- 相關(guān)推薦
小學(xué)數(shù)學(xué)概念的教學(xué)論文
在社會(huì)的各個(gè)領(lǐng)域,大家總少不了接觸論文吧,借助論文可以有效提高我們的寫作水平。你知道論文怎樣寫才規(guī)范嗎?下面是小編精心整理的小學(xué)數(shù)學(xué)概念的教學(xué)論文,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學(xué)數(shù)學(xué)概念的教學(xué)論文 篇1
一 數(shù)學(xué)概念的確定
在小學(xué)如何確定或選擇應(yīng)教的數(shù)學(xué)概念,是一個(gè)復(fù)雜的問題。根據(jù)我們的經(jīng)驗(yàn),在選定數(shù)學(xué)概念時(shí)既要考慮到需要,又要考慮到學(xué)生的接受能力。
。ㄒ唬┻x擇數(shù)學(xué)概念時(shí)應(yīng)適應(yīng)各方面的需要。
1.社會(huì)的需要:主要是指選擇日常生活、生產(chǎn)和工作中有廣泛應(yīng)用的數(shù)學(xué)概念。絕大部分的數(shù)、量和形的概念是具有廣泛應(yīng)用的。但是社會(huì)的需要不是一成不變的,而是常常變化的。因此小學(xué)的數(shù)學(xué)概念也應(yīng)隨著社會(huì)的發(fā)展適當(dāng)有所變化。例如,1991年我國(guó)采用法定計(jì)量單位后,原來采用的市制計(jì)量單位就不再教學(xué)了。
2.進(jìn)一步學(xué)習(xí)的需要:有些數(shù)學(xué)概念在實(shí)際中并不是廣泛應(yīng)用的,但是對(duì)于進(jìn)一步學(xué)習(xí)是重要的。例如質(zhì)數(shù)、合數(shù)、分解質(zhì)因數(shù)、最大公約數(shù)和最小公倍數(shù)等,不僅是學(xué)習(xí)分?jǐn)?shù)的必要基礎(chǔ),而且是學(xué)習(xí)代數(shù)的重要基礎(chǔ),必須使學(xué)生掌握,并把它們作為小學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí)。
3.發(fā)展的需要:這里主要是指有利于發(fā)展兒童的身心的需要。例如,引入簡(jiǎn)易方程及其解法,不僅有助于學(xué)生靈活的解題能力,減少解題的困難程度,而且有助于發(fā)展學(xué)生抽象思維的能力。在我國(guó)的小學(xué)數(shù)學(xué)中,教學(xué)方程產(chǎn)生了很好的效果。小學(xué)生不僅能用方程解兩三步的問題,而且能根據(jù)問題的具體情況選擇適當(dāng)?shù)慕獯鸱椒ā_@里舉一個(gè)例子。
要求五年級(jí)的一個(gè)實(shí)驗(yàn)班的38名學(xué)生(年齡10.5—11.5歲)解下面兩道題:
學(xué)生能用兩種方法解:算術(shù)解法和方程解法。用每種方法解題的正確率都是91.7%。下面是兩個(gè)學(xué)生的解法。
一個(gè)中等生的解法:
一個(gè)下等生的解法:
多少米?
這道題是比較難的,學(xué)生沒有遇到過。結(jié)果很有趣。58.3%的學(xué)生用方程解,41.7%的學(xué)生用算術(shù)方法解。而用方程解的正確率比用算術(shù)方法解的高22%。
下面是兩個(gè)學(xué)生的解法。
一個(gè)優(yōu)等生用算術(shù)方法解:
一個(gè)中等生用方程解:
解:設(shè)買來藍(lán)布x米
。ǘ┻x擇數(shù)學(xué)概念時(shí)還應(yīng)考慮學(xué)生的'接受能力。小學(xué)生的思維特點(diǎn)是從具體形象思維向抽象邏輯思維過渡。一般地說,數(shù)學(xué)概念具有不同程度的抽象水平。在確定教學(xué)某一概念的必要性的前提下還應(yīng)考慮其抽象水平是否適合學(xué)生的思維水平。為此,根據(jù)不同的情況可以采取以下幾種不同的措施:
1.學(xué)生容易理解的一些概念,可以采取定義的方式出現(xiàn)。例如,在四五年級(jí)教學(xué)四則運(yùn)算的概念時(shí),可以教給四則運(yùn)算的定義,使學(xué)生深刻理解四則運(yùn)算的意義以及運(yùn)算間的關(guān)系。而且使學(xué)生能區(qū)分在分?jǐn)?shù)范圍內(nèi)運(yùn)算的意義是否比在整數(shù)范圍內(nèi)有了擴(kuò)展,以便他們能在實(shí)際計(jì)算中正確地加以應(yīng)用。此外,通過概念的定義的教學(xué)還可以使學(xué)生的邏輯思維得到發(fā)展,并為中學(xué)的進(jìn)一步學(xué)習(xí)打下較好的基礎(chǔ)。
2.當(dāng)有些概念以定義的方式出現(xiàn)時(shí),學(xué)生不好理解,可以采取描述它們的基本特征的方式出現(xiàn)。例如,在高年級(jí)講圓的認(rèn)識(shí)時(shí),采取揭示圓的基本特征的方式比較好:(1)它是由曲線圍成的平面圖形;(2)它有一個(gè)中心,從中心到圓上的所有各點(diǎn)的距離都相等。這樣學(xué)生既獲得了概念的直觀的表象,又獲得了其基本特征,從而為中學(xué)進(jìn)一步提高概念的抽象水平做較好的準(zhǔn)備。
3.當(dāng)有些概念不易描述其基本特征時(shí),可以采取舉例說明其含義或基本特征的方法。例如,在教學(xué)“量”這概念時(shí),可以說明長(zhǎng)度、重量、時(shí)間、面積等都是量。對(duì)“平面”這個(gè)概念可以通過某些物體的平展的表面給以直觀的說明。
二 數(shù)學(xué)概念的編排
數(shù)學(xué)概念的編排,在一定程度上可以看作是各年級(jí)對(duì)數(shù)學(xué)概念的選擇和出現(xiàn)順序。數(shù)學(xué)概念的合理編排不僅有助于學(xué)生很好地掌握,而且便于學(xué)生掌握運(yùn)算、解答應(yīng)用題以及其他內(nèi)容。根據(jù)教學(xué)論和我們的實(shí)踐經(jīng)驗(yàn),數(shù)學(xué)概念的編排應(yīng)當(dāng)符合下述原則:既適當(dāng)考慮數(shù)學(xué)概念的邏輯系統(tǒng)性又適當(dāng)考慮學(xué)生認(rèn)知的年齡特點(diǎn)。為了貫徹這一原則,必須考慮以下幾點(diǎn)。
。ㄒ唬┎扇A周排列:這一點(diǎn)不僅反映人類的認(rèn)知過程,而且
符合兒童的認(rèn)知特點(diǎn)。如眾所周知的,自然數(shù)的認(rèn)識(shí)范圍要逐漸地?cái)U(kuò)大,“分?jǐn)?shù)”概念的意義也要逐步的予以完善。
。ǘ┳⒁飧拍钪g的關(guān)系:例如,小數(shù)的初步認(rèn)識(shí)宜于放在分?jǐn)?shù)的初步認(rèn)識(shí)之后,以便于學(xué)生理解小數(shù)可以看作分母是10、100、1000……的分?jǐn)?shù)的特殊形式。把比的認(rèn)識(shí)放在分?jǐn)?shù)除法之后教學(xué),會(huì)有助于學(xué)生理解比和分?jǐn)?shù)的聯(lián)系。
。ㄈ└拍畹某橄笏揭蠈W(xué)生的接受能力:例如,在低年級(jí)教學(xué)減法的含義,是通過操作和觀察使學(xué)生理解從一個(gè)數(shù)里去掉一部分求剩下的部分是多少。而在高年級(jí)教學(xué)時(shí),宜于通過實(shí)際例子給出減法的定義。在低年級(jí)教學(xué)平行四邊形時(shí),只要說明其邊和角的特征而不教平行線的認(rèn)識(shí)。但在高年級(jí)就宜于先介紹平行線,再給出平行四邊形的定義。
(四)注意數(shù)學(xué)概念與其他學(xué)科的配合:數(shù)學(xué)作為一個(gè)工具與其他學(xué)科有較多的聯(lián)系。有些數(shù)學(xué)概念,如計(jì)量單位、比例尺等在學(xué)習(xí)語(yǔ)文和常識(shí)中常用到,在學(xué)生能夠接受的情況下可以提早教學(xué)。
三 小學(xué)生數(shù)學(xué)概念的形成
小學(xué)生的數(shù)學(xué)概念的形成是一個(gè)復(fù)雜的過程。特別是一些較難的數(shù)學(xué)概念,教學(xué)時(shí)需要一個(gè)深入細(xì)致的工作的長(zhǎng)過程。根據(jù)數(shù)學(xué)的特點(diǎn)和兒童的認(rèn)知特點(diǎn),教學(xué)時(shí)要注意以下幾點(diǎn)。
。ㄒ唬┳裱瓋和恼J(rèn)知規(guī)律,引導(dǎo)學(xué)生抽象、概括出所學(xué)概念的本質(zhì)特征。例如,在低年級(jí)教學(xué)“乘法”這個(gè)概念時(shí),可以引導(dǎo)學(xué)生擺幾組圓形,每組的圓形同樣多,并讓學(xué)生先用加法再用乘法計(jì)算圓形的總數(shù)。通過比較引導(dǎo)學(xué)生總結(jié)出乘法是求幾個(gè)相同加數(shù)和的簡(jiǎn)便算法。教學(xué)長(zhǎng)方形時(shí),先引導(dǎo)學(xué)生測(cè)量它的邊和角,然后抽象、概括出長(zhǎng)方形的特征。這樣教學(xué)有助于學(xué)生形成所學(xué)的概念并發(fā)展他們的邏輯思維。
。ǘ┳⒁庹_地理解所學(xué)的概念。教學(xué)經(jīng)驗(yàn)表明,學(xué)生對(duì)某一概念的理解常常顯示出不同的水平,盡管他們都參加同樣的活動(dòng)如操作、比較、抽象和概括等。有些學(xué)生甚至可能完全沒有理解概念的本質(zhì)特征。這就需要檢查所有的學(xué)生是否理解所學(xué)的概念。檢查的方法是多樣的,其中之一是把概念具體化。例如,給出一個(gè)乘法算式,如3×4,讓學(xué)生擺出圓形來說明它表示每組有幾個(gè)圓形,有幾組。另一種方法是給出所學(xué)概念的幾個(gè)變式,讓學(xué)生來識(shí)別。例如,下圖中有幾個(gè)長(zhǎng)方形擺放的方向不同,讓學(xué)生把長(zhǎng)方形挑選出來。
此外,還可以讓學(xué)生舉實(shí)例說明某一概念的意義,如舉例說明分?jǐn)?shù)、正比例的意義。
。ㄈ┱莆崭拍铋g的聯(lián)系和區(qū)別。比較所學(xué)的概念并弄清它們的區(qū)別,可以使學(xué)生深刻地理解這些概念,并消除彼此間的混淆。例如,應(yīng)使學(xué)生能夠區(qū)分質(zhì)數(shù)與互質(zhì)數(shù),長(zhǎng)方形的周長(zhǎng)和面積,正比例和反比例等。在教過有聯(lián)系的概念之后,可以讓學(xué)生把它們系統(tǒng)地加以整理,以說明它們之間的關(guān)系。例如,四邊形、正方形、長(zhǎng)方形、平行四邊形和梯形可以通過下圖加以系統(tǒng)整理,以說明它們的關(guān)系。
通過概念的系統(tǒng)整理使學(xué)生在頭腦中對(duì)這些概念形成良好的認(rèn)知結(jié)構(gòu)。
。ㄋ模┲匾暩拍畹膽(yīng)用。學(xué)習(xí)概念的應(yīng)用有助于學(xué)生進(jìn)一步加
深理解所學(xué)的概念,把數(shù)學(xué)知識(shí)同實(shí)際聯(lián)系起來,并且發(fā)展學(xué)生的邏輯思維。例如,學(xué)過長(zhǎng)方體以后,可以讓學(xué)生找出周圍環(huán)境中哪些物體的形狀是長(zhǎng)方體。學(xué)過質(zhì)數(shù)概念以后可以讓學(xué)生找出能整除60的質(zhì)數(shù)。
我們的實(shí)驗(yàn)表明,由于采取了上述的措施,學(xué)生對(duì)概念的理解的正確率有較明顯的提高。下面是19xx年進(jìn)行的一次測(cè)驗(yàn)中有關(guān)學(xué)生掌握數(shù)學(xué)概念的測(cè)試結(jié)果。
注:1.兩個(gè)實(shí)驗(yàn)班都是五年級(jí),年齡是11—12歲。一個(gè)對(duì)照班是五年制五年級(jí),另一個(gè)是六年制六年級(jí)。
2.1991年用同一測(cè)驗(yàn)測(cè)試全國(guó)約200個(gè)實(shí)驗(yàn)班,也得到較好的結(jié)果。
上面的測(cè)試結(jié)果表明,實(shí)驗(yàn)班學(xué)生學(xué)習(xí)數(shù)學(xué)概念的成績(jī),在認(rèn)數(shù)、幾何圖形,特別是在學(xué)習(xí)倒數(shù)、比例和扇形方面都優(yōu)于對(duì)照班的學(xué)生。最后一項(xiàng)測(cè)試結(jié)果還表明,實(shí)驗(yàn)班學(xué)生在發(fā)展空間觀念和作圖能力方面優(yōu)于對(duì)照班學(xué)生。
四 結(jié) 論
在小學(xué)加強(qiáng)數(shù)學(xué)概念的教學(xué)對(duì)于提高學(xué)生的數(shù)學(xué)概念的認(rèn)知水平具有重要的意義。
在小學(xué)如何確定教學(xué)的數(shù)學(xué)概念是一個(gè)重要的復(fù)雜的問題。在選定概念時(shí),既要很好地考慮需要,又要很好地考慮學(xué)生的接受能力。
合理地安排數(shù)學(xué)概念對(duì)于學(xué)生掌握他們有很大幫助。在編排概念時(shí),既要充分考慮所教概念的邏輯系統(tǒng)性,又要照顧到不同年齡的學(xué)生的認(rèn)知特點(diǎn)。
教學(xué)的策略對(duì)于形成學(xué)生的數(shù)學(xué)概念起著重要的作用。在教學(xué)概念時(shí)教師應(yīng)當(dāng)遵循兒童的認(rèn)知規(guī)律和激發(fā)學(xué)生思考的原則,并且注意使學(xué)生正確理解概念的義,掌握概念間的聯(lián)系和區(qū)別,并在實(shí)際中應(yīng)用所學(xué)的概念。
。ū疚氖1992年向第七屆國(guó)際數(shù)學(xué)教育會(huì)議提交的論文,曾在大會(huì)第一研討組上宣讀。)
小學(xué)數(shù)學(xué)概念的教學(xué)論文 篇2
數(shù)學(xué)概念是數(shù)學(xué)思維的細(xì)胞,是形成數(shù)學(xué)知識(shí)體系的基本要素,是數(shù)學(xué)基礎(chǔ)知識(shí)的核心,是孩子們學(xué)習(xí)數(shù)學(xué)的堅(jiān)固基石。對(duì)于第一學(xué)段的孩子來說,正確地理解、掌握數(shù)學(xué)概念更是孩子學(xué)好數(shù)學(xué)的前提和保障,有利于學(xué)生在后來的學(xué)習(xí)中形成完整的、清晰的、系統(tǒng)的數(shù)學(xué)知識(shí)體系。
[存在問題]
小學(xué)數(shù)學(xué)第一學(xué)段的概念包羅萬象,它們有的需要用一定的生活經(jīng)驗(yàn)為基礎(chǔ),有的需要一定的概括能力,有的又需要一定的抽象思維,掌握起來并不那么容易了。在第一學(xué)段的概念教學(xué)中存在著如下幾方面問題:
來自學(xué)生的:對(duì)于第一學(xué)段的孩子來說,其抽象思維能力較弱,對(duì)于數(shù)學(xué)語(yǔ)言的理解和表達(dá)有一定的難度,而這將直接影響孩子們對(duì)概念的鞏固和運(yùn)用。
來自教師的:教師對(duì)數(shù)學(xué)概念本身就沒有一個(gè)系統(tǒng)的、清晰的認(rèn)識(shí),只是跟著教材、教參走,結(jié)果在某些問題上自己也拿捏不準(zhǔn),自然會(huì)使得孩子們數(shù)學(xué)概念越來越不確定,越來越糊涂。同時(shí)由于課堂教學(xué)在空間、時(shí)間上的限制,使得概念教學(xué)顯得枯燥、乏味,教學(xué)也往往只浮于表面。
來自概念本身的:數(shù)學(xué)概念是客觀現(xiàn)實(shí)中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中的反映,具有抽象概括性;數(shù)學(xué)概念又是以語(yǔ)言和符號(hào)為中介的,這和我們對(duì)生活的理解是不同的,造成了生活概念和數(shù)學(xué)概念的混淆。比如大部分孩子對(duì)于“角”就僅停留在角的頂點(diǎn)上,并需要依托具體的實(shí)物才能進(jìn)行描述,而數(shù)學(xué)中的“角”則是“角是有公共端點(diǎn)的兩條射線所組成的幾何圖形”,這對(duì)于孩子們來說是費(fèi)勁的。
[解決策略]
怎樣讓這些枯燥、抽象的概念變得生動(dòng)有趣,使課堂教學(xué)更有效,減輕孩子們的學(xué)習(xí)負(fù)擔(dān),讓概念在孩子們心中得到完美內(nèi)化呢?或許我們可以從以下幾方面入手。
一、概念的引入講述宜直觀形象
針對(duì)第一學(xué)段孩子的抽象思維能力較弱,對(duì)數(shù)學(xué)語(yǔ)言描述的概念理解較為困難,我們?cè)诮虒W(xué)中應(yīng)該多用形象的描述,創(chuàng)設(shè)有趣的問題情境,打些合理的比方等,努力讓孩子們理解所學(xué)概念,可以采用以下一些方式來進(jìn)行教學(xué)。
夸張的手勢(shì),豐富的肢體語(yǔ)言,理解運(yùn)算所蘊(yùn)含的意義,區(qū)分概念的差別。在讓一年級(jí)的孩子認(rèn)識(shí)加減法的時(shí)候,我舉起雙手像音樂指揮家一樣,左邊一部分,右邊一部分,兩部分合在一起就用加號(hào),加號(hào)就是橫一部分,豎一部分組起來的,減法則反過來展示。孩子們看得有趣,記得形象,不但記住了加減號(hào)還明白了加減號(hào)的用法。在教二年級(jí)孩子感受厘米和米時(shí),我讓孩子們學(xué)會(huì)用手勢(shì)來表示1厘米和1米,使得孩子們?cè)诠烙?jì)具體物體的長(zhǎng)度時(shí)有據(jù)可依。形象生動(dòng)的講解,讓孩子們自然接受數(shù)學(xué)符號(hào)。教師的語(yǔ)言講解也要力求符合學(xué)生實(shí)際,特別是第一次描述時(shí),教師一定要斟字酌句地用孩子能理解的語(yǔ)言盡可能用數(shù)學(xué)語(yǔ)言簡(jiǎn)潔地描述。因?yàn)閷?duì)于第一次接觸新概念的孩子們來說,第一印象是最為深刻的。當(dāng)然在適當(dāng)?shù)臅r(shí)候我們也可以選擇讓孩子們根據(jù)自己的理解來說一說來試著對(duì)概念進(jìn)行解釋,一方面同齡人的解釋會(huì)讓孩子們概念的理解更為容易;另一方面也可以鍛煉一下孩子的數(shù)學(xué)語(yǔ)言表達(dá)能力。我們要記。汉⒆觽兊臄(shù)學(xué)概念應(yīng)該是逐級(jí)遞進(jìn)、螺旋上升的(當(dāng)然要避免不必要的重復(fù)),以符合學(xué)生的數(shù)學(xué)認(rèn)知規(guī)律。很多時(shí)候第一學(xué)段的孩子對(duì)于部分?jǐn)?shù)學(xué)概念,只要能意會(huì)不必強(qiáng)求定要學(xué)會(huì)言傳。
二、概念的學(xué)習(xí)宜多感官參與
心理學(xué)家皮亞杰指出:“活動(dòng)是認(rèn)識(shí)的基礎(chǔ),智慧從動(dòng)作開始!睍系臄(shù)學(xué)概念是平面的,現(xiàn)實(shí)卻是豐富多彩的,照本宣科,簡(jiǎn)單學(xué)習(xí)自然無法讓這些數(shù)學(xué)概念成為孩子們數(shù)學(xué)知識(shí)的堅(jiān)固基石。如果我們能夠讓孩子們的多種感官參與學(xué)習(xí),讓平面的書本知識(shí)變得多維、立體,讓孩子們的感覺和思維同步,相信能取得很好的教學(xué)效果。
教學(xué)《認(rèn)識(shí)鐘表》時(shí),鑒于時(shí)間是一個(gè)非常抽象的概念,時(shí)間單位具有抽象性,時(shí)間進(jìn)率具有復(fù)雜性,所以在教學(xué)時(shí)我以學(xué)生已有生活經(jīng)驗(yàn)為基礎(chǔ),幫助學(xué)生通過具體感知,調(diào)動(dòng)孩子的多種感官參與學(xué)習(xí),在積累感性認(rèn)識(shí)的基礎(chǔ)上,建立時(shí)間觀念,安排了以下一些教學(xué)環(huán)節(jié)。1.動(dòng)耳聽故事,調(diào)動(dòng)情感引入。講了一個(gè)發(fā)生在孩子們身邊的故事:豆豆由于不會(huì)看時(shí)間,結(jié)果錯(cuò)過了最愛看的動(dòng)畫片。2.動(dòng)眼看鐘面,聽介紹,初步了解鐘面,形成“時(shí)、分”概念。動(dòng)畫是孩子們的最愛,讓鐘表爺爺來介紹鐘面、時(shí)針、分針,生動(dòng)有趣的講解,讓孩子們的心立刻專注地進(jìn)行于課堂上。3.動(dòng)嘴說時(shí)間,喜好分明。4.動(dòng)手撥時(shí)間。5.動(dòng)腦畫時(shí)間(此時(shí)在前幾項(xiàng)練習(xí)的基礎(chǔ)上增加了一定難度,如出示一些沒有數(shù)字的鐘面,只有12、3、6、9四點(diǎn)的鐘面,讓孩子們對(duì)時(shí)針、分針的位置進(jìn)行估計(jì))。
通過這些活動(dòng),使孩子們口、手、耳、腦并用,自主地鉆入到數(shù)學(xué)知識(shí)的探究中去,讓時(shí)間從孩子們的生活中伶伶俐俐地變成數(shù)學(xué)知識(shí),形成了數(shù)學(xué)概念。同時(shí)也讓學(xué)生充分展示自己的思維過程,展現(xiàn)自己的認(rèn)識(shí)個(gè)性,從而使課堂始終處于一種輕松、活躍的狀態(tài)。
另外,教師在教學(xué)的過程中也應(yīng)該對(duì)所教概念的知識(shí)生長(zhǎng)點(diǎn),今后的發(fā)展(落腳點(diǎn))有一個(gè)全面、系統(tǒng)的認(rèn)識(shí),才能使得所教概念不再那么單薄,變得厚重起來。孩子對(duì)概念的來龍去脈有一個(gè)更清晰完整的了解,理解起來也就變得輕松。
如果我們能讓一個(gè)概念變得豐滿,變得多彩,讓它能從書的平面描述中凸現(xiàn)出來,那么孩子們掌握概念的過程便也會(huì)變得立體、多維,他們的學(xué)習(xí)過程也就變得積極、主動(dòng),而這不正是我們數(shù)學(xué)學(xué)習(xí)所需要的嗎?
三、概念的練習(xí)宜生動(dòng)有趣
第一學(xué)段初期的孩子從心理狀態(tài)上來說較難適應(yīng)學(xué)校的教學(xué)生活,在學(xué)習(xí)中總是會(huì)感到疲勞乏味,碰到相對(duì)枯燥的概念教學(xué)時(shí)這種疲憊更是由內(nèi)而外。德國(guó)教育家福祿培爾在其代表作《幼兒園》中認(rèn)為,游戲活動(dòng)是兒童活動(dòng)的特點(diǎn),游戲和語(yǔ)言是兒童生活的組成因素,通過各種游戲,組織各種有效的活動(dòng),兒童的內(nèi)心活動(dòng)和內(nèi)心生活將會(huì)變?yōu)楠?dú)立的、自主的外部自我表現(xiàn),從而獲得愉快、自由和滿足。將游戲用于教學(xué),將能使兒童由被動(dòng)變?yōu)橹鲃?dòng),積極地汲取知識(shí)。
游戲、活動(dòng)是孩子們的最愛,讓他們?cè)谟螒蚧顒?dòng)中獲取知識(shí),這樣的.知識(shí)必定是美好而快樂的。有了這樣的感覺,孩子們學(xué)習(xí)數(shù)學(xué)的興趣一定是濃厚的,我們?cè)僮寯?shù)學(xué)的魅力適度展示,讓他們感覺到學(xué)習(xí)數(shù)學(xué)不但是一件輕松、快樂的事更是一件有意義的事。我想他們繼續(xù)進(jìn)行探索、學(xué)習(xí)新知的動(dòng)力就來自于此了。
四、概念的拓展宜實(shí)在有效
美國(guó)實(shí)用主義哲學(xué)家、教育家杜威從他的“活動(dòng)”理論出發(fā),強(qiáng)調(diào)兒童“從做中學(xué)”“從經(jīng)驗(yàn)中學(xué)”,讓孩子們?cè)谥鲃?dòng)作業(yè)中運(yùn)用思想、產(chǎn)生問題、促進(jìn)思維和取得經(jīng)驗(yàn)。確實(shí),在一些親力親為的數(shù)學(xué)小實(shí)驗(yàn)中,孩子們表現(xiàn)出了一種自然的主動(dòng)的學(xué)習(xí)情緒。他們以充沛的精力在這些小實(shí)驗(yàn)、小研究中主動(dòng)地討論所發(fā)生的事,想出種種方案去解決問題,使智力獲得了充分的應(yīng)用和發(fā)展。在數(shù)學(xué)概念的教學(xué)中,設(shè)計(jì)一些孩子能力所能致的小研究活動(dòng),可以讓孩子對(duì)這些抽象的數(shù)學(xué)概念得到進(jìn)一步體驗(yàn)、內(nèi)化,得到課堂教學(xué)所不能抵達(dá)的效果。
孩子對(duì)于較大的單位比如說“千米”“噸”等,由于其經(jīng)驗(yàn)的限制往往沒有什么概念。只是,教師這樣說了,他也便這樣記了,對(duì)他而言也僅僅只是一個(gè)簡(jiǎn)單的字符而已。僅僅通過課堂教學(xué),那么“千米”在孩子們的印象中便是“1千米=1000米”是一個(gè)不能用手丈量的長(zhǎng)度;“噸”在孩子們的印象中便是“1噸=1000千克”是一個(gè)拿不動(dòng)的質(zhì)量。至于“1千米”到底有多長(zhǎng),“1噸”到底有多重?孩子們心中并無底,才使得經(jīng)常會(huì)出現(xiàn):一幢居民樓高約20(千米);一節(jié)火車車廂載重量為60(千克)這樣的笑話。如果我們能讓孩子們來進(jìn)行切身的體驗(yàn)再附以一些小實(shí)驗(yàn),這些問題便能迎刃而解了。
概念是枯燥的、乏味的,但卻是重要的。對(duì)于第一學(xué)段的孩子們我們不能假定他們都非常清楚學(xué)習(xí)數(shù)學(xué)概念的重要性,指望他們能投入足夠的時(shí)間和精力去學(xué)習(xí)數(shù)學(xué)概念,也不能單純地依賴教師或家長(zhǎng)的“權(quán)威”去迫使孩子們這樣做。那么就需要我們積極地引領(lǐng)他們,使之學(xué)得輕松,學(xué)得扎實(shí),讓他們體會(huì)到數(shù)學(xué)所散發(fā)出的無窮魅力,讓概念深入心中,為數(shù)學(xué)學(xué)習(xí)服務(wù)。
小學(xué)數(shù)學(xué)概念的教學(xué)論文 篇3
【摘要】小學(xué)數(shù)學(xué)概念呈現(xiàn)形式多樣化,直觀性較強(qiáng),教學(xué)階段性也較強(qiáng)。教師要針對(duì)這一年齡階段的學(xué)生特點(diǎn),采用不同呈現(xiàn)形式開展小學(xué)數(shù)學(xué)概念教學(xué),將抽象的知識(shí)轉(zhuǎn)化成具體形象的事物,讓學(xué)生們快速理解與掌握;從概念間的區(qū)別與聯(lián)系入手,讓學(xué)生形成數(shù)學(xué)概念系統(tǒng),引導(dǎo)學(xué)生去探索與明確這些數(shù)學(xué)概念之間所存在的聯(lián)系。
【關(guān)鍵詞】小學(xué)數(shù)學(xué);數(shù)學(xué)概念;概念系統(tǒng)
數(shù)學(xué)概念是學(xué)生接觸與學(xué)習(xí)每一個(gè)新知識(shí)點(diǎn)必先學(xué)習(xí)的東西,它對(duì)于學(xué)生的整個(gè)數(shù)學(xué)科目的學(xué)習(xí)來說是基石一般的存在,因此學(xué)生從小學(xué)數(shù)學(xué)概念起必須打好學(xué)習(xí)的基礎(chǔ),讓學(xué)生在清晰的了解各種概念的基礎(chǔ)上,幫助他們學(xué)習(xí)最基本的數(shù)學(xué)知識(shí),只有這樣才能讓數(shù)學(xué)學(xué)習(xí)的路越走越平整、越走越寬敞。
一、小學(xué)數(shù)學(xué)概念的理論概述
1、從數(shù)學(xué)概念的涵義與構(gòu)成方面來看。首先是涵義方面,從教學(xué)的角度來看,數(shù)學(xué)概念指的是在客觀現(xiàn)實(shí)中數(shù)量關(guān)系與空間形式二者的本質(zhì)屬性在人們腦中所形成的反應(yīng),其表現(xiàn)為數(shù)學(xué)用語(yǔ)中的一些專用名詞、符號(hào)或術(shù)語(yǔ)等,比方說是“周長(zhǎng)”、“體積”。其次是概念的構(gòu)成方面,一般來說數(shù)學(xué)概念是可以分成兩個(gè)組成部分,一個(gè)是內(nèi)涵,另一個(gè)是外延。概念的內(nèi)涵其實(shí)指的就是這個(gè)概念所反映出來的所有對(duì)象的一個(gè)共同本質(zhì)屬性總和。比方說是三角形的概念,它的內(nèi)涵所指的就是其本質(zhì)屬性中“三條線段”與“圍成”的總和。而概念的外延指的就相對(duì)會(huì)比較廣泛,它指的是此概念所囊括的一切對(duì)象總和。以四邊形的概念為例,它就包括了正方形、長(zhǎng)方形、梯形等所有很多對(duì)象。
2、小數(shù)學(xué)概念的特點(diǎn)。小學(xué)時(shí)期數(shù)學(xué)概念的特點(diǎn)其他可以從三個(gè)方面來進(jìn)行簡(jiǎn)單的歸納:第一個(gè)就是其呈現(xiàn)形式上的特點(diǎn)。由于小學(xué)數(shù)學(xué)是一個(gè)引導(dǎo)學(xué)生入門的.時(shí)期,因此它的概念在呈現(xiàn)方式上也會(huì)顯得更為多樣化,像是最初采用圖畫的方式,再到后來的描述方式,最后還有定義式等等。第二個(gè)特點(diǎn)就是直觀性較強(qiáng)。一般來說數(shù)學(xué)概念最為突出的特點(diǎn)就是其抽象性與概括性,但我們?cè)谶M(jìn)行小學(xué)階段數(shù)學(xué)教學(xué)時(shí),就會(huì)發(fā)現(xiàn)小學(xué)數(shù)學(xué)概念通常都會(huì)定義得比較直觀,比較形象具體,基本都是以小學(xué)生的接受能力與理解能力為起點(diǎn)來進(jìn)行設(shè)計(jì)的。第三個(gè)特點(diǎn)是教學(xué)階段性較強(qiáng)。小學(xué)時(shí)期的教學(xué)會(huì)受到很多客觀原因的局限,從而導(dǎo)致教師在進(jìn)行數(shù)學(xué)教學(xué)時(shí),所講解的數(shù)學(xué)知識(shí)也會(huì)存在極強(qiáng)的階段性。比方說在低年級(jí)時(shí),孩子們的理解能力與認(rèn)識(shí)能力還尚未發(fā)展到一定的水平,因此對(duì)于很多抽象性的知識(shí)很難理解,因此教師在講解時(shí)就只能通過分階段逐步滲透的辦法來解決問題。
二、小學(xué)數(shù)學(xué)概念教學(xué)的策略
開展概念教學(xué)可以從多種形式與內(nèi)容入手,既要梳理各種概念之間的聯(lián)系與區(qū)別,又要形成統(tǒng)一的系統(tǒng)概念體系,可以從以下幾個(gè)方面進(jìn)行:
1、采用不同呈現(xiàn)形式開展小學(xué)數(shù)學(xué)概念教學(xué)。概念教學(xué)的形式眾多,可以從圖畫式教學(xué)入手,教師在采用這種方式進(jìn)行教學(xué)時(shí),一定要注意引導(dǎo)學(xué)生自主的去發(fā)掘圖畫中所蘊(yùn)含的真正涵義,從而達(dá)到揭示概念本質(zhì)的效果,從而讓學(xué)生對(duì)概念有個(gè)更清晰的認(rèn)識(shí)。以梯形概念教學(xué)為例,教師在開展教學(xué)工作時(shí),應(yīng)該要就所展示出來的圖畫適時(shí)的引導(dǎo)學(xué)生去探索并揭示出梯形的本質(zhì)特征,并且最終實(shí)現(xiàn)將表象圖畫轉(zhuǎn)換成抽象數(shù)學(xué)語(yǔ)言的目的。其次是描述式,其實(shí)采用這種呈現(xiàn)形式的概念一般都是“字”與“形”相結(jié)合的,比方說是小數(shù)的概念、直線的概念,在概念描述中直接就把其本身的圖形或默示所標(biāo)示出來了,教師在進(jìn)行教學(xué)時(shí)只需要把“形”所表達(dá)的意思與孩子們傳達(dá)清楚再結(jié)合“字”就能使他們快速掌握這個(gè)知識(shí)點(diǎn)。還有就是定義式,這種方法一般適于一些高年級(jí)的學(xué)生,相對(duì)而言它的概括性以及抽象性都會(huì)強(qiáng)很多,因此教師在教學(xué)時(shí)可以適時(shí)的采用一些直觀的教學(xué)工具或舉例講解等辦法,將抽象的知識(shí)轉(zhuǎn)化成具體形象的事物,讓學(xué)生們快速理解與掌握。
2、從概念間的區(qū)別與聯(lián)系入手,讓學(xué)生形成數(shù)學(xué)概念系統(tǒng)。首先是同一概念在教學(xué)時(shí)的聯(lián)系與區(qū)別。因?yàn)樾W(xué)數(shù)學(xué)在很多時(shí)候,雖然是同一個(gè)概念,但是在不同的時(shí)期所要求的教學(xué)程度是大不相同的,因此對(duì)于概念的講解程度也會(huì)有所區(qū)別。以分?jǐn)?shù)的教學(xué)為例,在三年級(jí)時(shí)我們的教學(xué)要求只是停留在讓孩子們認(rèn)識(shí)分?jǐn)?shù)的程度,而在五年級(jí)時(shí),我們就必須向他們解釋分?jǐn)?shù)的真實(shí)意義與性質(zhì)。再比方說是方程這一概念,在剛開始學(xué)習(xí)的時(shí)候,我們只要求學(xué)生有一個(gè)基礎(chǔ)的了解與滲透,而到高年級(jí)后就會(huì)要求他們對(duì)方程給與一個(gè)明確的定義。其次是不同概念之間也存在著聯(lián)系。雖然有些概念它們是大不相同的,但是在某些程度上也是存在著一定的聯(lián)系,因?yàn)閿?shù)學(xué)的概念并不是孤立的,它們是相輔相成的。教師在進(jìn)行日常教學(xué)時(shí)應(yīng)該有意識(shí)的引導(dǎo)學(xué)生去探索與明確這些數(shù)學(xué)概念之間所存在的聯(lián)系,為他們更好的構(gòu)建概念系統(tǒng)打下結(jié)實(shí)的基礎(chǔ)。
三、結(jié)束語(yǔ)
總之,教師在開展小學(xué)數(shù)學(xué)概念教學(xué)時(shí)必須以學(xué)生實(shí)際情況為根據(jù),采用最為合適的方法進(jìn)行概念教學(xué),因?yàn)橹挥袕男〈蚝没A(chǔ),才能實(shí)現(xiàn)數(shù)學(xué)概念教學(xué)的目標(biāo)。
參考文獻(xiàn)
[1]盧增友.小學(xué)數(shù)學(xué)概念教學(xué)的策略[J].現(xiàn)代交際.2016(07)
[2]許中麗.提升小學(xué)數(shù)學(xué)概念教學(xué)有效性策略的研究綜述[J].南昌教育學(xué)院學(xué)報(bào).2015(03)
【小學(xué)數(shù)學(xué)概念的教學(xué)論文】相關(guān)文章:
對(duì)小學(xué)科學(xué)概念教學(xué)設(shè)計(jì)的思考論文10-22
文化概念界說新論教學(xué)論文02-17
小學(xué)數(shù)學(xué)教學(xué)論文()07-15
小學(xué)數(shù)學(xué)有效課堂教學(xué)論文12-08
數(shù)學(xué)《角的概念》教案01-09