天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)下冊(cè)教案

八年級(jí)數(shù)學(xué)下冊(cè)教案

時(shí)間:2024-05-19 08:08:27 數(shù)學(xué)教案 我要投稿

(通用)八年級(jí)數(shù)學(xué)下冊(cè)教案15篇

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,很有必要精心設(shè)計(jì)一份教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案要怎么寫呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)下冊(cè)教案,歡迎閱讀,希望大家能夠喜歡。

(通用)八年級(jí)數(shù)學(xué)下冊(cè)教案15篇

八年級(jí)數(shù)學(xué)下冊(cè)教案1

  一、學(xué)情分析

  學(xué)生在學(xué)習(xí)直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學(xué)習(xí)過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個(gè)定理的證明以及利用這個(gè)定理解決相關(guān)問題還是一個(gè)較高的要求。

  二、教學(xué)任務(wù)分析

  本節(jié)課是三角形全等的最后一部分內(nèi)容,也是很重要的一部分內(nèi)容,凸顯直角三角形的特殊性質(zhì)。在探索證明直角三角形全等判定定理“HL”的同時(shí),進(jìn)一步鞏固命題的相關(guān)知識(shí)也是本節(jié)課的任務(wù)之一。因此本節(jié)課的教學(xué)目標(biāo)定位為:

  1.知識(shí)目標(biāo):

 、倌軌蜃C明直角三角形全等的.“HL”的判定定理,進(jìn)一步理解證明的必要性 ②利用“HL’’定理解決實(shí)際問題

  2.能力目標(biāo):

  ①進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力

  三、教學(xué)過程分析

  本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)提問;第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時(shí)小結(jié);第六環(huán)節(jié):課后作業(yè)。

  1:復(fù)習(xí)提問

  1.判斷兩個(gè)三角形全等的方法有哪幾種?

  2.已知一條邊和斜邊,求作一個(gè)直角三角形。想一想,怎么畫?同學(xué)們相互交流。

  3、有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?如果其中一個(gè)角是直角呢?請(qǐng)證明你的結(jié)論。

  我們?cè)鴱恼奂埖倪^程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運(yùn)用公理,證明三角形全等,從而得出“等邊對(duì)等角”。那么我們能否通

  1 / 5

  過作等腰三角形底邊的高來證明“等邊對(duì)等角”.

  要求學(xué)生完成,一位學(xué)生的過程如下:

  已知:在△ABC中, AB=AC.

  求證:∠B=∠C.

  證明:過A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°

  又∵AB=AC,AD=AD,∴△ABD≌△ACD.

  ∴∠B=∠C(全等三角形的對(duì)應(yīng)角相等)

  在實(shí)際的教學(xué)過程中,有學(xué)生對(duì)上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點(diǎn)在于“在證明△ABD≌△ACD時(shí),用了“兩邊及其中一邊的對(duì)角對(duì)相等的兩個(gè)三角形全等”.而我們?cè)谇懊鎸W(xué)習(xí)全等的時(shí)候知道,兩個(gè)三角形,如果有兩邊及其一邊的對(duì)角相等,這兩個(gè)三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .

  也有學(xué)生認(rèn)同上述的證明。

  教師順?biāo)浦,詢問能否證明:“在兩個(gè)直角三角形中,直角所對(duì)的邊即斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.”,從而引入新課。

  2:引入新課

  (1).“HL”定理.由師生共析完成

  已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′

  證明:在Rt△ABC中,AC=AB一BC(勾股定理).

  又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股

  定理).

  AB=A'B',BC=B'C',AC=A'C'.

  ∴Rt△ABC≌Rt△A'B'C' (SSS).

  教師用多媒體演示:

  定理 斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.

  這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.

  2 / 5

  22A'B'

  從而肯定了第一位同學(xué)通過作底邊的高證明兩個(gè)三角形

  全等,從而得到“等邊對(duì)等角”的證法是正確的.

  練習(xí):判斷下列命題的真假,并說明理由:

  (1)兩個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (2)斜邊及一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (3)兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

  (4)一條直角邊和另一條直角邊上的中線對(duì)應(yīng)相等的兩個(gè)直角三角形全等. 對(duì)于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題

 。4),學(xué)生感覺是真命題,一時(shí)有無法直接利用已知的定理支持,教師引導(dǎo)學(xué)生證明.

  已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).

  求證:Rt△ABC≌Rt△A'B'C'.

  證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).

  CD=C'D'.

  又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.

  ∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).

  通過上述師生共同活動(dòng),學(xué)生板書推理過程之后可發(fā)動(dòng)學(xué)生去糾錯(cuò),教師最后再總結(jié)。

  3:做一做

  問題 你能用三角尺平分一個(gè)已知角嗎? 請(qǐng)同學(xué)們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語言清楚表達(dá)自己的想法.

 。ㄔO(shè)計(jì)做一做的目的為了讓學(xué)生體會(huì)數(shù)學(xué)結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語言清楚地表達(dá)自己的想法,并能按要求將推理證明過程寫出來。)

  4:議一議

  3 / 5

  BEADCDA'D'BB'

八年級(jí)數(shù)學(xué)下冊(cè)教案2

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問題、解決問題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  (3)x與3的和小于6; (4)x的小于2.

  (3)當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫出,將不是x+3<6的'解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡稱不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡稱為這個(gè)不等式的解集.

  不等式一般有無限多個(gè)解.

  求不等式的解集的過程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來.(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來.由于解中包含x=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“。”還是用實(shí)心圓點(diǎn)“.”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來:

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生生回答,教師板書,最后,請(qǐng)學(xué)生在筆記本上畫數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本題從另一例面來揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))

  練習(xí)(1)用簡明語言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

 、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來.

  (4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來,它的正數(shù)解是什么?

  自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再強(qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“!焙蛯(shí)心圓點(diǎn)“·”.

  五、作業(yè)

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整數(shù)解.

  課堂教學(xué)設(shè)計(jì)說明由于本節(jié)課的知識(shí)點(diǎn)比較多,因此,在設(shè)計(jì)教學(xué)過程時(shí),緊緊抓住不等式的解集這一重點(diǎn)知識(shí).通過對(duì)方程的解的電義的回憶,對(duì)比學(xué)習(xí)不等式的解及解集.同時(shí),為了進(jìn)一步加深學(xué)生對(duì)不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗(yàn)的方法,結(jié)合數(shù)軸直觀形象來研究不等式的解和解集;(2)比較方程與不等式的解的異同點(diǎn);(3)通過例題與練習(xí),加深理解.

  在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計(jì)教學(xué)過程時(shí),就充分考慮到應(yīng)使學(xué)生通過本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想方法具有形象、直觀、易于說明問題的優(yōu)點(diǎn),并初步學(xué)會(huì)用數(shù)形結(jié)合的觀念去處理問題、解決問題.

八年級(jí)數(shù)學(xué)下冊(cè)教案3

  一、教學(xué)目標(biāo)

  1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。

  2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。

  3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。

  4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):分式的加減運(yùn)算。

  2.難點(diǎn):異分母的分式加減法運(yùn)算。

  三、教學(xué)方法

  啟發(fā)式、分組討論。

  四、教學(xué)手段

  幻燈片。

  五、教學(xué)過程

 。ㄒ唬┮

  1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:

 。ǘ┬抡n

  1.類比分?jǐn)?shù)的'通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依據(jù):分式的基本性質(zhì)。

  3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

  例1通分:

 。1)解:∵最簡公分母是,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù)。

 。2)解:

  例2通分:

  (1)解:∵最簡公分母的是2x(x+1)(x—1),

  小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。

 。2)解:將分母分解因式:∴最簡公分母為2(x+2)(x—2),

  練習(xí):教材P,79中1、2、3。

 。ㄈ┱n堂小結(jié)

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

八年級(jí)數(shù)學(xué)下冊(cè)教案4

  教學(xué)目標(biāo)

  知識(shí)與技能:

  1、能用描點(diǎn)法畫出正比例函數(shù)的圖象;

  2、初步了解正比例函數(shù)圖象的性質(zhì)。

  過程與方法:

  通過畫正比例函數(shù)的圖象,探索正比例函數(shù)圖象的性質(zhì),培養(yǎng)觀察能力,體會(huì)用數(shù)形結(jié)合的方式思考問題。

  情感態(tài)度與價(jià)值觀:

  通過動(dòng)手操作,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,并養(yǎng)成善于觀察、善于歸納的學(xué)習(xí)習(xí)慣。

  重點(diǎn):正確理解正比例函數(shù)的圖象及其性質(zhì)。

  難點(diǎn):通過對(duì)正比例函數(shù)圖象的觀察,發(fā)現(xiàn)正比例函數(shù)圖象的性質(zhì)。

  教學(xué)方法:

  1、演示法———發(fā)展觀察力,想象力;

  2、啟發(fā)法———培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)能力;

  3、形成性學(xué)習(xí)法———培養(yǎng)觀察、歸納思維能力;

  教學(xué)流程

  教學(xué)環(huán)節(jié):

  教師活動(dòng)——預(yù)設(shè)學(xué)生行為——學(xué)生活動(dòng)

  復(fù)習(xí)

  復(fù)習(xí)定義及畫函數(shù)圖像的步驟,學(xué)生快速回憶已學(xué)的概念及畫函數(shù)圖像的步驟(搶答),積極回答問題。

  例

  1、在同一坐標(biāo)系中畫出正比例函數(shù),y=x,y=2x的圖象

  解:(1)列表

 。2)描點(diǎn)

 。3)連線

  x … —3 —2 —1 0 1 2 3 …

  y=x y=2x仔細(xì)觀察,認(rèn)真分析,各自說出自己所發(fā)現(xiàn)的規(guī)律,最后達(dá)成共識(shí)。

  計(jì)算出正比例函數(shù)的值,認(rèn)真觀察圖象。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面三個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),三個(gè)函數(shù)圖像有怎樣的變化規(guī)律。

  共同點(diǎn):

 。1)都是比例系數(shù)k>0

 。2)都是一條直線

 。3)都過原點(diǎn)和點(diǎn)(1,k)

 。4)都在一、三象限

 。5)都是從左向右上升

  不同點(diǎn):上升的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,從左向右上升,即隨x的增大y也增大;

  根據(jù)同學(xué)的發(fā)言與老師的歸納,修正自己的認(rèn)識(shí),逐漸理解正比例函數(shù)的性質(zhì)以及畫正比例函數(shù)圖象的簡單方法。發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。

  規(guī)應(yīng)

  應(yīng)用兩點(diǎn)法在同一坐標(biāo)系中畫出y=—1、5x,y=—4x的圖象,利用兩點(diǎn)法畫出函數(shù)圖象,能迅速找到兩個(gè)點(diǎn)。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面二個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),二個(gè)函數(shù)圖像有怎樣的變化規(guī)律。

  共同點(diǎn):

 。1)都是比例系數(shù)k<0

 。2)都是一條直線

 。3)都過原點(diǎn)和點(diǎn)(1,k)

 。4)都在二、四象限

  (5)都是從左向右下降

  不同點(diǎn):下降的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,從左向右下降,即隨x的增大y反而減;

  知識(shí)的遷移:用同樣的辦法發(fā)現(xiàn)規(guī)律。

  課測(cè)

  1、用你認(rèn)為最簡單的'方法畫出下列函數(shù)圖象。

 。1)y=1、5x(2)y=-3x

  2、正比例函數(shù)y=-4x的圖象是過()和()兩點(diǎn)的一條直線,圖象過象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。

  A、m=1

  B、m>1

  C、m<1

  D、m≥1

  4、下列函數(shù)①y=5x ② y=-3x ③y= x ④y=-x中,y隨x的增大而減小的是_____________。

 。芨鶕(jù)正比例函數(shù)性質(zhì)解決問題、認(rèn)真做題)

  小結(jié)

  名稱 解析式 圖象特征 圖象分布 函數(shù)變化情況 正比例函數(shù)

  y=kx(k≠0)是經(jīng)過(0,0)和(1,k)的一條直線

  k>0,k<0;一、三象限Y隨x的增大而增大

  k>0,k<0二、四象限Y隨x的增大而減小

  板設(shè)計(jì)

  復(fù)習(xí)引入 描點(diǎn)法 畫正比例函數(shù)圖象 正比例函數(shù)圖象性質(zhì)

  規(guī)律應(yīng)用 總結(jié)規(guī)律 練習(xí)小結(jié)

八年級(jí)數(shù)學(xué)下冊(cè)教案5

  例題講解

  引入問題:有甲乙兩種客車,甲種客車每車能拉30人,乙種客車每車能拉40人,現(xiàn)在有400人要乘車,

  1、你有哪些乘車方案?

  2、只租8輛車,能否一次把客人都運(yùn)送走?

  問題2;怎樣租車

  某學(xué)校計(jì)劃在總費(fèi)用2300元的限額內(nèi),利用汽車送234名學(xué)生和6名教師集體外出活動(dòng),每輛汽車上至少有1名教師,F(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表:

  甲種客車乙種客車

  載客量(單位:人/輛)4530

  租金(單位:元/輛)400280

 。1)共需租多少輛汽車?

 。2)給出最節(jié)省費(fèi)用的`租車方案。

  分析;

 。1)要保證240名師生有車坐

 。2)要使每輛汽車上至少要有1名教師

  根據(jù)(1)可知,汽車總數(shù)不能小于____;根據(jù)(2)可知,汽車總數(shù)不能大于____。綜合起來可知汽車總數(shù)為_____。

  設(shè)租用x輛甲種客車,則租車費(fèi)用y(單位:元)是x的函數(shù),即

  y=400x+280(6-x)

  化簡為:y=120x+1680

  討論:

  根據(jù)問題中的條件,自變量x的取值應(yīng)有幾種可能?

  為使240名師生有車坐,x不能小于____;為使租車費(fèi)用不超過2300元,X不能超過____。綜合起來可知x的取值為____。

  在考慮上述問題的基礎(chǔ)上,你能得出幾種不同的租車方案?為節(jié)省費(fèi)用應(yīng)選擇其中的哪種方案?試說明理由。

  方案一:

  4兩甲種客車,2兩乙種客車

  y1=120×4+1680=2160

  方案二:

  5兩甲種客車,1輛乙種客車

八年級(jí)數(shù)學(xué)下冊(cè)教案6

  活動(dòng)一、創(chuàng)設(shè)情境

  引入:首先我們來看幾道練習(xí)題(幻燈片)

 。◤(fù)習(xí):平行線及三角形全等的知識(shí))

  下面我們一起來欣賞一組圖片(幻燈片)

  [學(xué)生活動(dòng)]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請(qǐng)你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)

  [學(xué)生活動(dòng)]小組合作交流,拼出圖案的類型。

  同學(xué)們所拼的圖形中,除了有我們學(xué)過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)

  活動(dòng)二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學(xué)生活動(dòng)]認(rèn)真觀察、討論、思考、推理。

  鼓勵(lì)學(xué)生交流,并是試著用自己的語言概括出平行四邊形的.定義。

  學(xué)生交流,歸納:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫它的對(duì)角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對(duì)邊分別平行,平行四邊形還有什么特征呢?

  [學(xué)生活動(dòng)]動(dòng)手操作,小組演示交流。鼓勵(lì)學(xué)生用多種方法探究。

  小結(jié)平行四邊形的性質(zhì):

  平行四邊形的對(duì)邊相等

  平行四邊形的對(duì)角相等(這里要弄清對(duì)角、對(duì)邊兩個(gè)名詞)

  你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學(xué)生活動(dòng)]先分析思路尤其是輔助線,請(qǐng)學(xué)生上黑板證明。

  自己完成性質(zhì)2的證明。

  活動(dòng)三、運(yùn)用新知

  性質(zhì)掌握了嗎?一起來看一道題目:

  嘗試練習(xí)(幻燈片)例1

  [學(xué)生活動(dòng)]作嘗試性解答。

八年級(jí)數(shù)學(xué)下冊(cè)教案7

  教學(xué)目標(biāo):

  認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問題.

  2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問題的.

  能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問題的探究過程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證.

  教學(xué)重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系的理解.

  教學(xué)難點(diǎn):利用一次函數(shù)的圖象確定一元一次不等式的解集.

  教學(xué)過程:

  一、探究新知:

  通過上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問題.現(xiàn)在我們來看看:

  (1)以下兩個(gè)問題是否為同一個(gè)問題?

 、俳獠坏仁剑海玻-4>0

 、诋(dāng)x為何值時(shí),函數(shù)y=2x-4的`值大于0?

 。ǎ玻┠闳绾卫煤瘮(shù)的圖象來說明②?

 。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的一次函數(shù)問題是同一的?怎樣在圖象上加以說明?

  歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.

  二、應(yīng)用新知:

 。.練習(xí):P42練習(xí)1(3)(4)

  2.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.

  思考:我們應(yīng)該畫出什么函數(shù)的圖象來解?

  思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.

  思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)

  5x+4>2x+10.

  三、鞏固練習(xí)

  1.P42練習(xí)2(2)

  2.P45習(xí)題11.3第3、4題

  四、

  五、布置作業(yè)

八年級(jí)數(shù)學(xué)下冊(cè)教案8

  教學(xué)目標(biāo):

  1、進(jìn)一步熟練運(yùn)用平行四邊形、矩形、菱形、正方形的性質(zhì)和判定方法解決有關(guān)問題,清楚平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系。

  2、能利用它們的性質(zhì)和判定進(jìn)行推理和計(jì)算。

  3、使學(xué)生明確知識(shí)體系,提高空間想象能力,掌握基本的推理能力。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):掌握特殊平行四邊形性質(zhì)與判定。

  難點(diǎn):能用特殊平行四邊形的判定定理和性質(zhì)定理進(jìn)行幾何證明和計(jì)算。

  教學(xué)過程:

  一、梳理知識(shí):

  1.特殊平行四邊形的性質(zhì).

  1)如圖所示:在矩形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=3cm,AC=5cm

  則BC=_____cm,△BOC的周長=_____cm

  2)如圖所示:在菱形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=5cm,AC=6cm,

  則你能求出哪些線段的`長度?

  3)如圖所示:在正方形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知OA=3cm,

  則AB=_____cm,△BOC的周長=_______cm.

  小結(jié):特殊平行四邊形的性質(zhì)(PPT呈現(xiàn))

  2.特殊平行四邊形的判定.

  要使平行四邊形ABCD成為矩形,需要增加的條件________.

  要使平行四邊形ABCD成為菱形,需要增加的條件________.

  要使矩形ABCD成為正方形,需要增加的條件________.

  要使菱形ABCD成為正方形,需要增加的條件________.

  小結(jié):特殊平行四邊形的判定(PPT呈現(xiàn))

  二、深化提高:

  1.已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

 。1)求證:四邊形ADCE為矩形;

 。2)當(dāng)△ABC滿足什么條件時(shí),

  四邊形ADCE是一個(gè)正方形?并給出證明.

  2.如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,

  過點(diǎn)D作DP∥OC,過C點(diǎn)作CP∥DO,交DP于點(diǎn)P,

  試判斷四邊形CODP的形狀.

  變式1:如果題目中的矩形變?yōu)榱庑危?圖一)結(jié)論應(yīng)變?yōu)槭裁矗?/p>

  變式2:如果題目中的矩形變?yōu)檎叫危?圖二)結(jié)論又應(yīng)變?yōu)槭裁矗?/p>

  3.如圖,在中,是邊的中點(diǎn),分別是及其延長線上的點(diǎn),.

 。1)求證:.

 。2)請(qǐng)連結(jié),試判斷四邊形的形狀,并說明理由.

  (3)若四邊形是菱形,判斷的形狀。

  三、拓展提高

  1.如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、

  △BCE、△ACF,

 。1)四邊形ADEF是什么四邊形?并說明理由

 。2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?

 。3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在.

  2.如圖,已知⊿ABC是等腰三角形,頂角∠BAC=,(<60°)D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

 。1)求證:BE=CD;

  (2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明,

  四、課堂小結(jié)

  五、作業(yè)

  1.如圖,在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),

  PE⊥BC,垂足為E,PF⊥CD,垂足為F。

  求證:EF=AP

  2.如圖,正方形ABCD中,E是對(duì)角線BD上的點(diǎn),且BE=AB,

  EF⊥BD,交CD于點(diǎn)F,DE=2.5cm,求CF的長。

  3.如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的長。

八年級(jí)數(shù)學(xué)下冊(cè)教案9

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握反比例函數(shù)的概念

  2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式

  3.能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想

  二、重、難點(diǎn)

  1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式

  2.難點(diǎn):理解反比例函數(shù)的概念

  3.難點(diǎn)的突破方法:

  (1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解

 。2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。

  (3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式

  三、例題的意圖分析

  教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的.是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。

  教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。

  補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。

  四、課堂引入

  1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?

  2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?

  五、例習(xí)題分析

  例1.見教材P47

  分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

  例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)

 。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式

  例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?

  分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤

八年級(jí)數(shù)學(xué)下冊(cè)教案10

  活動(dòng)1、提出問題

  一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問題:10+20是什么運(yùn)算?

  活動(dòng)2、探究活動(dòng)

  下列3個(gè)小題怎樣計(jì)算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的不能合并,通過對(duì)以上幾個(gè)題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時(shí),先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

  活動(dòng)3

  練習(xí)1指出下列每組的二次根式中,哪些是可以合并的.二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學(xué)生思考。

  學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

  教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗(yàn)證:

 、僭O(shè)=,類比合并同類項(xiàng)或面積法;

  ②學(xué)生思考,得出先化簡,再合并的解題思路

 、巯然,再合并

  學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

  提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

八年級(jí)數(shù)學(xué)下冊(cè)教案11

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1.用分式表示生活中的一些量.

  2.分式的基本性質(zhì)及分式的有關(guān)運(yùn)算法則.

  3.分式方程的概念及其解法.

  4.列分式方程,建立現(xiàn)實(shí)情境中的數(shù)學(xué)模型.

 。ǘ┠芰τ(xùn)練要求

  1.使學(xué)生有目的的梳理知識(shí),形成這一章完整的知識(shí)體系.

  2.進(jìn)一步體驗(yàn)“類比”與“轉(zhuǎn)化”在學(xué)習(xí)分式的基本性質(zhì)、分式的運(yùn)算法則及其分式方程解法過程中的重要作用.

  3.提高學(xué)生的歸納和概括能力,形成反思自己學(xué)習(xí)過程的意識(shí).

 。ㄈ┣楦信c價(jià)值觀要求

  使學(xué)生在總結(jié)學(xué)習(xí)經(jīng)驗(yàn)和活動(dòng)經(jīng)驗(yàn)的過程中,體驗(yàn)因?qū)W習(xí)方法的大力改進(jìn)而帶來的快樂,成為一個(gè)樂于學(xué)習(xí)的人.

  ●教學(xué)重點(diǎn)

  1.分式的概念及其基本性質(zhì).

  2.分式的運(yùn)算法則.

  3.分式方程的概念及其解法.

  4.分式方程的應(yīng)用.

  ●教學(xué)難點(diǎn)

  1.分式的運(yùn)算及分式方程的解法.

  2.分式方程的應(yīng)用.

  ●教學(xué)方法

  討論——交流法

  討論交流本章學(xué)習(xí)過程中的經(jīng)驗(yàn)和收獲,在反思過程中建立知識(shí)體系.

  ●教具準(zhǔn)備

  投影片兩張,實(shí)物投影儀

  第一張:問題串,(記作§3.5A)

  第二張:例題分析,(記作§3.5B)

  ●教學(xué)過程

  Ⅰ.提出問題,回顧本章的知識(shí).

  出示投影片(§3.5A)

  問題串:

  1.實(shí)際生活中的`一些量可以用分式表示,一些問題可以通過列分式方程解決,請(qǐng)舉一例.

  2.分式的性質(zhì)及有關(guān)運(yùn)算法則與分?jǐn)?shù)有什么異同?

  3.如何解分式方程?它與解一元一次方程有何聯(lián)系與區(qū)別?

 。蹘煟萃瑢W(xué)們可針對(duì)以上問題,以小組為單位討論、交流,然后在全班進(jìn)行交流.

 。ń處熆蓞⑴c于學(xué)生的討論中,注意掃除他們學(xué)習(xí)中常犯的錯(cuò)誤)

 。凵輰(shí)際生活中的一些量可以用分式表示,例如(用實(shí)物投影)

  某人在外面晨練,有m分鐘,他每分鐘走a米;有n分鐘,他每分鐘跑b米.求此人晨練平均每分鐘行多少米?

 。凵菸覀兘M來回答此問題,此人晨練時(shí)平均每分鐘行米.

  我們組也舉出一個(gè)例子:長方形的面積為8m2,長為pm,寬為____________m.

  [生]應(yīng)為m.

 。蹘煟萃瑢W(xué)們舉的例子都很有特色,誰還能舉.

 。凵萑绻成唐方祪r(jià)x%后的售價(jià)為a元,那么該商品的原價(jià)為多少元?

 。凵菰瓋r(jià)為元.……

  [師]都是分式.分式有什么特點(diǎn)?和整式有何區(qū)別?

  [生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,則稱是分式.而整式分母中不含字母.

 。凵輰(shí)際生活中的一些問題可用分式方程來解決.例如(用實(shí)物投影儀)

  某車間加工1200個(gè)零件后,采用了新工藝,工效是原來的1.5倍,這樣加工同樣多的零件就少用10h,采用新工藝前、后每時(shí)分別加工多少個(gè)零件?

  解:設(shè)采用新工藝前、后每時(shí)分別加工x個(gè),1.5x個(gè),根據(jù)題意,得

八年級(jí)數(shù)學(xué)下冊(cè)教案12

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

  對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標(biāo)解析

  (1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

 。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

  三、教學(xué)問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的'性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

  四、教學(xué)過程設(shè)計(jì)

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計(jì)算

 。1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計(jì)算

 。1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

  4.綜合運(yùn)用

  (1)算一算:

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

 。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

  【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

  (3)談一談你對(duì) 與 的認(rèn)識(shí).

  【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

 。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?

 。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

 。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).

  6.布置作業(yè):教科書習(xí)題16.1第2,4題.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1. ; ; .

  【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.

  2.下列運(yùn)算正確的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

  4.計(jì)算: .

  【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

八年級(jí)數(shù)學(xué)下冊(cè)教案13

  第一步;理解體驗(yàn):

  1、復(fù)習(xí)平均數(shù)、中位數(shù)和眾數(shù)定義

  2、引入課本P146R的例子

  思路點(diǎn)撥:商場(chǎng)統(tǒng)計(jì)每位營業(yè)員在某月的銷售額組成一個(gè)樣本,從樣本數(shù)據(jù)中的平均數(shù)、中位數(shù)、眾數(shù)中得到信息估計(jì)總體的趨勢(shì),達(dá)到問題的解決。

  由例題中(2)問和(3)問的不同,導(dǎo)致結(jié)果的不同,其目的是告訴學(xué)生應(yīng)該根據(jù)題目具體要求來靈活運(yùn)用三個(gè)數(shù)據(jù)代表解決問題。

  本例題也客觀的反映了數(shù)學(xué)知識(shí)對(duì)生活實(shí)踐的指導(dǎo)有重要的`意義,也體現(xiàn)了統(tǒng)計(jì)知識(shí)與生活實(shí)踐是緊密聯(lián)系的。

  第二步:總結(jié)提升:

  平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)數(shù)據(jù)代表的異同:

  平均數(shù)、中位數(shù)和眾數(shù)都可以作為一組數(shù)據(jù)的代表,主要描述一組數(shù)據(jù)集中趨勢(shì)的量。平均數(shù)是應(yīng)用較多的一種量

  平均數(shù)計(jì)算要用到所有的數(shù)據(jù),它能夠充分利用所有的數(shù)據(jù)信息,但它受極端值的影響較大.

  眾數(shù)是當(dāng)一組數(shù)據(jù)中某一數(shù)據(jù)重復(fù)出現(xiàn)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少也不受極端值的影響.

  平均數(shù)的大小與一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)均有關(guān)系,任何一個(gè)數(shù)據(jù)的變動(dòng)都會(huì)相應(yīng)引起平均數(shù)的變動(dòng).

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的移動(dòng)對(duì)中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給數(shù)據(jù)中也可能不在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì).

  實(shí)際問題中求得的平均數(shù),眾數(shù),中位數(shù)應(yīng)帶上單位.

  第三步:隨堂練習(xí):

  1、在一次環(huán)保知識(shí)競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>

  得分5060708090100110120

  人數(shù)2361415541

  分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).

  2、公園里有甲、乙兩群游客正在做團(tuán)體游戲,兩群游客的年齡如下:(單位:歲)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

 。1)、甲群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲,其中能較好反映甲群游客年齡特征的是。

  (2)、乙群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲。其中能較好反映乙群游客年齡特征的是。

  答案:1.眾數(shù)90中位數(shù)85平均數(shù)84.6

  2.(1)15、15、15、眾數(shù)(2).15、5.5、6、中位數(shù)

  第四步:課后練習(xí):

  1、某公司的33名職工的月工資(以元為單位)如下:

  職員董事長副董事長董事總經(jīng)理經(jīng)理管理員職員

  人數(shù)11215320

  工資5500500035003000250020001500

 。1)、求該公司職員月工資的平均數(shù)、中位數(shù)、眾數(shù)?

  (2)、假設(shè)副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)

 。3)、你認(rèn)為應(yīng)該使用平均數(shù)和中位數(shù)中哪一個(gè)來描述該公司職工的工資水平?

  2、某公司有15名員工,它們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表示

八年級(jí)數(shù)學(xué)下冊(cè)教案14

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會(huì)用分式的基本性質(zhì)將分式變形。

  二、重點(diǎn)、難點(diǎn)

  1、重點(diǎn):理解分式的基本性質(zhì)。

  2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點(diǎn)與突破方法

  教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

  2、P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

  3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號(hào)。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的.分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

八年級(jí)數(shù)學(xué)下冊(cè)教案15

  一、目標(biāo)要求

  1.理解掌握分式的四則混合運(yùn)算的順序。

  2.能正確熟練地進(jìn)行分式的加、減、乘、除混合運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):分式的加、減、乘、除混合運(yùn)算的順序。

  難點(diǎn):分式的`加、減、乘、除混合運(yùn)算。

  分式的加、減、乘、除混合運(yùn)算的順序是先進(jìn)行乘、除運(yùn)算,再進(jìn)行加、減運(yùn)算,遇有括號(hào),先算括號(hào)內(nèi)的。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:(1)[++(+)]·;

 。2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的四則混合運(yùn)算要注意運(yùn)算順序及括號(hào)的關(guān)系。

  解:(1)原式=[++]·=[++]·=·==。

  (2)原式=·÷=··=y-x。

  【例2】計(jì)算:(1)(-+)·(a3-b3);

 。2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

  (2)原式=[-]·=-=-====。

  說明:分式的加、減、乘、除混合運(yùn)算注意以下幾點(diǎn):

 。1)一般按分式的運(yùn)算順序法則進(jìn)行計(jì)算,但恰當(dāng)?shù)厥褂眠\(yùn)算律會(huì)使運(yùn)算簡便。

 。2)要隨時(shí)注意分子、分母可進(jìn)行因式分解的式子,以備約分或通分時(shí)備用,可避免運(yùn)算煩瑣。

 。3)注意括號(hào)的“添”或“去”、“變大”與“變小”。

 。4)結(jié)果要化為最簡分式。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):求分式的值

  【例】已知x+=3,求下列各式的值:

【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:

八年級(jí)數(shù)學(xué)下冊(cè)教案05-16

八年級(jí)數(shù)學(xué)下冊(cè)教案01-10

數(shù)學(xué)下冊(cè)教案03-16

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案04-27

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

八年級(jí)數(shù)學(xué)下冊(cè)教案(15篇)02-20

八年級(jí)數(shù)學(xué)下冊(cè)教案15篇01-10

八年級(jí)下冊(cè)數(shù)學(xué)教案優(yōu)秀02-29

數(shù)學(xué)下冊(cè)教案 15篇03-16

數(shù)學(xué)下冊(cè)教案 (15篇)03-16