天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)下冊(cè)教案

八年級(jí)數(shù)學(xué)下冊(cè)教案

時(shí)間:2024-09-22 21:01:28 數(shù)學(xué)教案 我要投稿

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案

  作為一名教職工,就不得不需要編寫教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么寫教案需要注意哪些問題呢?以下是小編收集整理的人教版八年級(jí)數(shù)學(xué)下冊(cè)教案,僅供參考,大家一起來看看吧。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案1

  一、目標(biāo)要求

  1.理解掌握異分母分式加減法法則。

  2.能正確熟練地進(jìn)行異分母分式的加減運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):異分母分式的加減法法則及其運(yùn)用。

  難點(diǎn):正確確定最簡(jiǎn)公分母和靈活運(yùn)用法則。

  1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质,然后再加減。用式子表示為:±=。

  2.分式通分時(shí),要注意幾點(diǎn):(1)如果各分母的系數(shù)都是整數(shù)時(shí)通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡(jiǎn)公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時(shí),先用分式的'基本性質(zhì)將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負(fù)數(shù)時(shí),應(yīng)利用符號(hào)法則,把負(fù)號(hào)提取到分式前面;(4)若分母是多項(xiàng)式時(shí),先按某一字母順序排列,然后再進(jìn)行因式分解,再確定最簡(jiǎn)公分母。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:(1)++;

 。2)-x-1;

 。3)--。

  分析:(1)把分母的各多項(xiàng)式按x的降冪排列,能先分解因式的將其分解因式,找最簡(jiǎn)公分母,轉(zhuǎn)化為同分母的分式加減法。(2)一個(gè)整式與一個(gè)分式相加減,應(yīng)把這個(gè)整式看作一個(gè)分母是1的式子來進(jìn)行通分,注意-x-1=,要注意負(fù)號(hào)問題。

  解:(1)原式=-+=-+====;

 。2)原式======;

 。3)原式=--===。

  【例2】計(jì)算:。+++。

  分析:此題若將4個(gè)分式同時(shí)通分,分子將是很復(fù)雜的,計(jì)算也是比較復(fù)雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進(jìn)行加減。

  解:原式=++=++=+=+==。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):異分母分式的加減

  【例】計(jì)算:-+。

  分析:此題如果直接通分,運(yùn)算勢(shì)必十分復(fù)雜。當(dāng)各分子的次數(shù)大于或等于分母的次數(shù)時(shí),可利用多項(xiàng)式的除法,將其分離為整式部分與分式部分的和,再加減會(huì)使運(yùn)算簡(jiǎn)便。

  解:原式=[x+2-]-[x+3+]

  +[+1]

  =x+2--x-3-++1

  =--+=====。

  五、基礎(chǔ)知識(shí)檢測(cè)

  1.填空題:

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案2

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握反比例函數(shù)的概念

  2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式

  3.能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想

  二、重、難點(diǎn)

  1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式

  2.難點(diǎn):理解反比例函數(shù)的概念

  3.難點(diǎn)的突破方法:

 。1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解

 。2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。

 。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式

  三、例題的意圖分析

  教材第46頁(yè)的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。

  教材第47頁(yè)的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。

  補(bǔ)充例1、例2都是常見的'題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。

  四、課堂引入

  1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?

  2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?

  五、例習(xí)題分析

  例1.見教材P47

  分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

  例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)

 。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式

  例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?

  分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案3

  教學(xué)目標(biāo):

  學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。

  教學(xué)重點(diǎn):

  去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、

  教學(xué)難點(diǎn):

  解分式方程的`一般步驟。

  教學(xué)過程:

  復(fù)習(xí)引入:

  1、什么叫分式方程?

  2、解分式方程的基本思想:

  分式方程整式方程

  3、解方程(學(xué)生板演)

  講授新課:

  1、由上述學(xué)生的板演歸納出解分式方程的一般步驟

 。1)去分母:在方程的兩邊都乘以最簡(jiǎn)公分母,化為整式方程;

  (2)解這個(gè)整式方程;

  (3)檢驗(yàn):將所得的解代入原方程的最簡(jiǎn)公分母,若最簡(jiǎn)公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

  2、范例講解

 。▽W(xué)生嘗試練習(xí)后,教師講評(píng))

  例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):

  1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)

  2、解分式方程的步驟、

  鞏固練習(xí):P1471t,2t、

  課堂小結(jié):解分式方程的一般步驟

  布置作業(yè):見作業(yè)本。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案4

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

  問題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說出這一時(shí)刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?

  解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

  二、探究歸納

  問題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的.利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.

  解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).

  問題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長(zhǎng)l越大,頻率f就________.

  解(1)l與f的乘積是一個(gè)定值,即

  lf=300000,

  或者說.

  (2)波長(zhǎng)l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

  利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個(gè)問題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案5

  一、目標(biāo)要求

  1.理解掌握分式的四則混合運(yùn)算的順序。

  2.能正確熟練地進(jìn)行分式的加、減、乘、除混合運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):分式的加、減、乘、除混合運(yùn)算的順序。

  難點(diǎn):分式的加、減、乘、除混合運(yùn)算。

  分式的加、減、乘、除混合運(yùn)算的順序是先進(jìn)行乘、除運(yùn)算,再進(jìn)行加、減運(yùn)算,遇有括號(hào),先算括號(hào)內(nèi)的。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:(1)[++(+)]·;

 。2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的.四則混合運(yùn)算要注意運(yùn)算順序及括號(hào)的關(guān)系。

  解:(1)原式=[++]·=[++]·=·==。

 。2)原式=·÷=··=y-x。

  【例2】計(jì)算:(1)(-+)·(a3-b3);

 。2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

 。2)原式=[-]·=-=-====。

  說明:分式的加、減、乘、除混合運(yùn)算注意以下幾點(diǎn):

 。1)一般按分式的運(yùn)算順序法則進(jìn)行計(jì)算,但恰當(dāng)?shù)厥褂眠\(yùn)算律會(huì)使運(yùn)算簡(jiǎn)便。

 。2)要隨時(shí)注意分子、分母可進(jìn)行因式分解的式子,以備約分或通分時(shí)備用,可避免運(yùn)算煩瑣。

 。3)注意括號(hào)的“添”或“去”、“變大”與“變小”。

 。4)結(jié)果要化為最簡(jiǎn)分式。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):求分式的值

  【例】已知x+=3,求下列各式的值:

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案6

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.

  (指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)

  二、例習(xí)題分析

  例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?

  (1)有一個(gè)角是直角的四邊形是矩形;(×)

  (2)有四個(gè)角是直角的四邊形是矩形;(√)

  (3)四個(gè)角都相等的四邊形是矩形;(√)

  (4)對(duì)角線相等的四邊形是矩形;(×)

  (5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)

  (6)對(duì)角線互相平分且相等的四邊形是矩形;(√)

  (7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)

 。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;

  (2)所給四邊形添加的.條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來證明

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案7

  1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過程如圖)

  3.再次演示平行四邊形的移動(dòng)過程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長(zhǎng)方形)引出本課題及矩形定義.

  矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).

  矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

  【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.

  ①隨著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?

 、诋(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的`其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個(gè)角都是直角.

  矩形性質(zhì)2 矩形的對(duì)角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).

  分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對(duì)角線長(zhǎng)AC=BD=2OA=2×4=8(cm).

  例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).

  分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案8

  教學(xué)目標(biāo):

  認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問題.

  2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問題的.

  能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問題的探究過程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證.

  教學(xué)重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系的理解.

  教學(xué)難點(diǎn):利用一次函數(shù)的圖象確定一元一次不等式的解集.

  教學(xué)過程:

  一、探究新知:

  通過上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問題.現(xiàn)在我們來看看:

 。ǎ保┮韵聝蓚(gè)問題是否為同一個(gè)問題?

  ①解不等式:2x-4>0

 、诋(dāng)x為何值時(shí),函數(shù)y=2x-4的值大于0?

 。ǎ玻┠闳绾卫煤瘮(shù)的圖象來說明②?

  (3)“解不等式2x-4<0”可以與怎樣的.一次函數(shù)問題是同一的?怎樣在圖象上加以說明?

  歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.

  二、應(yīng)用新知:

 。.練習(xí):P42練習(xí)1(3)(4)

 。.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.

  思考:我們應(yīng)該畫出什么函數(shù)的圖象來解?

  思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.

  思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)

  5x+4>2x+10.

  三、鞏固練習(xí)

  1.P42練習(xí)2(2)

  2.P45習(xí)題11.3第3、4題

  四、

  五、布置作業(yè)

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案9

  活動(dòng)1、提出問題

  一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問題:10+20是什么運(yùn)算?

  活動(dòng)2、探究活動(dòng)

  下列3個(gè)小題怎樣計(jì)算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的不能合并,通過對(duì)以上幾個(gè)題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

  活動(dòng)3

  練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學(xué)生思考。

  學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的`草皮。

  教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗(yàn)證:

  ①設(shè)=,類比合并同類項(xiàng)或面積法;

 、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

  ③先化簡(jiǎn),再合并

  學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

  提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案10

  一、教學(xué)目標(biāo):

  1、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題

  2、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值

  3、會(huì)運(yùn)用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí)

  二、重點(diǎn)、難點(diǎn):

  1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡(jiǎn)單平均,即組中值=(上限+上限)/2。

  因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的`和還是比較合理的,而且這樣做的最大好處是簡(jiǎn)化了計(jì)算量。

  為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義。

  2、教材P140探究欄目的意圖

  ①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。

 、、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

  這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

  3、教材P140的思考的意圖。

 、、使學(xué)生通過思考這兩個(gè)問題過程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問題。

 、、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。

  4、利用計(jì)算器計(jì)算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢(shì)仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。

  5、運(yùn)用樣本估計(jì)總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí);一是所要考察的對(duì)象很多,二是考察本身帶有破壞性;教材P142例3,這個(gè)例子就屬于考察本身帶有破壞性的情況。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案11

  【教學(xué)目標(biāo)】

  1、了解三角形的中位線的概念

  2、了解三角形的中位線的性質(zhì)

  3、探索三角形的中位線的性質(zhì)的一些簡(jiǎn)單的應(yīng)用

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn):三角形的中位線定理。

  難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。

  【教學(xué)過程】

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

  1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?

  2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

 。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

 。2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?

  3、引導(dǎo)學(xué)生概括出中位線的'概念。

  問題:

 。1)三角形有幾條中位線?

 。2)三角形的中位線與中線有什么區(qū)別?

  啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。

  4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

 。ǘ熒(dòng),探究新知

  1、證明你的猜想

  引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

 。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)

  啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

  啟發(fā)2:證明線段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)

  學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。

  證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,∴AB∥CF。

  又∵BD=AD=CF,∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形)∴DF∥BC(根據(jù)什么?),∴DE 1/2BC

  2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。

 。ㄈ⿲W(xué)以致用、落實(shí)新知

  1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?

  2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?

  3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。

  求證:四邊形EFGH是平行四邊形。

  啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?

  啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

  證明:如圖,連接AC。

  ∵EF是⊿ABC的中位線,∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)

  挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。你能得出什么結(jié)論?

  (四)學(xué)生練習(xí),鞏固新知

  如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點(diǎn)。求證:∠PNM=∠PMN

 。ㄎ澹┬〗Y(jié)回顧,反思提高

  今天你學(xué)到了什么?還有什么困惑?

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案12

  教學(xué)目標(biāo):

  1.學(xué)會(huì)根據(jù)定義判別分式方程與整式方程,了解分式方程增根產(chǎn)生的原因,掌握驗(yàn)根的方法。

  2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解。

  教學(xué)重點(diǎn):去分母法解可化為一元一次方程或一元二次方程的分式方程。驗(yàn)根的方法。

  教學(xué)難點(diǎn):驗(yàn)根的方法。分式方程增根產(chǎn)生的原因。

  教學(xué)準(zhǔn)備:小黑板。

  教學(xué)過程:

  復(fù)習(xí)引入:下列方程中哪些分母中含有未知數(shù)?哪些分母中不含有未知數(shù)?

 。1);(2);(3);(4);

 。5);(6);(7);(8)。

  講授新課:

  1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數(shù)的.方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。

  2.討論分式方程的解法:

 。1)復(fù)習(xí)解方程時(shí),怎樣去分母?

 。2)講解例1:解方程(按課文講解)

  歸納:解分式方程的基本思想:

  分式方程整式方程

 。3)講解例2:解方程(按課文講解)

  歸納:在去分母時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗(yàn),常把求得得根代入原方程的最簡(jiǎn)公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。

  想一想:產(chǎn)生增根的原因是什么?

  鞏固練習(xí):P1451t,2t。

  課堂小結(jié):什么叫做分式方程?

  解分式方程時(shí),為什么要檢驗(yàn)?怎樣檢驗(yàn)?

  布置作業(yè):見作業(yè)本。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案13

  教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

  3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。

  能力目標(biāo)

  1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

  2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

  情感目標(biāo):

  1、經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。

  2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

  教學(xué)重點(diǎn):

  掌握函數(shù)概念。

  判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

  能把實(shí)際問題抽象概括為函數(shù)問題。

  教學(xué)難點(diǎn):

  理解函數(shù)的概念。

  能把實(shí)際問題抽象概括為函數(shù)問題。

  教學(xué)過程設(shè)計(jì):

  一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

  師:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

  生:摩天輪。

  師:你們坐過嗎?

  師:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?

  生:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動(dòng)。所以人的高度過一段時(shí)間就會(huì)重復(fù)依次,即轉(zhuǎn)動(dòng)一圈高度就重復(fù)一次。

  師:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請(qǐng)看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對(duì)應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:

  t/分0 1 2 3 4 5 …… h/米

  t/分0 1 2 3 4 5 …… h/米3 11 37 45 37 11 ……

  師:對(duì)于給定的時(shí)間t,相應(yīng)的高度h確定嗎?

  生:確定。

  師:在這個(gè)問題中,我們研究的對(duì)象有幾個(gè)?分別是什么?

  生:研究的對(duì)象有兩個(gè),是時(shí)間t和高度h。

  師:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長(zhǎng)度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識(shí)世界。下面我們就去研究一些有關(guān)變量的問題。

  二、新課學(xué)習(xí)

  做一做

 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的.總數(shù)是如何變化的?

  填寫下表:

  層數(shù)n 1 2 3 4 5 …物體總數(shù)y 1 3 6 10 15 … 師:在這個(gè)問題中的變量有幾個(gè)?分別師什么?

  生:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。

 。2)在平整的路面上,某型號(hào)汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車前汽車的速度(單位:千米/時(shí))

  ①計(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離S是多少?

 、诮o定一個(gè)V值,你能求出相應(yīng)的S值嗎?

  解:略

  議一議

  師:在上面我們研究了三個(gè)問題。下面大家探討一下,在這三個(gè)問題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?

  生:相同點(diǎn)是:這三個(gè)問題中都研究了兩個(gè)變量。

  不同點(diǎn)是:在第一個(gè)問題中,是以圖象的形式表示兩個(gè)變量之間的關(guān)系;第二個(gè)問題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問題是以關(guān)系式來表示兩個(gè)變量間的關(guān)系的。

  師:通過對(duì)這三個(gè)問題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。

  函數(shù)的概念

  在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。

  一般地,在某個(gè)變化過程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習(xí)

  書P152頁(yè)隨堂練習(xí)1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  在一個(gè)函數(shù)關(guān)系式中,能識(shí)別自變量與因變量,給定自變量的值,相應(yīng)地會(huì)求出函數(shù)的值。

  函數(shù)的三種表達(dá)式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動(dòng)

  為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過10噸時(shí),水價(jià)為每噸1。2元;超過10噸時(shí),超過的部分按每噸1。8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請(qǐng)用方程的知識(shí)來求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?

 。ù鸢福篩=1。8x—6或)

  六、課后作業(yè)

  習(xí)題6.1

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案14

  學(xué)習(xí)目標(biāo)

  1、能說出約分的意義和步驟。

  2、能說出最簡(jiǎn)分式的意義。

  3、能說出分式的乘、除和乘方法則,并能用式子表示。

  4、能熟練地進(jìn)行分式的乘除和乘方運(yùn)算。

  5、會(huì)歸納總結(jié)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。

  6、能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算。

  主體知識(shí)歸納

  1、約分根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

  2、約分的步驟把分式的分子與分母分解因式,然后約去分子與分母的公因式。

  3、最簡(jiǎn)分式一個(gè)分式的分子與分母沒有公因式時(shí),叫做最簡(jiǎn)分式。

  4、分式的乘法法則分式乘以分式,用分子的積做積的分子,分母的積做積的分母。

  5、分式的除法法則分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  6、分式的乘方(n為正整數(shù))、就是說:分式的乘方是把分子、分母各自乘方。

  7、整數(shù)指數(shù)冪的運(yùn)算性質(zhì)可歸納如下

 。1)am·an=am+n(m、n都是整數(shù));

  (2)(am)n=amn(m、n都是整數(shù));

 。3)(ab)n=anbn(n是整數(shù))、

  基礎(chǔ)知識(shí)精講

  1、正確理解分式約分的意義

  (1)約分的根據(jù)是分式的基本性質(zhì),約分的實(shí)質(zhì)是一個(gè)分式化成最簡(jiǎn)分式,約分的.關(guān)鍵是將一個(gè)分式的分子與分母的公因式約去。

  (2)進(jìn)行約分的前提條件:分子、分母必須都為積的形式且有公因式。

  2、分式約分的步驟是:把分式的分子與分母分解因式,然后約去分子、分母和公因式、約分時(shí)應(yīng)注意以下兩點(diǎn):

 。1)若分子、分母都是幾個(gè)因式乘積的形式,應(yīng)約去分子、分母中相同因式的最低次冪、當(dāng)分子、分母的系數(shù)是整數(shù)時(shí),還應(yīng)約去它們的最大公約數(shù)。、

 。2)若分式的分子、分母是多項(xiàng)時(shí),要先將分子、分母按同一字母降冪排列、首項(xiàng)為負(fù),提取負(fù)號(hào)放到整個(gè)分式的前面,將分子、分母分解因式,然后再約分。、

  3、進(jìn)行分式的乘除運(yùn)算時(shí),應(yīng)注意以下幾點(diǎn):

 。1)分式的乘除運(yùn)算,實(shí)際上是分式的乘法運(yùn)算,根據(jù)法則應(yīng)先把分子、分母相乘,化成一個(gè)分式后再進(jìn)行約分,化為最簡(jiǎn)分式、但實(shí)際運(yùn)算時(shí),常常先約分再相乘,這樣做既簡(jiǎn)單易行,又不易出錯(cuò)、

  (2)如果分式的分子、分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解,再約分。

  (3)分式運(yùn)算的結(jié)果必須化成最簡(jiǎn)分式,特別地,若分子(或分母)是公因式,約去公因式后,分子(或分母)是1而不是0。

 。4)要注意運(yùn)算順序,對(duì)于分式乘除法來說,它只含有同級(jí)乘除運(yùn)算,所以只要沒有附加條件(如括號(hào)等),就必須按照從左至右的順序進(jìn)行計(jì)算。

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案15

  一、回顧交流,合作學(xué)習(xí)

  【活動(dòng)方略】

  活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.

  【問題探究1】(投影顯示)

  飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

  思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計(jì)算出BC的長(zhǎng).(3000千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).

  學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?

  思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.

  學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個(gè)零件符合要求.

  【問題探究3】

  甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點(diǎn)撥:要求甲、乙兩人的`距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.

  學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示

【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:

數(shù)學(xué)下冊(cè)教案03-16

八年級(jí)數(shù)學(xué)下冊(cè)教案01-10

八年級(jí)數(shù)學(xué)下冊(cè)教案05-16

八年級(jí)數(shù)學(xué)下冊(cè)教案【優(yōu)秀】05-22

八年級(jí)數(shù)學(xué)下冊(cè)教案【熱門】05-19

八年級(jí)數(shù)學(xué)下冊(cè)教案[優(yōu)選]05-19

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

八年級(jí)數(shù)學(xué)下冊(cè)教案(精選15篇)07-29

八年級(jí)數(shù)學(xué)下冊(cè)教案(15篇)02-20