的關(guān)鍵詞語(yǔ).
師:很好,我們?cè)趯W(xué)習(xí)任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語(yǔ),在學(xué)習(xí)幾個(gè)相近的概念時(shí)還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對(duì)相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請(qǐng)大家思考一個(gè)問(wèn)題,我們能否說(shuō)一個(gè)函數(shù)在x=5時(shí)是遞增或遞減的?為什么?
生:不能.因?yàn)榇藭r(shí)函數(shù)值是一個(gè)數(shù).
師:對(duì).函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個(gè)字“唯一確定”),因而沒(méi)有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋(gè)函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個(gè)我們學(xué)過(guò)的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說(shuō)y=x2是增函數(shù)或是減函數(shù).
(在學(xué)生回答問(wèn)題時(shí),教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個(gè)例子來(lái)幫助我們理解定義中的詞語(yǔ)“給定區(qū)間”.這說(shuō)明是函數(shù)在某一個(gè)區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們?cè)谡務(wù)摵瘮?shù)的增減性時(shí)必須指明相應(yīng)的區(qū)間.
師:還有沒(méi)有其他的關(guān)鍵詞語(yǔ)?
生:還有定義中的“屬于這個(gè)區(qū)間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語(yǔ).
師:你答的很對(duì).能解釋一下為什么嗎?
。▽W(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說(shuō)兩個(gè)自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點(diǎn)?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來(lái)判斷函數(shù)的增減性,而“都有”則是說(shuō)只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個(gè)反例來(lái)說(shuō)明“任意”呢?
。ㄗ寣W(xué)生思考片刻.)
生:可以構(gòu)造一個(gè)反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯(cuò)了.
師:那么如何來(lái)說(shuō)明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時(shí),有f(x1)>f(x2);當(dāng)x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說(shuō)y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過(guò)分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個(gè)點(diǎn)的情況來(lái)判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個(gè)自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來(lái)判定函數(shù)的增減性.
。ń處熗ㄟ^(guò)一系列的設(shè)問(wèn),使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過(guò)反例的反襯,使學(xué)生加深對(duì)定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過(guò)來(lái),如果我們已知f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過(guò)自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來(lái)解釋數(shù)學(xué)知識(shí),同時(shí)用數(shù)學(xué)知識(shí)去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說(shuō)出f(x)的單調(diào)區(qū)間,并回答:在每一個(gè)單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個(gè)問(wèn)題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:?jiǎn)柕煤茫@說(shuō)明你想的很仔細(xì),思考問(wèn)題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來(lái)說(shuō).若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請(qǐng)同學(xué)們思考后在筆記本上寫出證明過(guò)程.
。ń處熝惨,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會(huì)對(duì)如何比較f(x1)和f(x2)的大小關(guān)系感到無(wú)從入手,教師應(yīng)給以啟發(fā).)
師:對(duì)于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對(duì)兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號(hào)來(lái)決定兩個(gè)數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)x1<x2時(shí),
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)x1<x2(邊說(shuō)邊用彩色粉筆在相應(yīng)的語(yǔ)句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對(duì)式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒(méi)能說(shuō)明為什么f(x1)-f(x2)<0,沒(méi)有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對(duì)變形后的式子說(shuō)明其符號(hào).應(yīng)寫明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號(hào)”(在黑板上板演,并注明“③→定符號(hào)”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請(qǐng)同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
(對(duì)學(xué)生的做法進(jìn)行分析,把證明過(guò)程步驟化,可以形成思維的定勢(shì).在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢(shì)對(duì)理解知識(shí)本身是有益的,同時(shí)對(duì)學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺(jué)得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號(hào)“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫成閉區(qū)間.
上是減函數(shù).
(教師巡視.對(duì)學(xué)生證明中出現(xiàn)的問(wèn)題給予點(diǎn)拔.可依據(jù)學(xué)生的問(wèn)題,給出下面的提示:
(1)分式問(wèn)題化簡(jiǎn)方法一般是通分.
。2)要說(shuō)明三個(gè)代數(shù)式的符號(hào):k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號(hào)方向要改變.
對(duì)學(xué)生的解答進(jìn)行簡(jiǎn)單的分析小結(jié),點(diǎn)出學(xué)生在證明過(guò)程中所出現(xiàn)的問(wèn)題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請(qǐng)同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
(請(qǐng)一個(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語(yǔ);在寫單調(diào)區(qū)間時(shí)不要輕易用并集的符號(hào)連接;最后在用定義證明時(shí),應(yīng)該注意證明的四個(gè)步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計(jì)說(shuō)明
是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對(duì)學(xué)生來(lái)說(shuō),早已有所知,然而沒(méi)有給出過(guò)定義,只是從直觀上接觸過(guò)這一性質(zhì).學(xué)生對(duì)此有一定的感性認(rèn)識(shí),對(duì)概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺(jué)得是已經(jīng)學(xué)過(guò)的知識(shí),感覺(jué)乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對(duì)概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡(jiǎn)單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對(duì)概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對(duì)概念的深入的正確的理解往往是學(xué)生認(rèn)知過(guò)程中的難點(diǎn).因此在本教案的設(shè)計(jì)過(guò)程中突出對(duì)概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對(duì)如何學(xué)會(huì)、弄懂一個(gè)概念有初步的認(rèn)識(shí),并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對(duì)學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對(duì)今后的教學(xué)作一定的鋪墊.
高一數(shù)學(xué)教案15
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點(diǎn)如何表示;
2 能夠在空間直角坐標(biāo)系中求出點(diǎn)坐標(biāo)
教 學(xué) 過(guò) 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點(diǎn)坐標(biāo)確定過(guò)程、表示方法?
2一個(gè)點(diǎn)在平面怎么表示?在空間呢?
3關(guān)于一些對(duì)稱點(diǎn)坐標(biāo)求法
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于 軸對(duì)稱點(diǎn) ;
關(guān)于 對(duì)軸稱點(diǎn) ;
關(guān)于 軸對(duì)稱點(diǎn) ;
二 師 生 互動(dòng)
例1在長(zhǎng)方體 中, , 寫出 四點(diǎn)坐標(biāo)
討論:若以 點(diǎn)為原點(diǎn),以射線 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點(diǎn)坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點(diǎn)坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長(zhǎng)為3正四面體各頂點(diǎn)坐標(biāo)
練2 已知 是棱長(zhǎng)為2正方體, 分別為 和 中點(diǎn),建立適當(dāng)空間直角坐標(biāo)系,試寫出圖中各中點(diǎn)坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點(diǎn)與一個(gè)三元有序數(shù)組是一種一一對(duì)應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個(gè)部分
D某點(diǎn)在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點(diǎn) ,則點(diǎn) 關(guān)于原點(diǎn)對(duì)稱點(diǎn)坐標(biāo)為( )
A B C D
3 已知 三個(gè)頂點(diǎn)坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點(diǎn) 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點(diǎn) ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點(diǎn)對(duì)稱點(diǎn)坐標(biāo)
2 設(shè)有長(zhǎng)方體 ,長(zhǎng)、寬、高分別為 是線段 中點(diǎn)分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標(biāo)系
⑴求 坐標(biāo);
、魄 坐標(biāo);
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-05
【薦】高一數(shù)學(xué)教案11-27
【熱】高一數(shù)學(xué)教案12-05
【熱門】高一數(shù)學(xué)教案11-26
高一數(shù)學(xué)教案【薦】12-02
高一數(shù)學(xué)教案【熱門】11-28
高一數(shù)學(xué)教案【熱】12-03
高一數(shù)學(xué)教案【推薦】11-30