- 高三數(shù)學(xué)備課教案 推薦度:
- 相關(guān)推薦
高三數(shù)學(xué)備課教案
作為一名人民教師,就難以避免地要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的高三數(shù)學(xué)備課教案,僅供參考,大家一起來看看吧。
高三數(shù)學(xué)備課教案1
教學(xué)目標(biāo)
1.理解同向不等式,異向不等式概念;
2.掌握并會證明定理1,2,3;
3.理解定理3的推論是同向不等式相加法則的依據(jù),定理3是移項(xiàng)法則的依據(jù);
4.初步理解證明不等式的邏輯推理方法.
教學(xué)重點(diǎn):
定理1,2,3的證明的證明思路和推導(dǎo)過程
教學(xué)難點(diǎn):
理解證明不等式的邏輯推理方法
教學(xué)方法:
引導(dǎo)式
教學(xué)過程
一、復(fù)習(xí)回顧
上一節(jié)課,我們一起學(xué)習(xí)了比較兩實(shí)數(shù)大小的方法,主要根據(jù)的是實(shí)數(shù)運(yùn)算的符號法則,而這也是推證不等式性質(zhì)的主要依據(jù),因此,我們來作一下回顧:
這一節(jié)課,我們將利用比較實(shí)數(shù)的方法,來推證不等式的性質(zhì).
二、講授新課
在證明不等式的性質(zhì)之前,我們先明確一下同向不等式與異向不等式的概念.
1.同向不等式:兩個(gè)不等號方向相同的不等式,例如:是同向不等式.
異向不等式:兩個(gè)不等號方向相反的不等式.例如:是異向不等式.
2.不等式的性質(zhì):
定理1:若,則
定理1說明,把不等式的左邊和右邊交換,所得不等式與原不等式異向.在證明時(shí),既要證明充分性,也要證明必要性.
證明
由正數(shù)的相反數(shù)是負(fù)數(shù),得
說明:定理1的后半部分可引導(dǎo)學(xué)生仿照前半部分推證,注意向?qū)W生強(qiáng)調(diào)實(shí)數(shù)運(yùn)算的符號法則的應(yīng)用.
定理2:若,且,則.
證明:
根據(jù)兩個(gè)正數(shù)的和仍是正數(shù),得
∴說明:此定理證明的主要依據(jù)是實(shí)數(shù)運(yùn)算的符號法則及兩正數(shù)之和仍是正數(shù).
定理3:若,則
定理3說明,不等式的兩邊都加上同一個(gè)實(shí)數(shù),所得不等式與原不等式同向.
證明
說明:
(1)定理3的證明相當(dāng)于比較與的大小,采用的是求差比較法;
(2)不等式中任何一項(xiàng)改變符號后,可以把它從一邊移到另一邊,理由是:根據(jù)定理3可得出:若,則即.
定理3推論:若.
證明:
說明:
(1)推論的證明連續(xù)兩次運(yùn)用定理3然后由定理2證出;
(2)這一推論可以推廣到任意有限個(gè)同向不等式兩邊分別相加,即:兩個(gè)或者更多個(gè)同向不等式兩邊分別相加,所得不等式與原不等式同向;
(3)兩個(gè)同向不等式的兩邊分別相減時(shí),就不能作出一般的結(jié)論;
(4)定理3的逆命題也成立.(可讓學(xué)生自證)
三、課堂練習(xí)
1.證明定理1后半部分;
2.證明定理3的逆定理.
說明:本節(jié)主要目的是掌握定理1,2,3的證明思路與推證過程,練習(xí)穿插在定理的證明過程中進(jìn)行.
課堂小結(jié)
通過本節(jié)學(xué)習(xí),要求大家熟悉定理1,2,3的證明思路,并掌握其推導(dǎo)過程,初步理解證明不等式的邏輯推理方法.
課后作業(yè)
1.求證:若
2.證明:若
板書設(shè)計(jì)
§6.1.2不等式的性質(zhì)
1.同向不等式3.定理2 4.定理3 5.定理3
異向不等式
證明證明推論
2.定理1證明說明說明證明
第三課時(shí)
教學(xué)目標(biāo)
1.熟練掌握定理1,2,3的應(yīng)用;
2.掌握并會證明定理4及其推論1,2;
3.掌握反證法證明定理5.
教學(xué)重點(diǎn):定理4,5的證明.
教學(xué)難點(diǎn):定理4的應(yīng)用.
教學(xué)方法:引導(dǎo)式
教學(xué)過程:
一、復(fù)習(xí)回顧
上一節(jié)課,我們一起
學(xué)習(xí)了不等式的三個(gè)性質(zhì),即定理1,2,3,并初步認(rèn)識了證明不等式的邏輯推理方法,首先,讓我們來回顧一下三個(gè)定理的基本內(nèi)容.
(學(xué)生回答)
好,我們這一節(jié)課將繼續(xù)推論定理4、5及其推論,并進(jìn)一步熟悉不等式性質(zhì)的應(yīng)用.
二、講授新課
定理4:若
若
證明:
根據(jù)同號相乘得正,異號相乘得負(fù),得當(dāng)
說明:(1)證明過程中的關(guān)鍵步驟是根據(jù)“同號相乘得正,異號相乘得負(fù)”來完成的;
(2)定理4證明在一個(gè)不等式兩端乘以同一個(gè)正數(shù),不等號方向不變;乘以同一個(gè)負(fù)數(shù),不等號方向改變.
推論1:若
證明:
、
又
∴ ②
由①、②可得.
說明:(1)上述證明是兩次運(yùn)用定理4,再用定理2證出的.;
(2)所有的字母都表示正數(shù),如果僅有,就推不出的結(jié)論.
(3)這一推論可以推廣到任意有限個(gè)兩邊都是正數(shù)的同向不等式兩邊分別相乘.這就是說,兩個(gè)或者更多個(gè)兩邊都是正數(shù)的同向不等式兩邊分別相乘,所得不等式與原不等式同向.
推論2:若
說明:(1)推論2是推論1的特殊情形;
(2)應(yīng)強(qiáng)調(diào)學(xué)生注意n∈N的條件.
定理5:若
我們用反證法來證明定理5,因?yàn)榉疵嬗袃煞N情形,即,所以不能僅僅否定了,就“歸謬”了事,而必須進(jìn)行“窮舉”.
說明:假定不大于,這有兩種情況:或者,或者.
由推論2和定理1,當(dāng)時(shí),有;
當(dāng)時(shí),顯然有
這些都同已知條件矛盾
所以.
接下來,我們通過具體的例題來熟悉不等式性質(zhì)的應(yīng)用.
例2已知
證明:由
例3已知
證明:∵
兩邊同乘以正數(shù)
說明:通過例3,例4的學(xué)習(xí),使學(xué)生初步接觸不等式的證明,為以后學(xué)習(xí)不等式的證明打下基礎(chǔ).在應(yīng)用定理4時(shí),應(yīng)注意題目條件,即在一個(gè)等式兩端乘以同一個(gè)數(shù)時(shí),其正負(fù)將影響結(jié)論.接下來,我們通過練習(xí)來進(jìn)一步熟悉不等式性質(zhì)的應(yīng)用.
三、課堂練習(xí)
課本P7練習(xí)1,2,3.
課堂小結(jié)
通過本節(jié)學(xué)習(xí),大家要掌握不等式性質(zhì)的應(yīng)用及反證法證明思路,為以后不等式的證明打下一定的基礎(chǔ).
課后作業(yè)
課本習(xí)題6.1 4,5.
板書設(shè)計(jì)
§6.1.3不等式的性質(zhì)
定理4推論1定理5例3學(xué)生
內(nèi)容內(nèi)容
證明推論2證明例4練習(xí)
高三數(shù)學(xué)備課教案2
一、指導(dǎo)思想
高三數(shù)學(xué)教學(xué)要以《全日制普通高級中學(xué)教科書》、20xx年普通高等學(xué)校招生全國統(tǒng)一考試《北京卷考試說明》為依據(jù),以學(xué)生的發(fā)展為本,全面復(fù)習(xí)并落實(shí)基礎(chǔ)知識、基本技能、基本數(shù)學(xué)思想和方法,為學(xué)生進(jìn)一步學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。要堅(jiān)持以人為本,強(qiáng)化質(zhì)量的意識,務(wù)實(shí)規(guī)范求創(chuàng)新,科學(xué)合作求發(fā)展。
二、教學(xué)建議
1、認(rèn)真學(xué)習(xí)《考試說明》,研究高考試題,把握高考新動向,有的放矢,提高復(fù)習(xí)課的效率。
《考試說明》是命題的依據(jù),備考的依據(jù)。高考試題是《考試說明》的具體體現(xiàn)。因此要認(rèn)真研究近年來的考試試題,從而加深對《考試說明》的理解,及時(shí)把握高考新動向,理解高考對教學(xué)的導(dǎo)向,以利于我們準(zhǔn)確地把握教學(xué)的重、難點(diǎn),有針對性地選配例題,優(yōu)化教學(xué)設(shè)計(jì),提高我們的復(fù)習(xí)質(zhì)量。
注意08年高考的導(dǎo)向:注重能力考查,反對題海戰(zhàn)術(shù)!犊荚囌f明》中對分析問題和解決問題的能力要求是:能閱讀、理解對問題進(jìn)行陳述的材料;能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想和方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中的數(shù)學(xué)問題,并能用數(shù)學(xué)語言正確地加以表述;能選擇有效的方法和手段對新穎的信息、情境和設(shè)問進(jìn)行獨(dú)立的思考與探究,使問題得到解決。08年的高考試題無論是小題還是大題,都從不同的角度,不同的層次體現(xiàn)出這種能力的要求和對教學(xué)的導(dǎo)向。這就要求我們在日常教學(xué)的每一個(gè)環(huán)節(jié)都要有目的地關(guān)注學(xué)生能力培養(yǎng),真正提高學(xué)生的數(shù)學(xué)素養(yǎng)。
2、充分調(diào)動學(xué)生學(xué)習(xí)積極性,增強(qiáng)學(xué)生學(xué)習(xí)的自信心。
尊重學(xué)生的身心發(fā)展規(guī)律,做好高三復(fù)習(xí)的動員工作,調(diào)動學(xué)生學(xué)習(xí)積極性,因材施教,幫助學(xué)生樹立學(xué)習(xí)的自信性。
3、注重學(xué)法指導(dǎo),提高學(xué)生學(xué)習(xí)效率。
教師要針對學(xué)生的具體情況,進(jìn)行復(fù)習(xí)的學(xué)法指導(dǎo),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,提高復(fù)習(xí)的效率。如:要求學(xué)生建立錯(cuò)題本,讓學(xué)生養(yǎng)成反思的習(xí)慣;養(yǎng)成學(xué)生善于結(jié)合圖形直觀思維的習(xí)慣;養(yǎng)成學(xué)生表述規(guī)范,按照解答題的必要步驟和書寫格式答題的習(xí)慣等。
4、高度重視基礎(chǔ)知識、基本技能和基本方法的復(fù)習(xí)。
要重視基礎(chǔ)知識、基本技能和基本方法的落實(shí),守住底線,這是復(fù)習(xí)的基本要求。為此教師要了解學(xué)生,準(zhǔn)確定位。精選、精編例題、習(xí)題,強(qiáng)調(diào)基礎(chǔ)性、典型性,注意參考教材內(nèi)容和考試說明的范圍和要求,做到不偏、不漏、不怪,進(jìn)行有針對性的訓(xùn)練。
5、教學(xué)中要重視思維過程的展現(xiàn),注重學(xué)生能力的發(fā)展。
在教學(xué)中我們發(fā)現(xiàn)學(xué)生不太喜歡分析問題,被動的等待老師的.答案的現(xiàn)象很普遍,因此,教學(xué)中教師要深入研究,挖掘知識背后的智力因素,創(chuàng)設(shè)環(huán)境,給學(xué)生思考、交流的機(jī)會,充分發(fā)揮學(xué)生的主體作用,使學(xué)生在比較、辨析、質(zhì)疑的過程中認(rèn)識知識的內(nèi)在聯(lián)系,形成分析問題、解決問題的能力。養(yǎng)成他們動口、動腦、動手的習(xí)慣。
6、高中的重點(diǎn)知識在復(fù)習(xí)中要保持較大的比重和必要的深度。
近年來數(shù)學(xué)試題的突出特點(diǎn):堅(jiān)持重點(diǎn)內(nèi)容重點(diǎn)考查,使高考保持一定的穩(wěn)定性;在知識網(wǎng)絡(luò)交匯點(diǎn)處命制試題。因此在函數(shù)、不等式、數(shù)列、立體幾何、三角函數(shù)、解析幾何、概率等重點(diǎn)內(nèi)容的復(fù)習(xí)中,要注意輕重緩急,注重學(xué)科的內(nèi)在聯(lián)系和知識的綜合。
7、重視通性、通法的總結(jié)和落實(shí)。
教師要幫助學(xué)生梳理各部分知識中的通性、通法,把復(fù)習(xí)的重點(diǎn)放在教材中典型例題、習(xí)題上;放在體現(xiàn)通性、通法的例題、習(xí)題上;放在各部分知識網(wǎng)絡(luò)之間的內(nèi)在聯(lián)系上。通過題目說通法,而不是死記硬背。進(jìn)而使學(xué)生形成一些最基本的數(shù)學(xué)意識,掌握一些最基本的數(shù)學(xué)方法,不斷地提高解決問題的能力。
8、滲透數(shù)學(xué)思想方法,培養(yǎng)數(shù)學(xué)學(xué)科能力。
《考試說明》明確指出要考查數(shù)學(xué)思想方法,要加強(qiáng)學(xué)科能力的考查。我們在復(fù)習(xí)中要加強(qiáng)數(shù)學(xué)思想方法的復(fù)習(xí),如轉(zhuǎn)化與化歸的思想、函數(shù)與方程的思想、分類與整合的思想、數(shù)形結(jié)合的思想、特殊與一般的思想、或然與必然的思想等。以及配方法、換元法、待定系數(shù)法、反證法、數(shù)學(xué)歸納法、解析法等數(shù)學(xué)基本方法都要有意識地根據(jù)學(xué)生學(xué)習(xí)實(shí)際予以復(fù)習(xí)及落實(shí)。切忌空談思想方法,要以知識為載體,潤物細(xì)無聲。
9、建議在每塊知識復(fù)習(xí)前作一次摸底測試,(師、生)做到心中有數(shù)。堅(jiān)持備課組集體備課,把握輕重緩急,避免重復(fù)勞動,切忌與學(xué)生實(shí)際不相符。
總之,我們要加強(qiáng)學(xué)習(xí)、研究,注重對學(xué)生、教材、教法和高考的研究,總結(jié)經(jīng)驗(yàn)和吸取教訓(xùn),搞好第一輪復(fù)習(xí),為第二輪復(fù)習(xí)打好基礎(chǔ)。
三、教學(xué)進(jìn)度安排
9月底前完成高三選修課內(nèi)容。期中考試的范圍除選修課內(nèi)容外,還要涉及到排列組合、二項(xiàng)式定理、概率、簡易邏輯、函數(shù)、不等式、數(shù)列等內(nèi)容。
期中考試之后復(fù)習(xí):向量、三角、立體幾何、解析幾何等內(nèi)容.
第一輪的復(fù)習(xí)要以基礎(chǔ)知識、基本技能、基本方法為主,為高三數(shù)學(xué)會考做好準(zhǔn)備,不要趕進(jìn)度,重落實(shí)。
四、進(jìn)修活動
高三數(shù)學(xué)備課教案3
一、教學(xué)目標(biāo):
知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義
過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義
情感、態(tài)度與價(jià)值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
二重難點(diǎn):教學(xué)重點(diǎn):曲線參數(shù)方程的定義及方法
教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫出曲線的參數(shù)方程.
三、教學(xué)方法:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
四、教學(xué)過程
(一)、復(fù)習(xí)引入:
1.寫出圓方程的標(biāo)準(zhǔn)式和對應(yīng)的參數(shù)方程。
圓參數(shù)方程 (為參數(shù))
。2)圓參數(shù)方程為: (為參數(shù))
2.寫出橢圓參數(shù)方程.
3.復(fù)習(xí)方向向量的概念.提出問題:已知直線的一個(gè)點(diǎn)和傾斜角,如何表示直線的參數(shù)方程?
。ǘ、講解新課:
1、問題的提出:一條直線L的傾斜角是,并且經(jīng)過點(diǎn)P(2,3),如何描述直線L上任意點(diǎn)的位置呢?
如果已知直線L經(jīng)過兩個(gè)
定點(diǎn)Q(1,1),P(4,3),
那么又如何描述直線L上任意點(diǎn)的
位置呢?
2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:
。1)過定點(diǎn)傾斜角為的直線的
參數(shù)方程
(為參數(shù))
【辨析直線的參數(shù)方程】:設(shè)M(x,y)為直線上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)P到點(diǎn)M的位移,可以用有向線段數(shù)量來表示。帶符號.
。2)、經(jīng)過兩個(gè)定點(diǎn)Q,P(其中)的直線的參數(shù)方程為
。其中點(diǎn)M(X,Y)為直線上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的`t顯然不同,它所反映的是動點(diǎn)M分有向線段的數(shù)量比。當(dāng)時(shí),M為內(nèi)分點(diǎn);當(dāng)且時(shí),M為外分點(diǎn);當(dāng)時(shí),點(diǎn)M與Q重合。
。ㄈ、直線的參數(shù)方程應(yīng)用,強(qiáng)化理解。
1、例題:
學(xué)生練習(xí),教師準(zhǔn)對問題講評。反思?xì)w納:1、求直線參數(shù)方程的方法;2、利用直線參數(shù)方程求交點(diǎn)。
2、鞏固導(dǎo)練:
補(bǔ)充:1、直線與圓相切,那么直線的傾斜角為(A)
A.或 B.或 C.或 D.或
2、(坐標(biāo)系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則 .
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數(shù))化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得, 。
。ㄋ模、小結(jié):(1)直線參數(shù)方程求法;(2)直線參數(shù)方程的特點(diǎn);(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
。ㄎ澹、作業(yè):
補(bǔ)充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為_______
【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學(xué)反思:
高三數(shù)學(xué)備課教案4
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識,正確地解決的實(shí)際問題、
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1、(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;
(4)集合A有個(gè)元素,集合B有個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是;
二、新課導(dǎo)學(xué)
探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題:
(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?
(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?
應(yīng)用示例
例1、從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?
例2、7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù)、
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習(xí)
1、(課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項(xiàng)活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?
2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3、馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有xxxxxx種、
當(dāng)堂檢測
1、某班新年聯(lián)歡會原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目、如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
A、42 B、30 C、20 D、12
2、(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的'化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1、(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個(gè)六位奇數(shù)?(2)能夠組成多少個(gè)大于20345的正整數(shù)?
2、(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
【高三數(shù)學(xué)備課教案】相關(guān)文章:
高三數(shù)學(xué)備課教案4篇01-03
數(shù)學(xué)備課教案02-04
數(shù)學(xué)單元備課教案01-11
數(shù)學(xué)大班備課教案03-25
數(shù)學(xué)備課教案15篇02-04