天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>數(shù)學(xué)教案:完全平方公式

數(shù)學(xué)教案:完全平方公式

時間:2024-11-08 10:32:28 賽賽 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)教案:完全平方公式(精選11篇)

  作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。來參考自己需要的教案吧!以下是小編精心整理的數(shù)學(xué)教案:完全平方公式,希望對大家有所幫助。

數(shù)學(xué)教案:完全平方公式(精選11篇)

  數(shù)學(xué)教案:完全平方公式 1

  一、教材分析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級上冊第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。

  作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。

  二、學(xué)情分析

  學(xué)生剛學(xué)過多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時要循序漸進(jìn)。

  三、教學(xué)目標(biāo)

  知識與技能

  1.完全平方公式的推導(dǎo)及其應(yīng)用。

  2.完全平方公式的幾何證明。

  過程與方法

  經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力。

  情感態(tài)度與價(jià)值觀

  對學(xué)生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。

  四、教學(xué)重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn)

  完全平方公式的推導(dǎo)過程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。

  教學(xué)難點(diǎn)

  完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。

  五、教法學(xué)法

  多媒體輔助教學(xué),將知識形象化、生動化,激發(fā)學(xué)生的興趣。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動手、動腦、動口,積極參與知識全過程。

  六、教學(xué)過程設(shè)計(jì)

  師生活動

  設(shè)計(jì)意圖

  一.復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則

  1、多項(xiàng)式與多項(xiàng)式的乘法法則內(nèi)容。

  2、多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。

  二.講授新課

  完全平方公式的推導(dǎo)

  1、利用多項(xiàng)式與多項(xiàng)式的乘法法則和幾何法推導(dǎo)完全平方(和)公式

  附:有簡單的填空練習(xí)

  2、利用多項(xiàng)式乘法則和換元法推導(dǎo)完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  三.總結(jié)完全平方公式的特點(diǎn)

  介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

  四.課堂練習(xí)

  1、改錯練習(xí)

  2、例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)

  第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;

  第二步準(zhǔn)確代入公式;

  第三步化簡。

  計(jì)算練習(xí)

 。ǎ保┱n本110頁第一題

 。ǎ玻 (x-6)2 (y-5)2

  五.課堂小結(jié):

  1、應(yīng)用完全平方公式應(yīng)注意什么?

  在解題過程中要準(zhǔn)確確定a和b,對照公式原形的兩邊, 做到不丟項(xiàng)、不弄錯符號、2ab時不能少乘以2。

  2、助記口訣

  復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。

  利用不同的的方法來推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的`不同解題方法。

  利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。

  通過課堂練習(xí),使學(xué)生掌握用完全平方公式計(jì)算的步驟,加強(qiáng)學(xué)生解題的準(zhǔn)確率。

  強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問題的能力和解題的準(zhǔn)確率。

  數(shù)學(xué)教案:完全平方公式 2

  教學(xué)目標(biāo)

  1.使學(xué)生會分析和判斷一個多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;

  2.理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。

  3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.

  4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會“把一個代數(shù)式看作一個字母”的換元思想。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):運(yùn)用完全平方式分解因式。

  難點(diǎn):靈活運(yùn)用完全平方公式公解因式。

  教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)

  1、問:什么叫把一個多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

  答:把一個多項(xiàng)式化成幾個整式乘積形式,叫做把這個多項(xiàng)式因式分解。我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法。

  2、把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?

  答:有完全平方公式。

  請寫出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。

  二、新課

  和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式。運(yùn)用這兩個式子,可以把形式是完全平方式的多項(xiàng)式分解因式。

  問:具備什么特征的多項(xiàng)是完全平方式?

  答:一個多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負(fù),像這樣的式子就是完全平方式。

  問:下列多項(xiàng)式是否為完全平方式?為什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1。

  答:(1)式是完全平方式。因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因?yàn)榈谌糠直仨毷?xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因?yàn)槿钡谌糠帧?/p>

  請同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對應(yīng)項(xiàng),其中a=?b=?2ab=?

  答:完全平方公式為:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25x4+10x2+1分解因式。

  分析:這個多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍。所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

  例2 把1- m+ 分解因式。

  問:請同學(xué)分析這個多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

  答:這個多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“ ”是 的平方,第二項(xiàng)“- m”是1與m/4的積的2倍的相反數(shù),因此這個多項(xiàng)式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,則

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、課堂練習(xí)(投影)

  1、填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2、下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多

  項(xiàng)式改變?yōu)橥耆椒绞健?/p>

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3。把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1、(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2、(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3、(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小結(jié)

  運(yùn)用完全平方公式把一個多項(xiàng)式分解因式的主要思路與方法是:

  1、首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個完全平方式,如果這個多項(xiàng)式是一個完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。有時需要先把多項(xiàng)式經(jīng)過適當(dāng)變形,得到一個完全平方式,然后再把它因式分解。

  2、在選用完全平方公式時,關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負(fù)號,則用公式a2-2ab+b2=(a-b) 2。

  五、作業(yè)

  把下列各式分解因式:

  1、(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2、(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3、(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4、(1) x -4x; (2)a5+a4+ a3。

  答案:

  1、(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2、(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3、(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4、(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  課堂教學(xué)設(shè)計(jì)說明

  1、利用完全平方公式進(jìn)行多項(xiàng)式的'因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

  2、本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法。在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn)。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。

  數(shù)學(xué)教案:完全平方公式 3

  一、教學(xué)目標(biāo):

  經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習(xí)的習(xí)慣;重點(diǎn)是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運(yùn)用;難點(diǎn)是完全平方公式的運(yùn)用。

  二、教學(xué)過程:

  1.檢查學(xué)生的“預(yù)習(xí)知識樹”,導(dǎo)入課題:

  師:前面學(xué)習(xí)了平方差公式,同學(xué)們對平方差公式的結(jié)構(gòu)特點(diǎn)、運(yùn)用以及學(xué)習(xí)公式的意義有了初步的認(rèn)識。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”――完全平方公式。請拿出你的“預(yù)習(xí)知識樹”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問的同學(xué)請?jiān)儐枴?/p>

  (活動:老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問題)生:(互查、討論“預(yù)習(xí)知識樹”,有問題的詢問問題。)師:(老師點(diǎn)評學(xué)生預(yù)習(xí)情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預(yù)習(xí)提到課前,利用“知識樹”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨(dú)立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會更充分,聽講時就能有準(zhǔn)備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識樹”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點(diǎn)撥,在課堂上留出更多的時間大量拓展、提高,發(fā)展學(xué)生的能力。

  2.自學(xué)檢測,制造通用工具:師:下面進(jìn)行自學(xué)檢測.計(jì)算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯了,由學(xué)生糾正,老師再點(diǎn)評。)師:觀察練習(xí),公式中的a、b可代表什么?

  生:可以表示一個數(shù),也可以表示一個單項(xiàng)式、多項(xiàng)式。

  說明:點(diǎn)評時,老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)平方差公式時,學(xué)生應(yīng)該認(rèn)識到這個道理,在這里再次強(qiáng)化。

  師:說得非常好,明確“公式中的a、b可以表示一個數(shù),也可以表示一個單項(xiàng)式、多項(xiàng)式”的變化規(guī)律,就能正確運(yùn)用公式解題了。顯然,剛做的練習(xí)題是由公式變化來的,若是變下去,能變多少道題?

  生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學(xué)練習(xí)。)說明:引導(dǎo)學(xué)生現(xiàn)場出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗(yàn)證變化規(guī)律。

  師:下面思考,如何計(jì)算:(a+b+c)2生1:可根據(jù)多項(xiàng)式乘以多項(xiàng)式來計(jì)算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項(xiàng)看成一項(xiàng),變成[(a+b)+c]2的形式,就能直接運(yùn)用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習(xí)。

  生:(緊張地做題,同時找兩個學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項(xiàng),(c+d)看做一項(xiàng),還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項(xiàng),(b+d)看做一項(xiàng),也能直接運(yùn)用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個學(xué)生都會解這樣的題了。課下,請同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計(jì)算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進(jìn)一步利用這個例子論證“公式中的a、b可表示數(shù),也可表示一個單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律。

  3.通過大量的習(xí)題驗(yàn)證通用工具,學(xué)生并且自造通用工具。

  師:通過前面的檢測,看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進(jìn)入達(dá)標(biāo)檢測。

  (活動:投影顯示達(dá)標(biāo)檢測題)1.填空:

 、(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計(jì)算:

 、(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計(jì)算:(x+2y+3)(x+2y-3)生:(積極、主動地在作業(yè)本上完成上面練習(xí)題。)師:(巡視,批閱完成快的學(xué)生的作業(yè),最后集體點(diǎn)評,只講不會的。)說明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的`差,按(a-b)2計(jì)算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運(yùn)用公式計(jì)算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進(jìn)一步驗(yàn)證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達(dá)到腦算的層次,水到渠成,能力自然提高,學(xué)生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項(xiàng)式也可以是多項(xiàng)式,能運(yùn)用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).[投影顯示]思考題:計(jì)算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計(jì)算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習(xí)指導(dǎo):①課本第38-39頁內(nèi)容,重點(diǎn)研究例3兩個題目的解題方法,能嘗試獨(dú)自解答課后隨堂練習(xí)或習(xí)題,②設(shè)計(jì)下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構(gòu)建知識,同時更加強(qiáng)化了學(xué)生的“能力樹”。作業(yè)是推薦性的作業(yè),達(dá)標(biāo)檢測就是“堂堂清”,學(xué)生課下只須做好預(yù)習(xí)作業(yè)就行了,這樣會有更多自由安排的時間,發(fā)展個性。

  數(shù)學(xué)教案:完全平方公式 4

  學(xué)習(xí)目標(biāo):

  1、會推導(dǎo)完全平方公式,并能用幾何圖形解釋公式;

  2、利用公式進(jìn)行熟練地計(jì)算;

  3、經(jīng)歷探索完全平方公式的推導(dǎo)過程,發(fā)展符號感,體會特殊一般特殊的認(rèn)知規(guī)律。

  學(xué)習(xí)過程:

  (一)自主探索

  1、計(jì)算:(1)(a+b)2 (2)(a-b)2

  2、你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?

  (二)合作交流:

  你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。

  (三)試一試,我能行。

  1、利用完全平方公式計(jì)算:

  (1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2

  (四)鞏固練習(xí)

  利用完全平方公式計(jì)算:

  A組:

  (1)( x+ y)2 (2)(-2m+5n)2

  (3)(2a+5b)2 (4)(4p-2q)2

  B組:

  (1)( x- y2) 2 (2)(1.2m-3n)2

  (3)(- a+5b)2 (4)(- x- y)2

  C組:

  (1)1012 (2)542 (3)9972

  (五)小結(jié)與反思

  我的'收獲:

  我的疑惑:

  (六)達(dá)標(biāo)檢測

  1、(a-b)2=a2+b2+ .

  2、(a+2b)2= .

  3、如果(x+4)2=x2+kx+16,那么k= .

  4、計(jì)算:

  (1)(3m- )2 (2)(x2-1)2

  (2)(-a-b)2 (4)( s+ t)2

  數(shù)學(xué)教案:完全平方公式 5

  教學(xué)目標(biāo)基礎(chǔ)知識:

  掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。

  基本技能:

  能夠分析實(shí)際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。

  教學(xué)過程

  一、創(chuàng)設(shè)情景引入新課

  觀察圖片引課(見大屏幕)

  二、探究

  探究銷售中的'盈虧問題:

  1、商品原價(jià)200元,九折出售,賣價(jià)是元。

  2、商品進(jìn)價(jià)是30元,售價(jià)是50元,則利潤

  是元。

  2、某商品原來每件零售價(jià)是a元,現(xiàn)在每件降價(jià)10%,降價(jià)后每件零售價(jià)是元。

  3、某種品牌的彩電降價(jià)20%以后,每臺售價(jià)為a元,則該品牌彩電每臺原價(jià)應(yīng)為元。

  4、某商品按定價(jià)的八折出售,售價(jià)是14.8元,則原定售價(jià)是。

  (學(xué)生總結(jié)公式)

  熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價(jià)進(jìn)價(jià)之間聯(lián)系

  數(shù)學(xué)教案:完全平方公式 6

  一、教學(xué)目標(biāo)

  1.理解完全平方公式的意義,準(zhǔn)確掌握兩個公式的結(jié)構(gòu)特征.

  2.熟練運(yùn)用公式進(jìn)行計(jì)算.

  3.通過推導(dǎo)公式訓(xùn)練學(xué)生發(fā)現(xiàn)問題、探索規(guī)律的能力.

  4.培養(yǎng)學(xué)生用數(shù)形結(jié)合的方法解決問題的數(shù)學(xué)思想.

  5.滲透數(shù)學(xué)公式的結(jié)構(gòu)美、和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:嘗試指導(dǎo)法、講練結(jié)合法.

  2.學(xué)生學(xué)法:本節(jié)學(xué)習(xí)了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的`2倍,兩者也僅差一個“符號”不同,運(yùn)用完全平方公式計(jì)算時,要注意:

 。1)切勿把此公式與公式 混淆,而隨意寫成 .

 。2)切勿把“乘積項(xiàng)”2ab中的2丟掉.

 。3)計(jì)算時,要先觀察題目是否符合公式的條件.若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算.

  三、重點(diǎn)·難點(diǎn)及解決辦法

  (一)重點(diǎn)

  掌握公式的結(jié)構(gòu)特征和字母表示的廣泛含義,正確運(yùn)用公式進(jìn)行計(jì)算

 。ǘ╇y點(diǎn)

  綜合運(yùn)用平方差公式與完全平方公式進(jìn)行計(jì)算

 。ㄈ┙鉀Q辦法

  加強(qiáng)對公式結(jié)構(gòu)特征的深入理解,在反復(fù)練習(xí)中掌握公式的應(yīng)用

  四、課時安排

  一課時

  五、教具學(xué)具準(zhǔn)備

  投影儀或電腦、自制膠片

  六、師生互動活動設(shè)計(jì)

  1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

  2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

  3.舉例分析如何正確使用完全平方公式,師生共練完成本課時重點(diǎn)內(nèi)容。

  4.適時練習(xí)并總結(jié),從實(shí)踐到理論再回到實(shí)踐,以指導(dǎo)今后的解題。

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  本節(jié)課重點(diǎn)學(xué)習(xí)完全平方公式及其應(yīng)用.

 。ǘ┱w感知

  掌握好完全平方公式的關(guān)鍵在于能正確識別符合公式特征的結(jié)構(gòu),同時還要注意公式中2ab中2的問題,在解題過程中應(yīng)多觀察、多思考、多揣摩規(guī)律。

 。ㄈ┙虒W(xué)過程

  計(jì)算導(dǎo)入;求得公式

  (1)敘述平方差公式的內(nèi)容并用字母表示;

  (2)用簡便方法計(jì)算

 、103×97

 、103 × 103

  (3)請同學(xué)們自編一個符合平方差公式結(jié)構(gòu)的計(jì)算題,并算出結(jié)果。

  學(xué)生活動:觀察、思考后,回答問題.

  【教法說明】 練習(xí)二是一組數(shù)字計(jì)算題,使學(xué)生體會到公式的用途,也可以激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,同時也起到加深理解公式的作用.練習(xí)三第(1)題實(shí)際是課本例4,此題是與平方差公式的綜合運(yùn)用,難度較大.通過給出解題步驟,讓學(xué)生進(jìn)行判斷,使難度降低,學(xué)生易于理解,教師要注意引導(dǎo)學(xué)生分析這類題的結(jié)構(gòu)特征,掌握解題方法.通過完成第(2)題使學(xué)生進(jìn)一步理解 與 之間的相等關(guān)系,同時加深理解代數(shù)中“a”具有的廣泛意義。

  (四)總結(jié)、擴(kuò)展

  這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.

  引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時應(yīng)該注意的問題.

  數(shù)學(xué)教案:完全平方公式 7

  一、教學(xué)目標(biāo)

 。1)知識與技能;學(xué)生通過推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計(jì)算。

 。2)過程與方法目標(biāo);學(xué)生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學(xué)重點(diǎn):

  公式結(jié)構(gòu)及運(yùn)用。

  三、教學(xué)難點(diǎn):

  公式中字母AB的含義理解與公式正確運(yùn)用。

  四、教具:

  自制長方形、正方形卡片

  五、教學(xué)過程:

  活動

  學(xué)生活動

  1、創(chuàng)設(shè)情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當(dāng)孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

 。1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

 。3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?

 。4)第三天比前二天的'孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

  學(xué)生四人一組討論。

  填空:

 。1)第一天給孩子塊糖。

 。2)第二天給孩子塊糖。

 。3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  活動

  學(xué)生活動

 。2)做一做、請同學(xué)拼圖

  教師巡視指導(dǎo)學(xué)生拼圖

  1、教師提問:

  (1)大正方形邊長?

 。2)每一塊卡片的面積是多少?

  (3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  2、想一想

 。1)(a+b)用多項(xiàng)式乘法法則說明

 。2)(a—b)

  3、請同學(xué)們自己敘述上面的等式

  4、說一說,ab能表示什么?

 。ā+○)□+2□○+○

  5、算一算

 。1)(2X—3)(2)(4X+5Y)

  請同學(xué)們分清ab

  6、練一練

 。1)(2X—3Y)(2)(2XY—3X)

  7、試一試(a+b+c)

  作業(yè):P1351、2

  學(xué)生2人一組拼圖交流

  2、學(xué)生觀察思考

 。1)大正方形邊長?

  (2)四塊卡片的。面積分別是

 。3)大正方形的總面積是多少?

  3、(1)學(xué)生運(yùn)用多項(xiàng)式乘法法則推導(dǎo)

 。╝+b)=a+2ab+b說出每一步運(yùn)算理由

 。2)學(xué)生自己探究交流

  4、學(xué)生用語言敘述公式

  5、師生共同a、b對應(yīng)項(xiàng)教師書寫

  6、學(xué)生獨(dú)立完成練一練展示結(jié)果

  7、學(xué)生四人一組討論交流

  8、有興趣的同學(xué)可以探

  數(shù)學(xué)教案:完全平方公式 8

  教學(xué)目標(biāo):

  完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對算理的理解,有意識地培養(yǎng)學(xué)生的思維條理性和表達(dá)能力。

  教學(xué)重點(diǎn)與難點(diǎn):

  完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用。

  教學(xué)過程:

  提出問題,學(xué)生自學(xué)

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的'形式呢?(a+b)2的運(yùn)算結(jié)果有什么規(guī)律?計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

  (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

 。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學(xué)生討論,教師歸納,得出結(jié)果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結(jié)果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的二倍(1)(2)之間只差一個符號.

  推廣:計(jì)算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  數(shù)學(xué)教案:完全平方公式 9

  一、教學(xué)目標(biāo)

  【知識與技能】

  能夠運(yùn)用完全平方公式對簡單的多項(xiàng)式進(jìn)行因式分解

  【過程與方法】

  通過對實(shí)例的探究與合作,鍛煉公式推導(dǎo)與總結(jié)能力

  【情感態(tài)度與價(jià)值觀】

  在合作探究中,體會到數(shù)學(xué)學(xué)習(xí)的.樂趣,加強(qiáng)交流合作能力

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  完全平方公式

  【教學(xué)難點(diǎn)】

  完全平方公式的推導(dǎo)過程與應(yīng)用

  三、教學(xué)過程

  (1)情景設(shè)置,設(shè)疑導(dǎo)入

  老師展示正方形廣場圖片,并告知已知條件:邊長為a的正方形廣場兩個鄰邊有5米寬的道路,形成一個較大的正方形廣場,嘗試用不同方法求解整個廣場(包括道路)的大小。

  預(yù)設(shè):①(a+5)(看作一個整體)

  ②a+5+2×5×a(看作幾個部分)

  (2)師生合作,新課教學(xué)

  由學(xué)生板書得出等式:(a+5)=a+5+2×5×a,提出問題:如果將5米寬,換成b米寬又能得到什么呢?(小組交流討論)

  得出結(jié)論:

  進(jìn)行證明:

  得到完全平方公式,記憶口訣:首平方,尾平方,首尾兩倍放中央。

  (3)鞏固提升,深化新知

  (4)小結(jié)作業(yè),及時反思

  小結(jié):請同學(xué)們談一談今天這節(jié)課的收獲:

  1.學(xué)會了完全平方公式

  2.學(xué)會了簡易計(jì)算平方式的能力

  3.提高了與同學(xué)們合作探究的能力,體會到了合作的樂趣

  作業(yè):

  公式拓展:a+b=(a+b)+()

  91=()

  及時復(fù)習(xí)鞏固完全平方公式,并在生活中找一找完全平方公式的運(yùn)用

  數(shù)學(xué)教案:完全平方公式 10

  教學(xué)目標(biāo)

  1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。

  2、掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)

  教學(xué)方法:

  對比發(fā)現(xiàn)法課型新授課教具投影儀

  教學(xué)過程

  上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請同學(xué)們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強(qiáng)調(diào)注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強(qiáng)調(diào)步驟的.重要性,注意發(fā)現(xiàn)學(xué)生易錯點(diǎn),及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

  練習(xí):第88頁練一練第1、2題

  數(shù)學(xué)教案:完全平方公式 11

  一、教材分析

  完全平方公式是初中代數(shù)的一個重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。

  本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項(xiàng)式乘多項(xiàng)式而得到的,同時又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進(jìn)。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會到從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

  二、學(xué)情分析

  多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結(jié)構(gòu)特征,進(jìn)一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。

  三、教學(xué)目標(biāo)

  知識與技能

  利用添括號法則靈活應(yīng)用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養(yǎng)學(xué)生的逆向思維能力。

  情感態(tài)度與價(jià)值觀

  鼓勵學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問題的習(xí)慣,提高學(xué)生的合作交流意識和創(chuàng)新精神。

  四、教學(xué)重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn)

  理解添括號法則,進(jìn)一步熟悉乘法公式的合理利用.

  教學(xué)難點(diǎn)

  在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號達(dá)到應(yīng)用公式的'目的

  五、教學(xué)方法

  思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。

  六、教學(xué)過程設(shè)計(jì)

  師生活動

  設(shè)計(jì)意圖

  一、提出問題,創(chuàng)設(shè)情境

  請同學(xué)們完成下列運(yùn)算并回憶去括號法則.

 。1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的每一項(xiàng)都不改變符合;如果括號前是負(fù)號,去掉括號后,括號里的各項(xiàng)都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的左右兩邊反過來,又會得到什么結(jié)果呢?

 。1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學(xué)們可不可以總結(jié)出添括號法則來呢?

 。▽W(xué)生分組討論,最后總結(jié))

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項(xiàng)都不變符號;如果括號前面是負(fù)號,括到括號里的各項(xiàng)都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學(xué)們利用添括號法則完成下列練習(xí):

  1.在等號右邊的括號內(nèi)填上適當(dāng)?shù)捻?xiàng):

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

 。3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運(yùn)算是否正確.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

 。3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結(jié):添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運(yùn)算前后代數(shù)式的值都保持不變,所以我們可以用去括號法則驗(yàn)證所添括號后的代數(shù)式是否正確.

  三、新知運(yùn)用

  有些整式相乘需要先作適當(dāng)?shù)淖冃,然后再用公式,這就需要同學(xué)們理解乘法公式的結(jié)構(gòu)特征和真正內(nèi)涵.請同學(xué)們分組討論,完成下列計(jì)算.

  例:運(yùn)用乘法公式計(jì)算

 。1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

 。3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習(xí):

  1.課本P111練習(xí)

  2.《學(xué)案》101頁——鞏固訓(xùn)練

  五、課堂小結(jié):

  通過本節(jié)課的學(xué)習(xí),你有何收獲和體會?

  我們學(xué)會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進(jìn)行計(jì)算.

  我體會到了轉(zhuǎn)化思想的重要作用,學(xué)數(shù)學(xué)其實(shí)是不斷地利用轉(zhuǎn)化得到新知識,比如由繁到簡的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.

  六、檢測作業(yè)

  習(xí)題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情

  交流合作,探究新知,以問題驅(qū)動,層層深入。

  歸納總結(jié),提升課堂效果。

  作業(yè)檢測,檢測目標(biāo)的達(dá)成情況。

【數(shù)學(xué)教案:完全平方公式】相關(guān)文章:

數(shù)學(xué)教案:完全平方公式02-17

數(shù)學(xué)教案完全平方公式12-30

完全平方公式教學(xué)反思03-23

《完全平方公式》教學(xué)反思04-22

數(shù)學(xué)《完全平方公式》教案10-19

《完全平方和差公式》教學(xué)反思01-14

數(shù)學(xué)《完全平方公式》教案[優(yōu)秀15篇]10-19

數(shù)學(xué)《完全平方公式》教案錦集(15篇)10-19

平方差公式教學(xué)反思03-23