天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)下冊(cè)教案

八年級(jí)數(shù)學(xué)下冊(cè)教案

時(shí)間:2024-05-22 10:34:49 數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)下冊(cè)教案【優(yōu)秀】

  作為一位兢兢業(yè)業(yè)的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么問題來(lái)了,教案應(yīng)該怎么寫?下面是小編為大家整理的八年級(jí)數(shù)學(xué)下冊(cè)教案,希望對(duì)大家有所幫助。

八年級(jí)數(shù)學(xué)下冊(cè)教案【優(yōu)秀】

八年級(jí)數(shù)學(xué)下冊(cè)教案1

  教學(xué)目標(biāo)

  知識(shí)與技能:

  1、能用描點(diǎn)法畫出正比例函數(shù)的圖象;

  2、初步了解正比例函數(shù)圖象的性質(zhì)。

  過(guò)程與方法:

  通過(guò)畫正比例函數(shù)的圖象,探索正比例函數(shù)圖象的性質(zhì),培養(yǎng)觀察能力,體會(huì)用數(shù)形結(jié)合的方式思考問題。

  情感態(tài)度與價(jià)值觀:

  通過(guò)動(dòng)手操作,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,并養(yǎng)成善于觀察、善于歸納的學(xué)習(xí)習(xí)慣。

  重點(diǎn):正確理解正比例函數(shù)的圖象及其性質(zhì)。

  難點(diǎn):通過(guò)對(duì)正比例函數(shù)圖象的觀察,發(fā)現(xiàn)正比例函數(shù)圖象的性質(zhì)。

  教學(xué)方法:

  1、演示法———發(fā)展觀察力,想象力;

  2、啟發(fā)法———培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)能力;

  3、形成性學(xué)習(xí)法———培養(yǎng)觀察、歸納思維能力;

  教學(xué)流程

  教學(xué)環(huán)節(jié):

  教師活動(dòng)——預(yù)設(shè)學(xué)生行為——學(xué)生活動(dòng)

  復(fù)習(xí)

  復(fù)習(xí)定義及畫函數(shù)圖像的步驟,學(xué)生快速回憶已學(xué)的概念及畫函數(shù)圖像的步驟(搶答),積極回答問題。

  例

  1、在同一坐標(biāo)系中畫出正比例函數(shù),y=x,y=2x的圖象

  解:(1)列表

 。2)描點(diǎn)

 。3)連線

  x … —3 —2 —1 0 1 2 3 …

  y=x y=2x仔細(xì)觀察,認(rèn)真分析,各自說(shuō)出自己所發(fā)現(xiàn)的規(guī)律,最后達(dá)成共識(shí)。

  計(jì)算出正比例函數(shù)的值,認(rèn)真觀察圖象。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面三個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),三個(gè)函數(shù)圖像有怎樣的變化規(guī)律。

  共同點(diǎn):

 。1)都是比例系數(shù)k>0

 。2)都是一條直線

 。3)都過(guò)原點(diǎn)和點(diǎn)(1,k)

 。4)都在一、三象限

  (5)都是從左向右上升

  不同點(diǎn):上升的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,從左向右上升,即隨x的`增大y也增大;

  根據(jù)同學(xué)的發(fā)言與老師的歸納,修正自己的認(rèn)識(shí),逐漸理解正比例函數(shù)的性質(zhì)以及畫正比例函數(shù)圖象的簡(jiǎn)單方法。發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。

  規(guī)應(yīng)

  應(yīng)用兩點(diǎn)法在同一坐標(biāo)系中畫出y=—1、5x,y=—4x的圖象,利用兩點(diǎn)法畫出函數(shù)圖象,能迅速找到兩個(gè)點(diǎn)。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面二個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),二個(gè)函數(shù)圖像有怎樣的變化規(guī)律。

  共同點(diǎn):

 。1)都是比例系數(shù)k<0

 。2)都是一條直線

 。3)都過(guò)原點(diǎn)和點(diǎn)(1,k)

 。4)都在二、四象限

 。5)都是從左向右下降

  不同點(diǎn):下降的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)第二、四象限,從左向右下降,即隨x的增大y反而減;

  知識(shí)的遷移:用同樣的辦法發(fā)現(xiàn)規(guī)律。

  課測(cè)

  1、用你認(rèn)為最簡(jiǎn)單的方法畫出下列函數(shù)圖象。

 。1)y=1、5x(2)y=-3x

  2、正比例函數(shù)y=-4x的圖象是過(guò)()和()兩點(diǎn)的一條直線,圖象過(guò)象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過(guò)一、三象限,則m的取值范圍是。

  A、m=1

  B、m>1

  C、m<1

  D、m≥1

  4、下列函數(shù)①y=5x ② y=-3x ③y= x ④y=-x中,y隨x的增大而減小的是_____________。

  (能根據(jù)正比例函數(shù)性質(zhì)解決問題、認(rèn)真做題)

  小結(jié)

  名稱 解析式 圖象特征 圖象分布 函數(shù)變化情況 正比例函數(shù)

  y=kx(k≠0)是經(jīng)過(guò)(0,0)和(1,k)的一條直線

  k>0,k<0;一、三象限Y隨x的增大而增大

  k>0,k<0二、四象限Y隨x的增大而減小

  板設(shè)計(jì)

  復(fù)習(xí)引入 描點(diǎn)法 畫正比例函數(shù)圖象 正比例函數(shù)圖象性質(zhì)

  規(guī)律應(yīng)用 總結(jié)規(guī)律 練習(xí)小結(jié)

八年級(jí)數(shù)學(xué)下冊(cè)教案2

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過(guò)程:

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說(shuō)明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問題3 以上問題1和問題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、颍畬(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

 。5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

 。7)一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

  (7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫(kù)有一沒儲(chǔ)油的儲(chǔ)油罐,在開始的8分鐘時(shí)間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的.函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、螅S堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

  超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。

 、酰n后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)下冊(cè)教案3

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線).

  3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的.圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

  2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

  過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

  三、實(shí)踐應(yīng)用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

  解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級(jí)數(shù)學(xué)下冊(cè)教案4

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問題、解決問題.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點(diǎn):不等式的解集的概念.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  (3)x與3的和小于6; (4)x的小于2.

  (3)當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的.值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡(jiǎn)稱不等式x+3<6的解集,記作x<3.

  最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱為這個(gè)不等式的解集.

  不等式一般有無(wú)限多個(gè)解.

  求不等式的解集的過(guò)程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))

  記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含x=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“!边是用實(shí)心圓點(diǎn)“.”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問題,及時(shí)糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請(qǐng)四名學(xué)生生回答,教師板書,最后,請(qǐng)學(xué)生在筆記本上畫數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本題從另一例面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問題的優(yōu)點(diǎn))

  練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

 、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái).

 。4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái),它的正數(shù)解是什么?

  自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).

  3.記號(hào)“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“。”和實(shí)心圓點(diǎn)“·”.

  五、作業(yè)

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整數(shù)解.

  課堂教學(xué)設(shè)計(jì)說(shuō)明由于本節(jié)課的知識(shí)點(diǎn)比較多,因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),緊緊抓住不等式的解集這一重點(diǎn)知識(shí).通過(guò)對(duì)方程的解的電義的回憶,對(duì)比學(xué)習(xí)不等式的解及解集.同時(shí),為了進(jìn)一步加深學(xué)生對(duì)不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗(yàn)的方法,結(jié)合數(shù)軸直觀形象來(lái)研究不等式的解和解集;(2)比較方程與不等式的解的異同點(diǎn);(3)通過(guò)例題與練習(xí),加深理解.

  在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),就充分考慮到應(yīng)使學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想方法具有形象、直觀、易于說(shuō)明問題的優(yōu)點(diǎn),并初步學(xué)會(huì)用數(shù)形結(jié)合的觀念去處理問題、解決問題.

八年級(jí)數(shù)學(xué)下冊(cè)教案5

  活動(dòng)1、提出問題

  一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問題:10+20是什么運(yùn)算?

  活動(dòng)2、探究活動(dòng)

  下列3個(gè)小題怎樣計(jì)算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

  活動(dòng)3

  練習(xí)1指出下列每組的二次根式中,哪些是可以合并的'二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學(xué)生思考。

  學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

  教師提問:學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗(yàn)證:

 、僭O(shè)=,類比合并同類項(xiàng)或面積法;

  ②學(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

  ③先化簡(jiǎn),再合并

  學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

  提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

八年級(jí)數(shù)學(xué)下冊(cè)教案6

  教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)與技能目標(biāo)

  使學(xué)生理解并掌握分式的基本性質(zhì),并能運(yùn)用這些性質(zhì)進(jìn)行分式化簡(jiǎn).

  (二)過(guò)程與方法目標(biāo)

  通過(guò)分式的化簡(jiǎn)提高學(xué)生的運(yùn)算能力.

 。ㄈ┣楦信c價(jià)值目標(biāo).

  滲透類比轉(zhuǎn)化的數(shù)學(xué)思想方法.

  教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):使學(xué)生理解并掌握分式的基本性質(zhì),這是學(xué)好本章的關(guān)鍵.

  2.難點(diǎn):靈活運(yùn)用分式的基本性質(zhì)進(jìn)行分式化簡(jiǎn).

  教學(xué)方法:分組討論.

  教學(xué)過(guò)程

  (一)情境引入

  1.?dāng)?shù)學(xué)小笑話:

  從前有個(gè)不學(xué)無(wú)術(shù)的'富家子弟,有一次,父母出遠(yuǎn)門去辦事,把他交給廚師照看,廚師問他:“我每天三餐每頓給你做兩個(gè)饅頭,夠嗎?”他哭喪著臉說(shuō):“不夠,不夠!”廚師又問:“那我就一天給你吃六個(gè),怎么樣?”他馬上欣喜地說(shuō):“夠了!夠了!”

  2.問:這個(gè)富家子弟為什么會(huì)犯這樣的錯(cuò)誤?

  3.分?jǐn)?shù)約分的方法及依據(jù)是什么?

 。1)的依據(jù)是什么?呢?

 。2)你認(rèn)為分式與相等嗎?與呢?

  (二)新課

  1.類比分?jǐn)?shù)的基本性質(zhì),由學(xué)生小結(jié)出分式的基本性質(zhì):

  分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變,即:

  =,=(其中M是不等于零的整式)

  2.加深對(duì)分式基本性質(zhì)的理解:

  例1下列等式的右邊是怎樣從左邊得到的?

  由學(xué)生口述分析,并反問:為什么c≠0?

  解:∵c≠0,∴==(2)=學(xué)生口答,教師設(shè)疑:為什么題目未給x≠0的條件?(引導(dǎo)學(xué)生學(xué)會(huì)分析題目中的隱含條件.)

八年級(jí)數(shù)學(xué)下冊(cè)教案7

  一、教學(xué)目標(biāo)

  1.掌握一元二次方程的定義,能夠判斷一個(gè)方程是否是一元二次方程.

  2.能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  二、(重)難點(diǎn)預(yù)見

  重點(diǎn):知道什么叫做一元二次方程,能夠判斷一個(gè)方程是否是一元二次方程. 難點(diǎn):能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  三、學(xué)法指導(dǎo)

  結(jié)合教材和預(yù)習(xí)學(xué)案,先獨(dú)立思考,遇到困難小對(duì)子之間進(jìn)行幫扶,完成學(xué)習(xí)任務(wù).

  四、教學(xué)過(guò)程

  開場(chǎng)白設(shè)計(jì):

  一元二次方程是初中數(shù)學(xué)中非常重要的內(nèi)容,它在實(shí)際生活中有著非常廣泛的應(yīng)用.什么形式的方程是一元二次方程?這樣的方程怎么解答呢?它又能解決哪些問題呢?帶著這些問題,讓我們一起學(xué)習(xí)《一元二次方程》這一章,今天我們來(lái)學(xué)習(xí)第一節(jié)課,同學(xué)們肯定有很多新的收獲.

  1、憶一憶

  在前面我們?cè)?jīng)學(xué)習(xí)了什么叫做一元一次方程?一元指的是什么含義?一次呢?你能猜想什么叫做一元二次方程嗎?

  學(xué)法指導(dǎo):

  本節(jié)課學(xué)習(xí)一元二次方程先讓學(xué)生回憶一元一次方程.學(xué)習(xí)四邊形可以讓學(xué)生回憶三角形,學(xué)習(xí)四邊形的.邊、角、頂點(diǎn),可以讓學(xué)生回憶三角形的邊、角、頂點(diǎn),則可達(dá)到水到渠成的效果.

  2、想一想

  請(qǐng)同學(xué)們根據(jù)題意,只列出方程,不進(jìn)行解答:

  (1)一個(gè)矩形的長(zhǎng)比寬多2cm,矩形的面積是15cm,求這個(gè)矩形的長(zhǎng)和寬.

  (2)兩個(gè)連續(xù)正整數(shù)的平方和是313,求這兩個(gè)正整數(shù).

  (3)直角三角形三邊的長(zhǎng)都是整數(shù),它的斜邊長(zhǎng)為13cm,兩條直角邊的差為7cm,求兩條直角邊的長(zhǎng).

  預(yù)習(xí)困難預(yù)見:

  (1)學(xué)生在列方程時(shí)沒有搞清楚“平方和”與“和的平方”的區(qū)別,以至于把方程列錯(cuò)了.

  (2)學(xué)生在解答第(3)題時(shí),設(shè)未知數(shù)時(shí)忘記帶單位.

  (3)還有的同學(xué)沒有注意只列方程,以至于學(xué)生列出方程后嘗試著解方程,導(dǎo)致耽誤了一些時(shí)間.

  改進(jìn)措施:

  教師巡視指導(dǎo),發(fā)現(xiàn)失誤及時(shí)引導(dǎo);小組內(nèi)互查,辯論,質(zhì)疑.

  3、議一議

  請(qǐng)同學(xué)們將上面的方程按照以下要求進(jìn)行整理:

  (1)使方程的右邊為0(2)方程的左邊按x的降冪排列.我們會(huì)得到:

 、 ② ③

  你能發(fā)現(xiàn)上面三個(gè)方程有什么共同點(diǎn)?

  _____________________叫做一元二次方程.在定義中著重強(qiáng)調(diào)了幾點(diǎn)?哪幾點(diǎn)?如果給你一個(gè)方程,讓你判定它是否是一元二次方程,你關(guān)鍵看哪幾方面?

  學(xué)法指導(dǎo)

  學(xué)習(xí)一元二次方程的概念,讓同學(xué)們剖析定義,總結(jié)判定一個(gè)方程是否是一元二次方程的方法.

  4、試一試

  下面方程是一元二次方程嗎?為什么?

 、賏x-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定義可知,只有同時(shí)滿足下列三個(gè)條件:①整式方程;②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個(gè)條件的方程都不是一元二次方程.

  口訣生成:

  判斷一元二次方程并不難,三個(gè)條件要找全:一元,二次,整式判,正確答案就出現(xiàn).

  5、學(xué)一學(xué)

  一元二次方程都可以化為ax+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax,bx,c 分別稱為這個(gè)方程的二次項(xiàng),一次項(xiàng)和常數(shù)項(xiàng),a,b分別稱為二次項(xiàng)系數(shù),一次項(xiàng)系數(shù).你能指出下列方程的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)嗎?請(qǐng)你用a,b,c表示出來(lái).

八年級(jí)數(shù)學(xué)下冊(cè)教案8

  一、回顧交流,合作學(xué)習(xí)

  【活動(dòng)方略】

  活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.

  【問題探究1】(投影顯示)

  飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過(guò)了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

  思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來(lái)計(jì)算出BC的`長(zhǎng).(3000千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).

  學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?

  思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過(guò)勾股定理的逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.

  學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個(gè)零件符合要求.

  【問題探究3】

  甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動(dòng)方略】

  教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.

  學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示

八年級(jí)數(shù)學(xué)下冊(cè)教案9

  一、教學(xué)目標(biāo)

  1.類比分?jǐn)?shù)的乘除運(yùn)算探索分式的乘除運(yùn)算法則。

  2.會(huì)進(jìn)行簡(jiǎn)單分式的乘除運(yùn)算。

  3.能解決一些與分式乘除運(yùn)算有關(guān)的簡(jiǎn)單的實(shí)際問題。

  4. 在故事情境中激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,促進(jìn)良好的數(shù)學(xué)觀的養(yǎng)成。數(shù)學(xué)生活化,學(xué)好數(shù)學(xué),為幸福人生奠基。

  二、教材分析

  本節(jié)課選自北師大版八下數(shù)學(xué)《5.2分式的乘除法》的第一課時(shí)。學(xué)生在小學(xué)就已經(jīng)會(huì)很熟練的進(jìn)行分?jǐn)?shù)的乘除法運(yùn)算,上一章又學(xué)習(xí)的因式分解,本章學(xué)習(xí)的分式的意義,分式的基本性質(zhì)等,都為本節(jié)課的學(xué)習(xí)做好了知識(shí)上的鋪墊。分式是分?jǐn)?shù)的“代數(shù)化”,與分?jǐn)?shù)的`約分、分?jǐn)?shù)的乘除法有密切的聯(lián)系,也為后面學(xué)習(xí)分式的混合運(yùn)算、分式方程等做了準(zhǔn)備。

  三、學(xué)情分析

  八年級(jí)學(xué)生具有很強(qiáng)的感性認(rèn)識(shí)的基礎(chǔ),對(duì)具體的實(shí)踐活動(dòng)十分感興起,在課堂中思維活躍,樂于表現(xiàn)自己,但在推理方面還不夠嚴(yán)謹(jǐn)。采用自主學(xué)習(xí)與合作學(xué)習(xí)相結(jié)合的學(xué)習(xí)方式,留給學(xué)生足夠的自主活動(dòng)、相互交流的空間,讓學(xué)生在觀察中不斷發(fā)現(xiàn)數(shù)學(xué)問題、在實(shí)踐中領(lǐng)悟數(shù)學(xué)思想,逐步形成科學(xué)的數(shù)學(xué)價(jià)值觀。

  四、重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):分式的乘除運(yùn)算法則的理解與運(yùn)用

  教學(xué)難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算

  五、教學(xué)過(guò)程

 。ㄒ唬(chuàng)設(shè)情境,引入新課

  活動(dòng)1:課前三分鐘

  學(xué)生主持:請(qǐng)同學(xué)們根據(jù)我的描述猜一個(gè)人物?…

  生:魯班

  學(xué)生主持:根據(jù)小草的構(gòu)造魯班發(fā)明了鋸子,魯班運(yùn)用了什么思想方法?

  生:類比

  這個(gè)小故事讓我們認(rèn)識(shí)到類比的重要性,前面我們類比分?jǐn)?shù)研究了分式的基本性質(zhì)。今天,我們就來(lái)類比分?jǐn)?shù)的乘除研究5.2分式的乘除法。

  【設(shè)計(jì)意圖】:讓學(xué)生觀察圖片,不但可以體會(huì)到數(shù)學(xué)來(lái)源于生活,喚起學(xué)生對(duì)數(shù)學(xué)的熱愛,激發(fā)學(xué)生學(xué)習(xí)的興趣,為類比分?jǐn)?shù)乘除探索分式乘除法則打下基礎(chǔ)。

 。ǘ⒑献鲗W(xué)習(xí),共探新知

  活動(dòng)2:預(yù)習(xí)反饋,探索法則

  問題:口答:

  猜一猜

  師生共同歸納分式的乘除法法則,這里運(yùn)用了什么數(shù)學(xué)思想?類比、轉(zhuǎn)化數(shù)學(xué)思想

  【設(shè)計(jì)意圖】讓學(xué)生類通過(guò)類比→觀察猜想→-歸納明晰→-得出結(jié)論。通過(guò)類比分?jǐn)?shù)的乘除法則總結(jié)分式的乘除法法則。

  例題講解,師生共同完成。

  注意:1.分式乘除法的實(shí)質(zhì)是約分化簡(jiǎn)。

  2.結(jié)果是最簡(jiǎn)分式或整式。

  單項(xiàng)式 → 約分

  分子、分母 分類

  多項(xiàng)式 → 分解因式,約分

  開心練習(xí):

  學(xué)生板演,小組代表在小白板上答題,其余同學(xué)在學(xué)案上完成。

  【設(shè)計(jì)意圖】:運(yùn)用“兵教兵”教學(xué)方式,讓學(xué)生通過(guò)充分交流,自學(xué)已會(huì)的學(xué)生教還不會(huì)的學(xué)生教師盡可能少講,確保學(xué)生的學(xué)習(xí)時(shí)間,提高課堂效率。

  活動(dòng)3:活學(xué)活用

  炎熱的夏天到了,如果能吃到甘甜的西瓜是多么愜意啊。你會(huì)買西瓜嗎?讓我們跟隨咱班的兩名同學(xué)看看她們是如何買西瓜的?

  播放學(xué)生買西瓜視頻。

  問題:假如我們把西瓜都看成是球形,半徑為R,并把西瓜瓤的密度看成是均勻的,西瓜皮厚都是xcm,,怎樣買西瓜合算?

  先猜一猜,再算一算。

  鏈接幾何畫板:觀察體積比的變化。

  變式:若西瓜的體積不變,是買皮厚的還是皮薄的西瓜?(幾何畫板演示)

  【設(shè)計(jì)意圖】:將問題生活化,讓同學(xué)們幫助解決問題,激發(fā)學(xué)生的求知欲,滲透數(shù)感和幾何直觀,巧妙的利用幾何畫板將問題動(dòng)起來(lái),生動(dòng)直觀。變式訓(xùn)練,讓學(xué)生學(xué)會(huì)舉一反三。

 。ㄈ、跟蹤訓(xùn)練,分層達(dá)標(biāo)

  1.利用慧學(xué)云交互平臺(tái),進(jìn)行選擇題的跟蹤訓(xùn)練。

  學(xué)生在規(guī)定的時(shí)間內(nèi)答題,師現(xiàn)場(chǎng)根據(jù)答題結(jié)果統(tǒng)計(jì),進(jìn)行有針對(duì)性的講解。學(xué)生充當(dāng)小老師,教師予以補(bǔ)充。

  2.智力沖浪

  (1)下面的計(jì)算對(duì)嗎?如果不對(duì),應(yīng)該怎樣改正?

  (2)計(jì)算

  (4)計(jì)算

  【設(shè)計(jì)意圖】:設(shè)置梯度訓(xùn)練題,學(xué)生砸蛋搶答問題,鞏固本節(jié)課的知識(shí)點(diǎn),檢驗(yàn)學(xué)生的掌握程度。

 。ㄋ模w納小結(jié),形成體系

  我們這節(jié)課都學(xué)習(xí)了哪些知識(shí)? 你有哪些收獲呀?那我們用到哪些數(shù)學(xué)思想?由學(xué)生歸納本節(jié)課的內(nèi)容,并相互補(bǔ)充。

  【設(shè)計(jì)意圖】:構(gòu)建知識(shí)思維導(dǎo)圖,在知識(shí)樹上進(jìn)行梳理知識(shí),生動(dòng)直觀。

  類比的學(xué)習(xí)方法是學(xué)習(xí)新知識(shí)的好方法,讓我們細(xì)心觀察,一起研究有趣的數(shù)學(xué)吧!

 。、布置作業(yè),拓展延伸

  必做題:P116頁(yè)1題 2題

  思維拓展:

八年級(jí)數(shù)學(xué)下冊(cè)教案10

  一、學(xué)習(xí)目標(biāo)

  二、學(xué)習(xí)過(guò)程

  閱讀教材

  獨(dú)立完成下列預(yù)習(xí)作業(yè):

  1、填空:

 、倥c的相同,稱為分?jǐn)?shù),+ =,法則是;

 、谂c的不同,稱為分?jǐn)?shù),+ =,運(yùn)算方法為;

  2、與的相同,稱為分式;與的不同,稱為分式.

  3、分式的加減法法則同分?jǐn)?shù)的加減法法則類似

  ①同分母分式相加減,分母,把分子;

 、诋惙帜阜质较嗉訙p,先,變?yōu)橥帜傅姆质,?

  4.,的.最簡(jiǎn)公分母是.

  5、在括號(hào)內(nèi)填入適當(dāng)?shù)拇鷶?shù)式:

  三、合作交流,解決問題:

  1、計(jì)算:⑴ + ⑵ - ⑶ +

  2、計(jì)算:⑴ ⑵ +

 、 ⑷ + +

  3、計(jì)算:

  四、課堂測(cè)控:

  3、計(jì)算:⑴ ⑵

八年級(jí)數(shù)學(xué)下冊(cè)教案11

  一、教學(xué)目標(biāo)

  (一)知識(shí)目標(biāo)

  1、創(chuàng)設(shè)情境引出問題,激起學(xué)生探索直角三角形三邊的關(guān)系的興趣。

  2、讓學(xué)生帶著問題體驗(yàn)勾股定理的探索過(guò)程,并正確運(yùn)用勾股定理解決相關(guān)問題。

  (二)能力目標(biāo)

  1、培養(yǎng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)和能力。

  2、能把已有的數(shù)學(xué)知識(shí)運(yùn)用于勾股定理的探索過(guò)程。

  3、能熟練掌握勾股定理及其變形公式,并會(huì)根據(jù)圖形找出直角三角形及其三邊,從而正確運(yùn)用勾股定理及其變形公式于圖形解決相關(guān)問題。 (三)情感目標(biāo)

  1、培養(yǎng)學(xué)生的自主探索精神,提高學(xué)生合作交流能力和解決問題的能力。

  2、讓學(xué)生感受數(shù)學(xué)文化的價(jià)值和中國(guó)傳統(tǒng)數(shù)學(xué)的成就,激發(fā)學(xué)生的愛國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感,教育學(xué)生奮發(fā)圖強(qiáng)、努力學(xué)習(xí)。

  二、教學(xué)重點(diǎn)

  通過(guò)圖形找出直角三角形三邊之間的關(guān)系,并正確運(yùn)用勾股定理及其變形公式解決相關(guān)問題。

  三、教學(xué)難點(diǎn)

  運(yùn)用已掌握的相關(guān)數(shù)學(xué)知識(shí)探索勾股定理。

  四、教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境,引出問題

  想一想:

  小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?你能解釋這是為什么嗎?

  要解決這個(gè)問題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的三邊有什么關(guān)系。

  - 1 -

  (二) 探索交流,得出新知

  探討之前我們一起來(lái)回憶一下直角三角形的三邊:

  如圖,在Rt △ABC 中,∠C=90° ∠C 所對(duì)的邊AB :斜邊c ∠A 所對(duì)的邊BC :直角邊a ∠B 所對(duì)的邊AC :直角邊b

  問題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的關(guān)系呢? (1)我們先來(lái)探討等腰直角三角形的三邊之間的關(guān)系。

  這個(gè)關(guān)系2500年前已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)了,今天我們把當(dāng)時(shí)的情景重現(xiàn),A

  C

  a

  B

  請(qǐng)同學(xué)們也來(lái)看一看、找一找。

  如圖

  數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn):S A +SB =SC

  即:a 2+b2=c2

  也就是說(shuō):在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。

  議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會(huì)等于斜邊的平方? 如圖

  分析: SA +SB =SC 是否成立?

  (1)正方形A 中含有 個(gè)小方格,即S A = 個(gè)單位面積。 (2)正方形B 中含有 個(gè)小方格,即S B = 個(gè)單位面積。 (3)由上可得:S A +SB = 個(gè)單位面積 問題:正方形C 的面積要如何求呢?與同伴進(jìn)行交流。 方法一:

  “補(bǔ)”成一個(gè)邊長(zhǎng)為整數(shù)格的大正方形,再減去四個(gè)直角邊為整數(shù)格的'三角形 方法二:分割成四個(gè)直角邊為整數(shù)格的三角形,再加上一個(gè)小方格。 綜上:

  我們得出:S A +SB =SC

  即:a +b=c

  2

  2

  2

  C

  - 2 -

  a

  B

  也就是說(shuō):在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。

  概括:

  勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方

  數(shù)學(xué)語(yǔ)言描述:

  如圖,在Rt △ABC 中,a 2+b2=c2

  (用多媒體簡(jiǎn)單介紹勾股定理的名稱由來(lái)、中國(guó)古代的數(shù)學(xué)成就及勾股定理的“無(wú)字證明”) (三)應(yīng)用新知,解決問題

  例1:求出下列直角三角形中未知邊x 的長(zhǎng)度 5

  注意:要根據(jù)圖表找出未知邊是斜邊還是直角邊,勾股定理要用對(duì)。

  從上面這兩道例題,我們知道了在直角三角形中,任意已知兩邊,可以求第三邊。 即勾股定理的變形公式: 如圖,在Rt △ABC 中

  (1)若已知a ,b 則求c 的公式為:c =(2)若已知a ,c 則求b 的公式為:b =(3)若已知b ,c 則求a 的公式為:a =

  a +b c -a c -b

  22

  22

  2

  C

  a

  B

  2

  例2: 如圖,在直角三角形ABC 中, ∠C=900, A

  (1) 已知: a=5, b=12, 求c;

  (2) 已知: b=8,c=10 , 求(3) 已知: a=

  3, c=2, 求 請(qǐng)同學(xué)們利用這節(jié)課學(xué)到的勾股定理及推論解決我們課前提出的問題:

  電視屏幕:

  解:在Rt △ABC 中,AB=46厘米,BC=58厘米

  由勾股定理得:AC=

  ?

  D

  A

  46AB

  2

  +BC

  2

  2

  =46+58

  2

  ≈74(厘米)

  ∴不同意小明的想法。

  - 3 -

  58厘米

  C

  (四)歸納總結(jié)

  (1)這節(jié)課你學(xué)到了什么知識(shí)?

 、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒健 ②在直角三角形中,任意已知兩邊,可以用勾股定理求第三邊。 (2) 運(yùn)用“勾股定理”應(yīng)注意什么問題? ①要利用圖形找到未知邊所在的直角三角形; ②看清未知邊是所在直角三角形的哪一邊; ③勾股定理要用對(duì)。

  (五)練習(xí)鞏固

  (1)、如圖,受臺(tái)風(fēng)“麥莎”影響,一棵樹在離地面8米處斷裂, 樹的頂部落在離樹跟底部6米處,這棵樹折斷前有多高?

  (2)、學(xué)校有一塊長(zhǎng)方形的花圃,經(jīng)常有同學(xué)為了少走幾步而走捷徑,于是在草坪上開辟了一條“新路”,他們這樣走少走了______步.

  (每?jī)刹郊s為1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 則BC 的長(zhǎng)為___________。 (六)作業(yè)

  1. A、B 、C 組:課本第69、70頁(yè),習(xí)題18.1 第1, 2,3題. 2. A、B :練習(xí)冊(cè)33、34頁(yè)

  3.A :課本第71頁(yè)“閱讀與思考”,了解勾股定理的多種證法。

八年級(jí)數(shù)學(xué)下冊(cè)教案12

  一、學(xué)習(xí)目標(biāo)

  二、學(xué)習(xí)過(guò)程

  閱讀教材

  獨(dú)立完成下列預(yù)習(xí)作業(yè):

  1、利用分式的基本性質(zhì):將分式的分子和分母同乘適當(dāng)?shù)恼,不改變分式的值,使幾個(gè)分式化為分母相同的分式,這樣的分式變形叫做分式的通分.

  2、根據(jù)你的預(yù)習(xí)和理解找出:

 、倥c的最簡(jiǎn)公分母是; ②與的最簡(jiǎn)公分母是;

 、叟c最簡(jiǎn)公分母是;④與的最簡(jiǎn)公分母是.

  ★★如何確定最簡(jiǎn)公分母?一般是取各分母的所有因式的次冪的積

  三、合作交流,解決問題:

  1、通分:⑴與⑵,

  2、通分:⑴與; ★⑵,.

  四、課堂測(cè)控:

  1、分式和的最簡(jiǎn)公分母是.分式和的最簡(jiǎn)公分母是.

  2、化簡(jiǎn):

  3、分式,,,中已為最簡(jiǎn)分式的有( )

  A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

  4、化簡(jiǎn)分式的結(jié)果為( )

  A、 B、 C、 D、

  5、若分式的分子、分母中的x與y同時(shí)擴(kuò)大2倍,則分式的值( )

  A、擴(kuò)大2倍B、縮小2倍C、不變D、是原來(lái)的.2倍

  6、不改變分式的值,使分式的各項(xiàng)系數(shù)化為整數(shù),分子、分母應(yīng)乘以( )

  A、10 B、9 C、45 D、90

  7、不改變分式的值,使分子、分母次項(xiàng)的系數(shù)為整數(shù),正確的是( )

  A、 B、 C、 D、

  8、通分:

 、排c⑵與

八年級(jí)數(shù)學(xué)下冊(cè)教案13

  1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過(guò)程如圖)

  3.再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義.

  矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).

  矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

  【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.

 、匐S著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?

 、诋(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的`其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個(gè)角都是直角.

  矩形性質(zhì)2 矩形的對(duì)角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).

  分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅危运哂袑?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對(duì)角線長(zhǎng)AC=BD=2OA=2×4=8(cm).

  例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).

  分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

八年級(jí)數(shù)學(xué)下冊(cè)教案14

  教學(xué)目標(biāo):

  1、進(jìn)一步熟練運(yùn)用平行四邊形、矩形、菱形、正方形的性質(zhì)和判定方法解決有關(guān)問題,清楚平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系。

  2、能利用它們的性質(zhì)和判定進(jìn)行推理和計(jì)算。

  3、使學(xué)生明確知識(shí)體系,提高空間想象能力,掌握基本的推理能力。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):掌握特殊平行四邊形性質(zhì)與判定。

  難點(diǎn):能用特殊平行四邊形的判定定理和性質(zhì)定理進(jìn)行幾何證明和計(jì)算。

  教學(xué)過(guò)程:

  一、梳理知識(shí):

  1.特殊平行四邊形的'性質(zhì).

  1)如圖所示:在矩形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=3cm,AC=5cm

  則BC=_____cm,△BOC的周長(zhǎng)=_____cm

  2)如圖所示:在菱形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=5cm,AC=6cm,

  則你能求出哪些線段的長(zhǎng)度?

  3)如圖所示:在正方形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知OA=3cm,

  則AB=_____cm,△BOC的周長(zhǎng)=_______cm.

  小結(jié):特殊平行四邊形的性質(zhì)(PPT呈現(xiàn))

  2.特殊平行四邊形的判定.

  要使平行四邊形ABCD成為矩形,需要增加的條件________.

  要使平行四邊形ABCD成為菱形,需要增加的條件________.

  要使矩形ABCD成為正方形,需要增加的條件________.

  要使菱形ABCD成為正方形,需要增加的條件________.

  小結(jié):特殊平行四邊形的判定(PPT呈現(xiàn))

  二、深化提高:

  1.已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

 。1)求證:四邊形ADCE為矩形;

 。2)當(dāng)△ABC滿足什么條件時(shí),

  四邊形ADCE是一個(gè)正方形?并給出證明.

  2.如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,

  過(guò)點(diǎn)D作DP∥OC,過(guò)C點(diǎn)作CP∥DO,交DP于點(diǎn)P,

  試判斷四邊形CODP的形狀.

  變式1:如果題目中的矩形變?yōu)榱庑危?圖一)結(jié)論應(yīng)變?yōu)槭裁矗?/p>

  變式2:如果題目中的矩形變?yōu)檎叫危?圖二)結(jié)論又應(yīng)變?yōu)槭裁矗?/p>

  3.如圖,在中,是邊的中點(diǎn),分別是及其延長(zhǎng)線上的點(diǎn),.

 。1)求證:.

 。2)請(qǐng)連結(jié),試判斷四邊形的形狀,并說(shuō)明理由.

 。3)若四邊形是菱形,判斷的形狀。

  三、拓展提高

  1.如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、

  △BCE、△ACF,

 。1)四邊形ADEF是什么四邊形?并說(shuō)明理由

 。2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?

  (3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在.

  2.如圖,已知⊿ABC是等腰三角形,頂角∠BAC=,(<60°)D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

 。1)求證:BE=CD;

 。2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明,

  四、課堂小結(jié)

  五、作業(yè)

  1.如圖,在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),

  PE⊥BC,垂足為E,PF⊥CD,垂足為F。

  求證:EF=AP

  2.如圖,正方形ABCD中,E是對(duì)角線BD上的點(diǎn),且BE=AB,

  EF⊥BD,交CD于點(diǎn)F,DE=2.5cm,求CF的長(zhǎng)。

  3.如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的長(zhǎng)。

八年級(jí)數(shù)學(xué)下冊(cè)教案15

  一、教學(xué)目標(biāo)

  1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。

  2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。

  3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。

  4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):分式的加減運(yùn)算。

  2.難點(diǎn):異分母的分式加減法運(yùn)算。

  三、教學(xué)方法

  啟發(fā)式、分組討論。

  四、教學(xué)手段

  幻燈片。

  五、教學(xué)過(guò)程

  (一)引入

  1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:

  (二)新課

  1.類比分?jǐn)?shù)的通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依據(jù):分式的基本性質(zhì)。

  3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的'公分母叫做最簡(jiǎn)公分母。

  例1通分:

 。1)解:∵最簡(jiǎn)公分母是,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。

  (2)解:

  例2通分:

 。1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),

  小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。

 。2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),

  練習(xí):教材P,79中1、2、3。

 。ㄈ┱n堂小結(jié)

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:

八年級(jí)數(shù)學(xué)下冊(cè)教案01-10

八年級(jí)數(shù)學(xué)下冊(cè)教案05-16

數(shù)學(xué)下冊(cè)教案03-16

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

人教版八年級(jí)數(shù)學(xué)下冊(cè)教案04-27

八年級(jí)數(shù)學(xué)下冊(cè)教案【熱門】05-19

八年級(jí)數(shù)學(xué)下冊(cè)教案[優(yōu)選]05-19

八年級(jí)數(shù)學(xué)下冊(cè)教案15篇01-10

八年級(jí)數(shù)學(xué)下冊(cè)教案(15篇)02-20