- 相關(guān)推薦
一種全同步數(shù)字頻率測(cè)量方法的研究
摘要:在頻率測(cè)量過(guò)程中,±1個(gè)計(jì)數(shù)誤差通常是限制頻率測(cè)量精度進(jìn)一步提高的重要原因。在分析±個(gè)計(jì)數(shù)誤差產(chǎn)生原因的基礎(chǔ)上,提出了一種利用被測(cè)信號(hào)、時(shí)鐘基準(zhǔn)和測(cè)量門(mén)限相位的全同步來(lái)消除計(jì)數(shù)誤差的頻率測(cè)量方法,給出了基于FPGA實(shí)現(xiàn)上述測(cè)量方法的實(shí)驗(yàn)原型和實(shí)驗(yàn)對(duì)比結(jié)果。關(guān)鍵詞:相位同步頻率測(cè)量FPGA頻率測(cè)量是電子測(cè)量技術(shù)中最基本的測(cè)量之一。工程中很多測(cè)量,如用振弦式方法測(cè)量力、時(shí)間測(cè)量、速度測(cè)量、速度控制等,都涉及到頻率測(cè)量,或可歸結(jié)為頻率測(cè)量。頻率測(cè)量方法的精度和效能常常決定了這些測(cè)量?jī)x表或控制系統(tǒng)的性能。頻率作為一種最基本的物理量,其測(cè)量問(wèn)題等同于時(shí)間測(cè)量問(wèn)題,因此頻率測(cè)量的意義更加顯然。常用數(shù)字頻率測(cè)量方法有M法、T法和M/T法。M法是在給定的閘門(mén)時(shí)間內(nèi)測(cè)量被測(cè)信號(hào)的脈沖個(gè)數(shù),進(jìn)行換算得出被測(cè)信號(hào)的頻率。這種測(cè)量方法的測(cè)量精度取決于閘門(mén)時(shí)間和被測(cè)信號(hào)頻率。當(dāng)被測(cè)信號(hào)頻率較低時(shí)將產(chǎn)生較大誤差,除非閘門(mén)時(shí)間取得很大。所以這種方法比較適合測(cè)量高頻信號(hào)的頻率。T法是通過(guò)測(cè)量被測(cè)信號(hào)的周期然后換算出被測(cè)信號(hào)的頻率。這種測(cè)量方法的測(cè)量精度取決于被測(cè)信號(hào)的周期和計(jì)時(shí)精度,當(dāng)被測(cè)信號(hào)頻率較高時(shí),對(duì)計(jì)時(shí)精度的要求就很高。這種方法比較適合測(cè)量頻率較低的信號(hào)。M/T法具有以上兩種方法的優(yōu)點(diǎn),它通過(guò)測(cè)量被測(cè)信號(hào)數(shù)個(gè)周期的時(shí)間然后換算得出被測(cè)信號(hào)的頻率,可兼顧低頻與高頻信號(hào),提高了測(cè)量精度。圖1
但是,M法、T法和M/T法存在±1個(gè)字的計(jì)數(shù)誤差問(wèn)題:M法存在被測(cè)閘門(mén)內(nèi)±1個(gè)被測(cè)信號(hào)的脈沖個(gè)數(shù)誤差,T法或M/T法也存在±1個(gè)字的計(jì)時(shí)誤差。這個(gè)問(wèn)題成為限制測(cè)量精度提高的一個(gè)重要原因。本文在以上方法基礎(chǔ)上,提出了一種新的頻率測(cè)量方法,該方法利用全同步方法消除限制測(cè)量精度提高的±1數(shù)字誤差問(wèn)題,從而使頻率測(cè)量的精度和性能大為改善。1全同步數(shù)字頻率測(cè)量方法的原理M/T法是目前使用比較廣泛的一種頻率測(cè)量方法。其核心思想是通過(guò)閘門(mén)信號(hào)與被信號(hào)同步,將閘門(mén)時(shí)間T控制為被測(cè)信號(hào)周期的整數(shù)倍。測(cè)量時(shí),先打開(kāi)參考閘門(mén),當(dāng)檢測(cè)到被測(cè)信號(hào)脈沖沿到達(dá)時(shí)開(kāi)始計(jì)時(shí),對(duì)標(biāo)準(zhǔn)時(shí)鐘計(jì)數(shù);參考閘門(mén)關(guān)閉時(shí),計(jì)時(shí)器并不立即停止計(jì)時(shí),而是待檢測(cè)到被測(cè)信號(hào)脈沖沿到達(dá)時(shí)才停止計(jì)時(shí),完成測(cè)量被測(cè)信號(hào)整數(shù)個(gè)周期的過(guò)程。測(cè)量的實(shí)際閘門(mén)時(shí)間與參考閘門(mén)時(shí)間可能不完全相箱,但最大差值不超過(guò)被測(cè)信號(hào)的一個(gè)周期。M/T法測(cè)量原理如圖1所示。
圖2
設(shè)實(shí)際閘門(mén)時(shí)間為T(mén)s,被測(cè)信號(hào)周期數(shù)為Nx,標(biāo)準(zhǔn)時(shí)鐘計(jì)時(shí)值為Ns,頻率為fs,則被測(cè)信號(hào)的頻率測(cè)量值為:由于實(shí)際閘門(mén)時(shí)間為T(mén)s為被測(cè)信號(hào)周期的整數(shù)倍,因此Nx是精確的;而對(duì)標(biāo)準(zhǔn)時(shí)鐘的計(jì)量值則存在誤差△Ns(|△Ns|≤1),即標(biāo)準(zhǔn)時(shí)鐘計(jì)時(shí)的真值應(yīng)為Ns±△Ns。由此可知被測(cè)信號(hào)的頻率真值為:若不計(jì)標(biāo)準(zhǔn)時(shí)鐘的誤差,則測(cè)量的相對(duì)誤差是:可以看出,M/T法實(shí)際上就是將測(cè)量閘門(mén)信號(hào)與被測(cè)信號(hào)同步,使得實(shí)際測(cè)量時(shí)間是被測(cè)信號(hào)周期的整數(shù)倍,所以M/T法又稱(chēng)為多周期同步測(cè)量法。M/T法中,相對(duì)誤差與被測(cè)頻率無(wú)關(guān),即對(duì)整個(gè)測(cè)量頻率域等精度測(cè)量;對(duì)標(biāo)準(zhǔn)時(shí)鐘的計(jì)數(shù)值Ns越大則測(cè)量相對(duì)誤差越小;提高門(mén)限時(shí)間Ts和標(biāo)準(zhǔn)時(shí)鐘頻率可以提高測(cè)量精度;在精度不變的情況下,提高標(biāo)準(zhǔn)時(shí)鐘頻率可以縮短門(mén)限時(shí)間,提高測(cè)量速度。由此可見(jiàn),對(duì)閘門(mén)時(shí)間Ts的計(jì)時(shí)誤差△Ns是限制M/T法頻率測(cè)量精度進(jìn)一步提高的主要原因,消除△Ns誤差是提高測(cè)量精度的有效手段。全同步頻率測(cè)量法則是在參考閘門(mén)的控制下,尋找與標(biāo)準(zhǔn)時(shí)鐘同步的被測(cè)信號(hào),并以此信號(hào)作為實(shí)際閘門(mén)的控制信號(hào),實(shí)現(xiàn)實(shí)際測(cè)量閘門(mén)信號(hào)、標(biāo)準(zhǔn)時(shí)鐘、被測(cè)信號(hào)全同步,從而消除Nx和Ns測(cè)量誤差。全同步頻率測(cè)量法原理如圖2所示。在給出參考閘門(mén)信號(hào)后,通過(guò)一個(gè)脈沖同步檢測(cè)器檢測(cè)被測(cè)信號(hào)脈沖沿和標(biāo)準(zhǔn)時(shí)鐘信號(hào)脈沖沿的同步信息,當(dāng)它們同步就開(kāi)始計(jì)時(shí);參考閘門(mén)關(guān)閉后,亦檢測(cè)被測(cè)信號(hào)脈沖沿和標(biāo)準(zhǔn)時(shí)鐘信號(hào)脈沖沿的同步信息,當(dāng)它們同步則停止計(jì)時(shí)。對(duì)于任意的標(biāo)準(zhǔn)時(shí)鐘和被測(cè)信號(hào),要找到兩者脈沖完全同步的時(shí)刻來(lái)開(kāi)啟、關(guān)閉閘門(mén)是不現(xiàn)實(shí)的,但有可能找在實(shí)現(xiàn)脈沖同步檢測(cè)電路時(shí),也存在一個(gè)脈沖同步檢測(cè)的誤差范圍。若以這個(gè)脈沖同步檢測(cè)電路檢測(cè)到脈沖同步的時(shí)刻作為開(kāi)關(guān)信號(hào),可以使得實(shí)際閘門(mén)的開(kāi)關(guān)發(fā)生在標(biāo)準(zhǔn)時(shí)鐘和被測(cè)信號(hào)都足夠接近的時(shí)刻,從而達(dá)到計(jì)算值量化誤差的最小化。設(shè)開(kāi)啟閘門(mén)時(shí)脈沖同步時(shí)間為△t1,關(guān)閉閘門(mén)時(shí)脈沖同步時(shí)間差為△t2,脈沖同步檢測(cè)最大時(shí)間差值或稱(chēng)為最大誤差為△t,則有:|△t1|≤△t,|△t2|≤△t。不計(jì)標(biāo)準(zhǔn)時(shí)鐘誤差,實(shí)際閘門(mén)與標(biāo)準(zhǔn)時(shí)鐘同步,實(shí)際閘門(mén)時(shí)間為T(mén)s,則被測(cè)信號(hào)的頻率測(cè)量值為:被測(cè)信號(hào)頻率的真實(shí)值可表示為:頻率測(cè)量的相對(duì)誤差為:從(6)式可知,頻率測(cè)量的最大相對(duì)誤差只與脈沖同步檢測(cè)最大時(shí)間差值△t和閘門(mén)時(shí)間Ts有關(guān)。將(6)式與(3)式對(duì)比可知,標(biāo)準(zhǔn)時(shí)鐘周期1/?s和脈沖同步檢測(cè)最大時(shí)間差值△t分別是M/T法和本文所述的全同步頻率測(cè)量法中限制頻率測(cè)量精度提高的原因。顯然,控制△t來(lái)提高頻率測(cè)量精度是有鏟的,而且實(shí)現(xiàn)起來(lái)比提高標(biāo)準(zhǔn)時(shí)鐘頻率更容易。在全同步頻率測(cè)量法中,當(dāng)△t=2.5ns、Ts為1s時(shí),頻率測(cè)量相對(duì)精度可以達(dá)到10-9量級(jí);或當(dāng)△t=2.5ns、Ts取0.001s時(shí),可以實(shí)現(xiàn)1000次/s、相對(duì)精度達(dá)到10-6量級(jí)的快速動(dòng)態(tài)頻率測(cè)量。
2實(shí)驗(yàn)原形與測(cè)試結(jié)果根據(jù)上述思想,利用VHDL語(yǔ)言,在基于ALTERA公司EPF10K100ARC240-1FPGA的硬件平臺(tái)上實(shí)現(xiàn)了一個(gè)全同步數(shù)字頻率測(cè)量的實(shí)驗(yàn)原形,其原理圖如圖3所示。系統(tǒng)由控制器、脈沖同步檢測(cè)、計(jì)數(shù)器、頻率換算邏輯、鎖存器和顯示等幾部分組成。其中,脈沖同步檢測(cè)是檢測(cè)被測(cè)信號(hào)與標(biāo)準(zhǔn)時(shí)鐘是否同步并產(chǎn)生實(shí)際閘門(mén)控制信號(hào)的關(guān)鍵部分,其電氣性能直接影響到頻率測(cè)量精度。脈沖同步檢測(cè)的設(shè)計(jì)仿真結(jié)果如圖4所示。圖4中,pulse1和pulse2為輸入的標(biāo)準(zhǔn)時(shí)鐘和被測(cè)信號(hào),gate為輸入的參考閘門(mén)信號(hào),output為脈沖同步檢測(cè)電路產(chǎn)生的實(shí)際閘門(mén)信號(hào)。所設(shè)計(jì)電路的脈沖同步檢測(cè)最大誤差△t為2.5ns,即pulse1和pulse2的上升沿時(shí)間如果相差不大于2.5ns,則檢測(cè)為兩脈沖同步;反之,則檢測(cè)為兩脈沖不同步。
在相同條件下使用全同步頻率測(cè)量法與A/T法進(jìn)行頻率測(cè)量的對(duì)比結(jié)果如表1所示。系統(tǒng)使用的標(biāo)準(zhǔn)時(shí)鐘頻率fs為1.000000MHz,被測(cè)信號(hào)頻率標(biāo)稱(chēng)值為3.68639MHz。
表1全同步頻率測(cè)量法與M/T法的測(cè)量對(duì)比結(jié)果測(cè)量編號(hào)參考閘門(mén)時(shí)間(ms)全同步頻率測(cè)量法M/T法標(biāo)準(zhǔn)時(shí)鐘計(jì)
數(shù)值測(cè)量信號(hào)計(jì)
數(shù)值實(shí)際閘門(mén)時(shí)間(ms)測(cè)量結(jié)果(MHz)測(cè)量結(jié)果(MHz)1196335500.9633.686393.68721101437381.0143.686393.68731101437381.0143.686393.68641101437381.0143.686393.68750.011184350.1183.68643.760.01511880.0513.68623.770.01511880.0513.68623.780.011184350.1183.68643.6可以看出:閘門(mén)時(shí)間縮短會(huì)影響測(cè)量精度,但在同等條件下,全同步頻率測(cè)量法的測(cè)量精度要高于M/T法;M/T法通過(guò)提高標(biāo)準(zhǔn)時(shí)鐘頻率或加大門(mén)閘門(mén)時(shí)間來(lái)提高頻率測(cè)量精度,而全同步頻率測(cè)量法可以使用較低標(biāo)準(zhǔn)時(shí)鐘頻率、較短閘門(mén)時(shí)間來(lái)獲得較好的頻率測(cè)量精度。本文提出的全同步頻率測(cè)量方法可以在較低的標(biāo)準(zhǔn)時(shí)鐘頻率、較短的閘門(mén)時(shí)間條件下顯著提高頻率測(cè)量的精度,適用于各種頻率測(cè)量場(chǎng)合。本文實(shí)現(xiàn)的實(shí)驗(yàn)原型主要是為了對(duì)本文方法進(jìn)行驗(yàn)證,在實(shí)際應(yīng)用還需要考慮輸入信號(hào)波形失真對(duì)精度的影響、相位檢測(cè)可能出現(xiàn)的極端情況等問(wèn)題。
【一種全同步數(shù)字頻率測(cè)量方法的研究】相關(guān)文章:
數(shù)字頻率合成器的FPGA實(shí)現(xiàn)08-06
一種基于FPGA的A超數(shù)字式探傷系統(tǒng)的研究08-06
基于FPGA的直接數(shù)字頻率合成技術(shù)設(shè)計(jì)08-06
新型數(shù)字化可編程頻率合成器08-06
頻率分布08-17
基于FPGA的直接數(shù)字頻率合成器的設(shè)計(jì)和實(shí)現(xiàn)08-06