天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會(huì)>讀后感>《數(shù)學(xué)史》讀后感

《數(shù)學(xué)史》讀后感

時(shí)間:2023-01-19 11:07:25 讀后感 我要投稿

《數(shù)學(xué)史》讀后感(精選23篇)

  當(dāng)品讀完一部作品后,相信你心中會(huì)有不少感想,這時(shí)候,最關(guān)鍵的讀后感怎么能落下!你想好怎么寫讀后感了嗎?下面是小編精心整理的《數(shù)學(xué)史》讀后感,供大家參考借鑒,希望可以幫助到有需要的朋友。

《數(shù)學(xué)史》讀后感(精選23篇)

  《數(shù)學(xué)史》讀后感 篇1

  今年的寒假出奇的漫長(zhǎng),在這漫長(zhǎng)的寒假里,我讀了一本我不怎么喜歡的書——《數(shù)學(xué)史》,為什么不喜歡呢?是因?yàn)槲液芏嗖欢,但是讀著讀著我就喜歡上了,《數(shù)學(xué)史》記錄著人類數(shù)學(xué)歷史發(fā)展的進(jìn)程,讀了它,我有一點(diǎn)膚淺的體會(huì)。

  體會(huì)一:數(shù)學(xué)源自于與生活的需要與發(fā)展。

  書中寫到:人類在很久之前就已經(jīng)具有識(shí)辨多寡的能力,從這種原始的數(shù)學(xué)到抽象的“數(shù)”概念的形成,是一個(gè)緩慢漸進(jìn)的過程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g(shù),于是開始用手指頭去“計(jì)算”,手指頭計(jì)數(shù)不夠就開始用石頭,結(jié)繩,刻痕去計(jì)計(jì)數(shù)。例如:古埃及的象形數(shù)字;巴比倫的楔形數(shù)字;中國(guó)的甲骨文數(shù)字;希臘的阿提卡數(shù)字;中國(guó)籌算術(shù)碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運(yùn)算法則,但都同樣在人類歷史發(fā)展和數(shù)學(xué)發(fā)展起著至關(guān)重要的作用,極大地推動(dòng)了人類文明的前進(jìn)。

  體會(huì)二:河谷文明和早期數(shù)學(xué)在歷史的.長(zhǎng)河一樣璀璨奪目。

  歷史學(xué)家往往把興起于埃及,美索不達(dá)米亞,中國(guó)和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學(xué),就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長(zhǎng)江,印度河與恒河等河谷地帶首先發(fā)展起來的。埃及人留下來的兩部草紙書——萊茵徳紙草書和莫斯科紙草書,還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的偉大成就,也給后人留下了輝煌的文化歷史,而美索不達(dá)米亞在代數(shù)計(jì)算方面更是達(dá)到令人不可思議的程度。三次方程,畢達(dá)哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學(xué)史上的地位是至關(guān)重要的。

  古人云:讀史使人明智。讀了《數(shù)學(xué)史》讓我明白:數(shù)學(xué)源于生活,高于生活,最終服務(wù)于生活,運(yùn)用于生活。

  《數(shù)學(xué)史》讀后感 篇2

  在任何起點(diǎn)上要想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問題,然后才能賦予答案的意義 ——引言

  數(shù)學(xué), 似乎是一個(gè)枯燥的學(xué)科,但卻是我們生活里最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟(jì)學(xué)的基礎(chǔ),是市場(chǎng)里的公平稱,是我們量化自己的必要工具...是的,數(shù)學(xué)是一個(gè)“工具箱”!那么,前人是怎么樣把這個(gè)工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學(xué)史》后,我知道了許多。

  《這才是好讀的數(shù)學(xué)史》介紹了數(shù)學(xué)從有記載的源頭,到最初的算數(shù),再到代數(shù)、幾何等領(lǐng)域不斷地深入化發(fā)展的歷史過程。本書按照歷史發(fā)展順序,先后介紹了數(shù)學(xué)的開端,古希臘的數(shù)學(xué),古印度的數(shù)學(xué),古阿拉伯的`數(shù)學(xué),中世紀(jì)歐洲的數(shù)學(xué),十五和十六世紀(jì)的代數(shù)學(xué)。

  在人類對(duì)于數(shù)學(xué)漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的數(shù)學(xué) 。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學(xué),但有很多變化。在這兒不得不提到的是古希臘數(shù)學(xué)。在此之前,各個(gè)文明運(yùn)用數(shù)學(xué)僅僅是用來協(xié)助、解決一些簡(jiǎn)單的生活問題,有時(shí)不就此滿足的人們也會(huì)有簡(jiǎn)單的探索,但希臘的數(shù)學(xué)家們是獨(dú)一無二的,他們將邏輯推理和證明作為數(shù)學(xué)中心,也是正因如此,他們永遠(yuǎn)改變了運(yùn)用數(shù)學(xué)的意義。

  數(shù)學(xué)源于生活卻高于生活。如今的數(shù)學(xué)在生活中被廣泛的運(yùn)用,一起熱愛數(shù)學(xué)吧!向?yàn)閿?shù)學(xué)做出巨大奉獻(xiàn)的前人們致敬!

  《數(shù)學(xué)史》讀后感 篇3

  數(shù)學(xué)也許對(duì)我們來說僅僅是一門枯燥且乏味的科目,但在學(xué)習(xí)數(shù)學(xué)這門科目的時(shí)候,誰又曾想過數(shù)學(xué)是從何而來的,數(shù)學(xué)的發(fā)展歷程又是怎么樣的……

  本來我并不知道這些,或者用詞恰當(dāng)一些,數(shù)學(xué)對(duì)于我來說是熟悉卻陌生的:說熟悉,從最初的小學(xué)一年級(jí)接觸數(shù)學(xué),可以說到現(xiàn)在時(shí)間已經(jīng)蠻久了;說陌生,從最初接觸數(shù)學(xué)以來,我并不了解關(guān)于數(shù)學(xué)的發(fā)展經(jīng)過以及數(shù)學(xué)的由來。

  《數(shù)學(xué)史》這本書概括了數(shù)學(xué)的出現(xiàn)以及發(fā)展,將數(shù)學(xué)發(fā)展的幾千年的歷史寫以書的形式,讓人們更加容易理解。同時(shí),《數(shù)學(xué)史》也在講述發(fā)展史的同時(shí),將數(shù)學(xué)概念本身講解的十分清楚。

  從希臘人到哥德爾,在數(shù)學(xué)的發(fā)展中一直人才輩出。數(shù)學(xué)的發(fā)展雖追蹤歐洲數(shù)學(xué)的發(fā)展,但也不失中國(guó),印度和阿拉伯文明。《數(shù)學(xué)史》將世界上的數(shù)學(xué)文明都總結(jié)在了書中,十分經(jīng)典。

  在書中,我了解到:在早期人類社會(huì)中,數(shù)學(xué)史抽象的科學(xué),恩格斯指出:“數(shù)學(xué)在一門科學(xué)中的應(yīng)用程度,標(biāo)志著這門科學(xué)的成熟程度!钡浆F(xiàn)如今,數(shù)學(xué)對(duì)科學(xué)和社會(huì)提供著不可缺的`技術(shù)與理論支持。

  數(shù)學(xué)也是一門累積性強(qiáng)的學(xué)科,重大的數(shù)學(xué)理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來的,他們不僅不會(huì)推翻原有理論,反而總是包容它們,在原有的基礎(chǔ)上再做更多的鉆研。

  讀了這本書,讓我對(duì)數(shù)學(xué)有了新的認(rèn)識(shí)和感悟,也讓我從更深層次了解到了數(shù)學(xué)的魅力與偉大以及對(duì)前輩的深深崇敬!稊(shù)學(xué)史》這本書是一本十分難得的記錄數(shù)學(xué)發(fā)展史的書,它不僅條理清晰且易讀,實(shí)為優(yōu)秀的數(shù)學(xué)史教材。

  《數(shù)學(xué)史》讀后感 篇4

  最近,我讀了《這才是好讀的數(shù)學(xué)史》一書的上半部分。讀完后我十分感慨,原來數(shù)學(xué)是一門如此有趣且有豐富內(nèi)涵的學(xué)科。

  這本書記載了數(shù)學(xué)從有記載的源頭再向代數(shù)、幾何(平面幾何、立體幾何、解析幾何)、統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進(jìn)程。全書按歷史發(fā)展的順序先后介紹了古希臘、古印度、古巴比倫、古代中國(guó)、中世紀(jì)歐洲在十五世紀(jì)至十六世紀(jì)數(shù)學(xué)在順應(yīng)社會(huì)實(shí)踐需要的基礎(chǔ)上出現(xiàn)的深化、突破。

  在介紹數(shù)學(xué)發(fā)展的基礎(chǔ)上,這本書還以歷史的視角對(duì)三十種有關(guān)基礎(chǔ)數(shù)學(xué)的普通概念進(jìn)行了獨(dú)立精彩的敘述,再現(xiàn)了畢達(dá)哥拉斯、歐幾里得、歐拉等數(shù)學(xué)大師的風(fēng)采,還特地的穿插了女性數(shù)學(xué)家在數(shù)學(xué)發(fā)展中做出的巨大貢獻(xiàn),從各方面為讀者還原了真實(shí)、有趣的數(shù)學(xué)史。

  數(shù)學(xué)與文學(xué)、物理學(xué)、藝術(shù)、經(jīng)濟(jì)學(xué)或音樂一樣,是人類不斷發(fā)展和努力的結(jié)果。它既有過去的歷史,又有未來的.發(fā)展,更有今天的廣泛應(yīng)用。我們今天學(xué)習(xí)和使用的數(shù)學(xué),在許多方面都與一千年前、五百年前甚至一百年前的數(shù)學(xué)有很大不同。在21世紀(jì),數(shù)學(xué)無疑會(huì)進(jìn)一步發(fā)展。學(xué)習(xí)數(shù)學(xué)就像認(rèn)識(shí)一個(gè)人一樣,你對(duì)他的過去了解的越多,你現(xiàn)在和將來就越能理解他并與其互動(dòng)。

  在任何起點(diǎn)上想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問題,然后才能賦予題目有意義的答案。理解一個(gè)問題往往取決于了解這個(gè)概念的理解,所以想理解數(shù)學(xué),就來讀《這才是好讀的數(shù)學(xué)史》。

  《數(shù)學(xué)史》讀后感 篇5

  在這個(gè)寒假里,我接觸到了《數(shù)學(xué)史》這本書。這本書介紹了數(shù)學(xué)從有記載的源頭向最初的算術(shù)、幾何、統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進(jìn)程,以及如今數(shù)學(xué)的發(fā)展。

  這本書分為兩篇,上篇是數(shù)學(xué)簡(jiǎn)史,下篇是數(shù)學(xué)概念小史。這本書中令我印象最深的數(shù)學(xué)家就是費(fèi)馬。皮埃爾·德·費(fèi)馬是屬于文藝復(fù)興時(shí)期傳統(tǒng)的人,他處于重新發(fā)掘古希臘知識(shí)的中心,但是他卻問了一個(gè)希臘人沒有想到過要問的問題—費(fèi)馬大定理。這個(gè)問題困惑了世人358年,直到1994年的9月19日安德魯·懷爾斯才宣布解開這個(gè)問題。這個(gè)問題起源于古希臘時(shí)代,它聯(lián)系著畢達(dá)哥拉斯所建立的數(shù)學(xué)的基礎(chǔ)和現(xiàn)代數(shù)學(xué)中各種最復(fù)雜的思想。費(fèi)馬大定理的故事和數(shù)學(xué)的歷史有著密不可分的聯(lián)系,它對(duì)于“是什么推動(dòng)著數(shù)學(xué)發(fā)展”,或者是“是什么激勵(lì)著數(shù)學(xué)家們”提供了一個(gè)獨(dú)特的.見解。費(fèi)馬大定理是一個(gè)充滿勇氣、欺詐、狡猾和悲慘的英雄傳奇的核心,牽涉到數(shù)學(xué)王國(guó)中所有最偉大的英雄。巴里·梅休爾評(píng)論說,在某種意義上每個(gè)人都在研究費(fèi)馬問題,但只是零星地而沒有把它作為目標(biāo),因?yàn)檫@個(gè)證明需要把現(xiàn)代數(shù)學(xué)的整個(gè)力量聚集起來才能完全解答。安德魯所做的就是再一次把似乎是相隔很遠(yuǎn)的一些數(shù)學(xué)領(lǐng)域結(jié)合在一起。因而,他的工作似乎證明了自費(fèi)馬問題提出以來數(shù)學(xué)所經(jīng)歷的多元化過程是合理的。

  讀了數(shù)學(xué)史后,我認(rèn)為數(shù)學(xué)在我們的生活中扮演著不可或缺的角色,只有學(xué)好數(shù)學(xué),學(xué)會(huì)應(yīng)用數(shù)學(xué),我們才能在這個(gè)正在向數(shù)字化發(fā)展的社會(huì)穩(wěn)穩(wěn)地站住腳跟。

  《數(shù)學(xué)史》讀后感 篇6

  在這個(gè)寒假,我閱讀了一本名叫《這才是好讀的數(shù)學(xué)史》這本書叫這個(gè)名字確實(shí)是名副其實(shí),他為人們介紹了最全面的數(shù)學(xué)史,以及名人與數(shù)學(xué)之前的故事,還有各國(guó)數(shù)學(xué)的起源到發(fā)展。

  數(shù)學(xué)的形狀和名稱以及關(guān)于計(jì)數(shù)和算數(shù)運(yùn)算的基本概念似乎是人類的遺產(chǎn)。早在公元前500年,數(shù)學(xué)就出現(xiàn)了,隨著社會(huì)的不斷發(fā)展,就需要一些方法來統(tǒng)計(jì)拖款欠稅的數(shù)額等等,這時(shí)候數(shù)學(xué)就開始出現(xiàn)了。那時(shí)候的古埃及人用墨水在紙草上書寫這種,這種材料是不易保存數(shù)千年的。大多數(shù)?脊偶彝诰虻氖^都是在神廟和陵墓附近,而不是在古城遺址。因此我們只能通過少量的資料來考察古埃及的數(shù)學(xué)發(fā)展史。

  許多古代文化發(fā)展了各式各樣的數(shù)學(xué),但是希臘數(shù)學(xué)家們是獨(dú)一無二的,他們將邏輯推理和證明擺在數(shù)學(xué)的中心位置。希臘數(shù)學(xué)傳統(tǒng)的保持和發(fā)展一直延續(xù)到公元400年。我們了解的希臘數(shù)學(xué)最早是歐幾里得的《幾何原本》,可我們也只了解這一本著名的書。希臘數(shù)學(xué)的.優(yōu)勢(shì)便是幾何,盡管希臘人也研究了整數(shù),天文學(xué),力學(xué)。但是根據(jù)古希臘幾何學(xué)史學(xué)家的說法,最早的希臘數(shù)學(xué)家是600年前的泰勒斯,畢達(dá)哥拉斯都要比他晚一個(gè)世紀(jì),當(dāng)記錄歷史時(shí),泰勒斯和畢達(dá)哥拉斯都成為了遠(yuǎn)古時(shí)期的神話級(jí)人物。

  又在20世紀(jì)初,希伯爾特提出了一系列重要問題,又在21世紀(jì)開始在克萊數(shù)學(xué)學(xué)院的帶領(lǐng)下,選擇7個(gè)數(shù)學(xué)課題,并且提供的100萬美金來解決每一個(gè)問題數(shù)論則是另一個(gè)發(fā)展方向。正如我們的數(shù)學(xué)概念小史中解釋的,費(fèi)馬的最后定理在1994年得到了證明。

  在今天的數(shù)學(xué)中涉及了許多不同的領(lǐng)域,所以我們要好好學(xué)習(xí)數(shù)學(xué),并且多看有關(guān)數(shù)學(xué)的書,才能使我們的數(shù)學(xué)成績(jī)突飛猛進(jìn)。

  《數(shù)學(xué)史》讀后感 篇7

  數(shù)學(xué)是歷史的長(zhǎng)河中一顆閃亮的明珠,閃閃發(fā)光。生活中離不開數(shù)學(xué),處處都能看到數(shù)學(xué)的影子。這個(gè)寒假老師叫我們讀了一本叫做《這才是好讀的數(shù)學(xué)史》的書。更加深入的了解了不同國(guó)家的不同數(shù)學(xué)發(fā)展歷史。讓我從中對(duì)數(shù)學(xué)有了不同的理解。

  我們?cè)趯W(xué)校也一直在學(xué)習(xí)數(shù)學(xué),卻從來沒有學(xué)過數(shù)學(xué)的發(fā)展歷程,通過閱讀這本書我也明白了,從古至今的數(shù)學(xué)發(fā)展是很漫長(zhǎng)的但卻十分有意義。就像現(xiàn)在我們所學(xué)的數(shù)學(xué),其實(shí)背后都有著數(shù)學(xué)家們探索的故事。從中我們也能感受到數(shù)學(xué)家不斷追求真理的那種執(zhí)著。這本書不僅講了中國(guó)的數(shù)學(xué)發(fā)展,也還講了許多國(guó)家的數(shù)學(xué)發(fā)展。我們也看到了數(shù)學(xué)的遼闊,現(xiàn)在我們學(xué)的只是皮毛。

  數(shù)學(xué)發(fā)展的歷史長(zhǎng)河中總有一些光輝一直不掉的數(shù)學(xué)家們,他們推進(jìn)了數(shù)學(xué)的發(fā)展,真正的印刻在了歷史的長(zhǎng)河里。但是在探索數(shù)學(xué)的'道路上,在他們的背后還有許多一直默默探索的人,而能夠支持他們一直走下去的理由,我想只能是熱愛吧。因?yàn)闊釔,所以想探索更多?/p>

  對(duì)于數(shù)學(xué)的探索。并不是只屬于某一個(gè)國(guó)家,而是屬于全人類的。就像古希臘數(shù)學(xué)的中心是幾何,他們也探索出了許多關(guān)于幾何的真理。但這些真理最后也被全世界所使用,所以在探究數(shù)學(xué)這條路上全人類都是一致的。雖然在公元五世紀(jì)標(biāo)志著古希臘數(shù)學(xué)的終結(jié),但是,古希臘的數(shù)學(xué)也給了人們?cè)S多真理。

  通過閱讀這本書,我不僅了解到了數(shù)學(xué)的發(fā)展歷史,也明白了數(shù)學(xué)的發(fā)展是無止境的,具有創(chuàng)新,是開啟科學(xué)大門的鑰匙,是人類智慧的結(jié)晶。

  《數(shù)學(xué)史》讀后感 篇8

  《數(shù)學(xué)史》這本書從希臘數(shù)學(xué)講到了現(xiàn)代數(shù)學(xué)。我所感興趣的部分有幾個(gè),一是關(guān)于以前的技術(shù)系統(tǒng)。我不知搭配人們是從何時(shí)開始計(jì)數(shù)的,但是當(dāng)時(shí)的以十的冪為基數(shù)的計(jì)數(shù)系統(tǒng)以及六十進(jìn)制的分?jǐn)?shù)表示雖然不及現(xiàn)在的阿拉伯?dāng)?shù)字方便,但仍值得我們稱贊。第二是希臘數(shù)學(xué)。雖然希臘人并不太在意應(yīng)用數(shù)學(xué),但是我覺得他們所研究的幾何也是需要來源于生活的,是要從生活中去尋找,發(fā)現(xiàn)和提取的。也就是那個(gè)時(shí)候,歐幾里得編出了影響深遠(yuǎn)的《幾何原本》。我們現(xiàn)在所學(xué)的幾何就與《幾何原本》有著很大的關(guān)系,所以說這么看來的話,到現(xiàn)在我們也不過只是學(xué)到了數(shù)學(xué)的皮毛而已,許多的知識(shí)還是希臘數(shù)學(xué)。且其中的平行公設(shè)到了十九世紀(jì)仍然被研究。所以用影響深遠(yuǎn)來描述《幾何原本》,應(yīng)該不為過吧。同時(shí),他們也對(duì)Π有了一些認(rèn)識(shí)。由此可見,他們不僅從生活中提煉出了數(shù)學(xué)思想,而且還在上面添加了許多華麗的色彩,使得整個(gè)數(shù)學(xué)系統(tǒng)更加龐大,也讓數(shù)學(xué)漸漸成為我們不敢仰望的存在。最后一個(gè)令我感興趣的部分是代數(shù)。步入初中學(xué)習(xí)后,我們開始接觸代數(shù),但讀了《數(shù)學(xué)史》我才知道代數(shù)竟然是十六、十七世紀(jì)所產(chǎn)生的',過了幾個(gè)世紀(jì),代數(shù)又成為了讓人頭疼的部分。并且在那個(gè)時(shí)候,他們就已經(jīng)開始研究一些復(fù)雜的代數(shù)問題了。

  《數(shù)學(xué)史》向我們完整地展示了數(shù)學(xué)各個(gè)枝節(jié)細(xì)致的發(fā)展過程,這種過程被描寫的也還算有趣(至少讓我看得下去),雖然專業(yè)術(shù)語很多,閱讀有障礙,但我不得不說,這確實(shí)是好讀的數(shù)學(xué)史。

  《數(shù)學(xué)史》讀后感 篇9

  有關(guān)數(shù)學(xué)的故事跨越了幾千年。本書分為數(shù)學(xué)簡(jiǎn)史和數(shù)學(xué)概念小史兩部分,在介紹數(shù)學(xué)的知識(shí)的同時(shí)又講述了各個(gè)時(shí)期,各個(gè)地區(qū)的數(shù)學(xué)歷史與發(fā)展,并且解決了很多的數(shù)學(xué)題目。

  數(shù)學(xué)簡(jiǎn)史這部分介紹了許多地區(qū)的數(shù)學(xué)歷史與發(fā)展。數(shù)學(xué)的開端、希臘數(shù)學(xué)、印度數(shù)學(xué)、阿拉伯?dāng)?shù)學(xué)等等。數(shù)學(xué)概念小史這部分則通過事例,介紹了數(shù)學(xué)界許多重要人物的成果和相關(guān)題目。數(shù)字“0”的'故事就很有趣。四世紀(jì)的時(shí)候,巴比倫人用一個(gè)小點(diǎn)來避免楔形文字記數(shù)混淆,“0”作為占位開始了它的生命。但這時(shí)候,它還只是一個(gè)跳過某些東西的符號(hào)。公元九世紀(jì)的印度開始把0作為一個(gè)數(shù)字來對(duì)待。當(dāng)時(shí)在東方國(guó)家數(shù)學(xué)是以運(yùn)算為主,而西方是以幾何為主,所以當(dāng)阿拉伯?dāng)?shù)學(xué)家阿爾.花剌子模初引入0這個(gè)符號(hào)和概念到西方時(shí),曾經(jīng)引起西方人的困惑,把0本身作為一個(gè)數(shù)字看待的想法花了很長(zhǎng)時(shí)間才確立。

  讀完這本書,我對(duì)古人先輩的智慧感到敬佩,對(duì)數(shù)學(xué)歷史的源遠(yuǎn)流長(zhǎng)感到驚嘆,更對(duì)數(shù)學(xué)知識(shí)有了更深的理解。數(shù)學(xué)源于生活卻高于生活。如今,數(shù)學(xué)在生活中被廣泛的運(yùn)用,很多事情都離不開數(shù)學(xué)。所以,我們不說對(duì)數(shù)學(xué)進(jìn)行什么更深層次的研究,而是應(yīng)該更加熱愛它。并且我們要學(xué)習(xí)前人那種對(duì)未知事物的堅(jiān)定、執(zhí)著的探索精神,對(duì)當(dāng)下學(xué)習(xí)的數(shù)學(xué)知識(shí)學(xué)懂、吃透。我認(rèn)為,這是很重要的。

  《數(shù)學(xué)史》讀后感 篇10

  最近一段時(shí)間,我花兩天時(shí)間認(rèn)真閱讀了《這才是好讀的數(shù)學(xué)史》這本書。這使得我對(duì)數(shù)學(xué)的發(fā)展有了更多的了解。

  通過這本書的內(nèi)容,我了解到了數(shù)學(xué)是如何發(fā)展起來的,和一些為數(shù)學(xué)發(fā)展做出過巨大貢獻(xiàn)的集體或個(gè)人。從這本書里,我知道了,數(shù)學(xué)是從古代中東地區(qū)發(fā)展起來的,在經(jīng)過一段時(shí)間的發(fā)展后,之后便在古希臘,印度,之后再是伊斯蘭帝國(guó)成長(zhǎng)和發(fā)揚(yáng)光大,后來再在歐洲得到進(jìn)一步的發(fā)展。這本書還告訴了我,數(shù)學(xué)不是男性的天下,因?yàn)闀镞提及了一些十分杰出的女性數(shù)學(xué)家,她們也為數(shù)學(xué)的發(fā)展做出了巨大的貢獻(xiàn)。

  數(shù)學(xué)史是一個(gè)龐大的內(nèi)容,可以說,自從文明開始,就有了人去研究和在生活之中使用數(shù)學(xué),數(shù)學(xué)為人們的生活帶去了巨大的便利。這本書在做表述數(shù)學(xué)史這一龐大的'內(nèi)容時(shí),還將其盡量簡(jiǎn)化,簡(jiǎn)化成了幾個(gè)板塊并且還是用十分生動(dòng)的有趣的語言,但這樣也有缺點(diǎn),就是有很多其他的事情沒有介紹到,同時(shí)對(duì)于中國(guó)的數(shù)學(xué),作者可能是沒能找到太多相關(guān)的資料,所以并沒有介紹太多。

  《這才是好讀的數(shù)學(xué)史》這本書先是說了數(shù)學(xué)在各個(gè)古代文明中的發(fā)展,之后又講了其中世界上有名的數(shù)學(xué)科目,并分別介紹了在這些方面出名的數(shù)學(xué)家,在后面又講到了現(xiàn)代數(shù)學(xué),通過這兒我知道了,我們現(xiàn)在所學(xué)的數(shù)學(xué)是非常古老的,幾千年前的東西了,我們甚至連中世紀(jì)的水平都沒達(dá)到,也由此可以看出數(shù)學(xué)的發(fā)展之快。數(shù)學(xué)在一次次的個(gè)性與進(jìn)步當(dāng)中,變得越來越深?yuàn)W,難以理解。

  從千年前的1+1=2再到函數(shù),再到微積分,再到現(xiàn)代數(shù)學(xué),數(shù)學(xué)也開始運(yùn)用在更多地方,像航天,工程等,所以說,只有學(xué)好數(shù)學(xué)才能為社會(huì)做出更大的貢獻(xiàn)。

  《數(shù)學(xué)史》讀后感 篇11

  讀完《這才是好讀的數(shù)學(xué)史》之后,我最想表達(dá)的就是對(duì)數(shù)學(xué)悠長(zhǎng)的歷史的感嘆,這本書讓我了解到從3.7萬年前到現(xiàn)在21世紀(jì)的數(shù)學(xué)的發(fā)展與進(jìn)步,也明白了數(shù)學(xué)在生活中的重要性。

  下面我將介紹幾點(diǎn)我印象最深刻的內(nèi)容:

  在書中第一章:開端中介紹了四大文明古國(guó)的數(shù)學(xué)文化,包括當(dāng)時(shí)的人們用什么材質(zhì)的東西來記錄數(shù)學(xué),用數(shù)學(xué)干什么以及保存情況如何。在這一章講述古巴比倫的數(shù)學(xué)是寫了他們數(shù)學(xué)中幾個(gè)特征,包括以60的冪表示數(shù)字,所以接近4000年后的今天為什么仍然把一小時(shí)分成60分,把一分鐘分成60秒。在這一章中也講了我國(guó)古代的數(shù)學(xué)文化,在書中介紹了《算經(jīng)十書》《九章算術(shù)》等中國(guó)古代的數(shù)學(xué)經(jīng)典,由于種種原因?qū)е庐?dāng)時(shí)的數(shù)學(xué)文化的損失,但作者實(shí)事求是,沒有寫一些沒有歷史根據(jù)的東西,再一次讓我感受到這本書的嚴(yán)謹(jǐn)。

  書中是按國(guó)家的順序進(jìn)行安排的,因?yàn)槿绻磿r(shí)間順序安排的`話,很容易弄混淆,作者按照時(shí)間線上在某個(gè)時(shí)間點(diǎn)上最重要的事情的國(guó)家來安排,體現(xiàn)了本書“好讀”的特點(diǎn)。

  在書中有一個(gè)細(xì)節(jié)讓我注意,每一章最后都會(huì)有一段來推薦一些關(guān)于本章內(nèi)容更詳細(xì)的講解的書目,甚至詳細(xì)到了具體在哪一章,在書的最后把對(duì)應(yīng)的書名寫了出來(雖然是英語的,我看不懂)從中可以看到作者對(duì)待數(shù)學(xué)的嚴(yán)謹(jǐn)和細(xì)致。

  我非常喜歡在書中的一句話“學(xué)習(xí)數(shù)學(xué)就像認(rèn)識(shí)一個(gè)人一樣,你對(duì)他(她)的過去了解的越多,你現(xiàn)在和將來就能越理解他(她),并與其互動(dòng)!边@句話感覺就像說中了我的感受,我認(rèn)為閱讀完之后,自己不僅會(huì)對(duì)數(shù)學(xué)更有興趣,而且在以后學(xué)習(xí)數(shù)學(xué)的時(shí)候更加認(rèn)真對(duì)待。

  《數(shù)學(xué)史》讀后感 篇12

  本書上篇 數(shù)學(xué)簡(jiǎn)史共12章節(jié),以時(shí)間順序講述。從3.7萬年到如今,人類在不斷進(jìn)步,而數(shù)學(xué)也隨著人類的進(jìn)步而進(jìn)步。在這本書中,強(qiáng)調(diào)了數(shù)學(xué)的抽象性與神秘性。

  我們現(xiàn)在學(xué)習(xí)的知識(shí)都是先輩們經(jīng)過漫長(zhǎng)探索、研究、討論總結(jié)出的。書中出現(xiàn)的故事和公式使人眼前一新。比如古埃及人求圓的面積時(shí),實(shí)際上是求圓的近似值。如今大家都知道π·r,古埃及人卻是用(8/9·d)求S圓的近似值?梢园l(fā)現(xiàn)古埃及人在這個(gè)公式里并沒有使用到“π”,這樣反而要方便些。

  我注意到的一個(gè)故事是:21世紀(jì)開始,克萊學(xué)院決定在克萊的領(lǐng)導(dǎo)下,選擇7個(gè)數(shù)學(xué)課題,并予每個(gè)課題100萬美金的獎(jiǎng)金,而那7個(gè)數(shù)學(xué)課題是關(guān)于“千禧年問題”書中并沒有提到7個(gè)問題分別是什么,于是便上網(wǎng)查了查。分別是:戴雅猜想、霍奇猜想、納維爾-斯托克斯方程、P與NP問題、龐家萊猜想、黎曼假設(shè)、楊-米爾斯理論。這7個(gè)問題是真的`難,連題目都看不懂的那種難.

  有一個(gè)問題與開普勒猜想有關(guān):如何將最大數(shù)量的球體放置在最小的空間中,我認(rèn)為這和奇點(diǎn)有些相似,但看起來不成立的樣子。但在那些數(shù)學(xué)家的眼里,這仿佛是一個(gè)十分有趣,又值得思考的問題。托馬斯·黑爾斯最終證明了它。

  數(shù)學(xué)是抽象的,也是無限的,他們的出現(xiàn)大概是我們的祖先為了方便生活而發(fā)明出來的。到如今,數(shù)學(xué)在不斷的進(jìn)步,但還是有許多十分困難的問題在等著我們?nèi)ソ獯。?shù)學(xué)不僅在生活中扮演著重要的角色,還是世界通用的語言。

  《數(shù)學(xué)史》讀后感 篇13

  從小到大,在學(xué)習(xí)數(shù)學(xué)的過程中,我們接觸大量的數(shù)學(xué)題,但卻對(duì)數(shù)學(xué)的歷史很少提及。《數(shù)學(xué)史》,是一本專門研究數(shù)學(xué)的歷史,娓娓道來數(shù)學(xué)從古代到先代的發(fā)展史,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過程展示出來。

  本書于1958年出版,作者是J.F.斯科特。書中主要闡述西方數(shù)學(xué)的.發(fā)展歷史,但也專門用-章講述印度和中國(guó)的數(shù)學(xué)發(fā)展。沿著時(shí)間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過程。

  數(shù)學(xué)對(duì)于我來說是一個(gè)奇妙的科目,它不僅僅是一堆數(shù)字和符號(hào)連接在一起的公式,更是時(shí)代和科技的發(fā)展與進(jìn)步。這本書讓我明白數(shù)學(xué)的起源與發(fā)展,隨著歷史的長(zhǎng)河不斷向過往延伸,我熱愛數(shù)學(xué),并不是因?yàn)樗鼛Ыo我較高的成績(jī),而是我本身在解出一道難題時(shí)的自豪與它帶給我的成就感,我享受解題的過程,隨著時(shí)間的流逝心卻在題海中慢慢放松,變得平靜。而在對(duì)數(shù)學(xué)史了解之后,你就像身在一張地圖,但你卻清楚的知道自己的位置,尋找方向就愈加容易。

  這本書很好的幫我更上一層樓,讓我懷著對(duì)數(shù)學(xué)的熱愛不斷探索,即便自己只不過是浩瀚星河中一粒塵埃,卻不顯得十足渺小。

  學(xué)習(xí)數(shù)學(xué),最好能夠先了解它的歷史與背景,這樣才能明白自己在學(xué)著什么,對(duì)它產(chǎn)生興趣而不是當(dāng)成必須完成的任務(wù),所以我也極力推薦大家看這本書。

  《數(shù)學(xué)史》讀后感 篇14

  數(shù)學(xué),一根串著文明歷史發(fā)展的閃耀金繩,它與文學(xué)物理學(xué)藝術(shù)經(jīng)濟(jì)學(xué)或音樂一樣,是人類不斷發(fā)展,努力的結(jié)果。

  對(duì)數(shù)學(xué)不太敏感的我,拿起這本數(shù)學(xué)史,一開始是不愿意翻開的,認(rèn)為它語言生澀,一定有很多的生僻又陌生的專有名詞,幾乎滿篇皆是,所以從收到這本書之后2天內(nèi)都沒有看過。但是為了完成劉老師的'作業(yè),我硬著頭皮翻開了這本陌生的書。這本書是以時(shí)間發(fā)展為主線進(jìn)行編布的。

  讀 開端的時(shí)候我就覺得這本書很不一樣語言是親切、嚴(yán)謹(jǐn)?shù)挠^點(diǎn)是新穎的。作者“從歷史開始學(xué)數(shù)學(xué)”的觀點(diǎn)讓我對(duì)這本書產(chǎn)生了興趣。變得愿意與他一起跟隨數(shù)學(xué)的腳步,一頁一頁翻下去,讀下去。在書本中,有許多我認(rèn)識(shí)的老朋友,他們?cè)?jīng)在小學(xué)或是初中課本上出現(xiàn)過。像歐幾里得、笛卡爾。他們是數(shù)學(xué)的奠基人,為數(shù)學(xué)之路鋪上卵石。在這本書中也出現(xiàn)過一些我不熟悉的偉大數(shù)學(xué)家,他們?cè)谡J(rèn)真探究,證明的場(chǎng)景一幕幕浮現(xiàn)在腦海,令人心生敬畏。

  我記憶最深刻的就是一位打破了“數(shù)學(xué)家都是男性”觀念的法國(guó)優(yōu)秀女?dāng)?shù)學(xué)家———索菲.熱爾曼!

  她在所謂的“啟蒙運(yùn)動(dòng)”中成長(zhǎng),懷揣著熾熱的想成為數(shù)學(xué)家的愿望,在困難重重克服了社會(huì)對(duì)女性知識(shí)分子的偏見,在彈性理論上取得重要結(jié)果。實(shí)在令人佩服!

  當(dāng)今社會(huì),數(shù)學(xué)在多領(lǐng)域工作,在工地、廣場(chǎng)、車站、實(shí)驗(yàn)室......

  我們需要數(shù)學(xué),今天需要數(shù)學(xué),未來也一樣需要數(shù)學(xué),因?yàn)椤皵?shù)學(xué)不是被發(fā)現(xiàn)出來的,而是被發(fā)明出來的!”

  學(xué)好數(shù)學(xué)就是走好未來的一大步!

  《數(shù)學(xué)史》讀后感 篇15

  數(shù)學(xué)是神秘的,古老而明亮,在人類歷史長(zhǎng)河中,閃閃發(fā)光,我讀了數(shù)學(xué)史后,知道了數(shù)學(xué)的起源,發(fā)展與未來的走向,其中,《微積分與應(yīng)用數(shù)學(xué)》給我留下深刻印象

  16世紀(jì)到17世紀(jì),可以說是一個(gè)數(shù)學(xué)史路上一個(gè)里程碑,在16世紀(jì)早期,學(xué)者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計(jì)算家”,在那個(gè)時(shí)期,代數(shù)占據(jù)了數(shù)學(xué)史的中心位置,而到了16世紀(jì)末17世紀(jì)初,人類開始了新的探索,代數(shù)與幾何共存,以此來研究天文,工程,航海,甚至是政治上的.一些問題:開勒普用希臘圓錐描述太陽系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結(jié)合,從而開始理解彗星,光等現(xiàn)象,這一時(shí)期,可以說是各種數(shù)學(xué)成就在此出生,但最出名的,還是微積分,當(dāng)時(shí)人們無法用數(shù)字表現(xiàn)出天體的運(yùn)動(dòng),無法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當(dāng)時(shí)最著名的數(shù)學(xué)家——?dú)W拉也做出了一系列成就:三角形中的幾何學(xué),多面體的基本定理,有趣的是,歐拉甚至將數(shù)應(yīng)用于船舶,中彩票或是過橋,歐拉將自己生活的方方面面都往數(shù)學(xué)上想,在他的世界中,數(shù)學(xué)無處不在。

  我們不難看出這些數(shù)學(xué)家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學(xué),將數(shù)學(xué)應(yīng)用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學(xué),但最重要的是,我們熱愛數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 篇16

  又這樣過了一個(gè)月了,盡管也就那么的幾節(jié)數(shù)學(xué)史的課,可是,依然讓我聽得津津入味。認(rèn)識(shí)數(shù)學(xué)歷史,重溫?cái)?shù)學(xué)的發(fā)展道路。

  數(shù)學(xué),似乎是一個(gè)枯燥的學(xué)科,但是,卻是我們生活當(dāng)中,最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟(jì)學(xué)的基礎(chǔ),是市場(chǎng)里的公平秤,是我們量化自己的必要工具。數(shù)學(xué),就是這么的一個(gè)“工具箱”,前人用萬分的努力汗水,把這個(gè)工具弄得更為人性化,更能讓我們好好地使用!稊(shù)學(xué)史概論》這本書,真的讓我對(duì)數(shù)學(xué)有了更深的認(rèn)識(shí)。

  下面,我說說從《數(shù)學(xué)史概論》這本書,我又學(xué)到了什么。

  古希臘第一位偉大的數(shù)學(xué)家泰勒斯,曾利用太陽影子成功地計(jì)算出了金字塔的高度,實(shí)際上利用的就是相似三角形的性質(zhì)。看吧,利用數(shù)學(xué)簡(jiǎn)單的思維,就能把本不可能完成的計(jì)算,就這樣輕松解決了。在泰勒斯之后,以畢達(dá)哥拉斯為首的一批學(xué)者,對(duì)數(shù)學(xué)做出了極為重要的貢獻(xiàn)。發(fā)現(xiàn)“勾股定理”,是他們最出色的成就之一,因此直到現(xiàn)在,西方人仍然把勾股定理稱為“畢達(dá)哥拉斯定理”。正是這個(gè)定理,導(dǎo)致了無理數(shù)的.發(fā)現(xiàn)。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具體的得來過程呢,從這條定理的證明,到后來導(dǎo)致了無理數(shù)的發(fā)現(xiàn),我也相信未來,也一定有不少的理論在這個(gè)基礎(chǔ)上,不斷地被發(fā)現(xiàn),被證明。在畢達(dá)哥拉斯之后,就是偉大的古希臘哲學(xué)家亞里士多德,他是人類科學(xué)發(fā)展史上最博學(xué)的人物之一,正是他所創(chuàng)立的邏輯學(xué),對(duì)古希臘數(shù)學(xué)的發(fā)展產(chǎn)生了深遠(yuǎn)的影響。到了歐幾里德時(shí)代,幾何學(xué)已經(jīng)成為一門相當(dāng)完整的學(xué)科了。歐幾里德的名著《幾何原本》,是世界數(shù)學(xué)史上最偉大的著作之一。時(shí)至今日,我們?cè)诔踔须A段學(xué)習(xí)的平面幾何,大部分知識(shí)依然來源于古老的《幾何原本》。在此之前,我只知道,亞里士多德在哲學(xué)方面為世界做出了很大的貢獻(xiàn),可是也不可否認(rèn),在幾何方面他也對(duì)數(shù)學(xué)界做出的貢獻(xiàn)不可磨滅。

  研究數(shù)學(xué)發(fā)展歷史的學(xué)科,是數(shù)學(xué)的一個(gè)分支,也是自然科學(xué)史研究下屬的一個(gè)重要分支。數(shù)學(xué)史研究的任務(wù)在于,弄清數(shù)學(xué)發(fā)展過程中的基本史實(shí),再現(xiàn)其本來面貌,同時(shí)透過這些歷史現(xiàn)象對(duì)數(shù)學(xué)成就、理論體系與發(fā)展模式作出科學(xué)、合理的解釋、說明與評(píng)價(jià),進(jìn)而探究數(shù)學(xué)科學(xué)發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學(xué)史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法。可以說,在數(shù)學(xué)的漫長(zhǎng)進(jìn)化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學(xué)這座高樓添磚加瓦,它才能越立越高,越來越扎實(shí),我也為可以這樣學(xué)習(xí)和認(rèn)識(shí)數(shù)學(xué)而感到滿足!

  《數(shù)學(xué)史》讀后感 篇17

  《數(shù)學(xué)史》把數(shù)學(xué)幾千年的發(fā)展?jié)饪s為這本編年史中。從希臘人到哥德爾,數(shù)學(xué)一直輝煌燦爛,名人輩出,觀念的潮漲潮落到處清晰可見。而且,盡管追蹤的是歐洲數(shù)學(xué)的發(fā)展,但并沒有忽視中國(guó)文明、印度文明和阿拉伯文明的貢獻(xiàn),是一部經(jīng)典的關(guān)于數(shù)學(xué)及創(chuàng)造這門學(xué)科的數(shù)學(xué)家們的單卷本歷史著作。讀了這本書,讓我對(duì)數(shù)學(xué)學(xué)習(xí)有了新的認(rèn)識(shí)和感悟,也讓我更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對(duì)前人的崇敬。

  數(shù)學(xué)源于人類的生活與發(fā)展。書中說,“人類在蒙昧?xí)r代就已具有識(shí)別事物多寡的能力,從這種原始的‘?dāng)?shù)覺’到抽象的‘?dāng)?shù)’概念的形成,是一個(gè)緩慢的,漸進(jìn)的過程!比祟悶榱吮阌谏钌a(chǎn)的需要,開始以手指頭計(jì)數(shù),手指數(shù)不夠了,開始用石頭計(jì)數(shù),結(jié)繩計(jì)數(shù),刻痕計(jì)數(shù)。又經(jīng)過幾萬年的發(fā)展,隨著幾種文明的誕生與發(fā)展,記數(shù)系統(tǒng)在各種文明中都有了表示方式。古埃及的象形數(shù)字,巴比倫楔形數(shù)字,中國(guó)甲骨文數(shù)字,中國(guó)籌算數(shù)碼等等。

  但是,為什么時(shí)至今日我們最習(xí)慣和擅長(zhǎng)使用的是十進(jìn)制計(jì)數(shù)的方式呢,難道就是因?yàn)槔蠋焸円淮淮@樣教出來的嗎?很多人可能就是這樣認(rèn)為的,或者根本并未思考過。書里寫到:“十進(jìn)制在今天的普遍使用,只不過是解剖學(xué)上一次偶然事件的結(jié)果而已:我們中的大多數(shù)人,生來就有10個(gè)手指、10個(gè)腳趾!苯(jīng)歷過扳著手指頭數(shù)數(shù)的過程,可能十進(jìn)制早已在我們的心中留下了牢固的烙印。這就是一個(gè)知識(shí)的`自然形成。

  通過對(duì)書中一些知識(shí)的閱讀與思考,可以感覺到許多知識(shí)并不是那些先驅(qū)者憑空亂想出來的,是根據(jù)某種需要而研究出來的規(guī)律,而且是一些自然存在的規(guī)律,我們今天所學(xué)的知識(shí)正是這些已經(jīng)總結(jié)出來的規(guī)律!白鴺(biāo)系”這個(gè)詞,對(duì)很多人來說可能并不陌生,即使他的數(shù)學(xué)知識(shí)已經(jīng)“還給老師”很多年了,他也許還知道什么是“經(jīng)度緯度”。為什么會(huì)出現(xiàn)這樣的現(xiàn)象呢,也許是因?yàn)楹笳咴谏钪谐霈F(xiàn)的更多一些,但其實(shí)兩者的實(shí)質(zhì)都是一樣的。一個(gè)小故事說:“笛卡爾小時(shí)候在一次晨思時(shí)看見天花板上有一只蒼蠅在爬,他的頭腦中閃現(xiàn)出智慧的火花,如果知道蒼蠅和相臨兩個(gè)墻壁的距離之間的關(guān)系,就能描述它在天花板上的位置與運(yùn)動(dòng)路線。”這個(gè)故事可能是編造的,但最終形成了我們今天所知的“笛卡爾坐標(biāo)系”。這樣的思想廣泛的應(yīng)用在天文,地理,物理等許多的學(xué)科中。

  我們?cè)趯W(xué)習(xí)知識(shí)的時(shí)候是否思考過這個(gè)知識(shí)是由何而來的呢?是否注意到了在知識(shí)體系這張大網(wǎng)中,每個(gè)知識(shí)在什么位置上呢?難道我們真的可以單純的認(rèn)為每個(gè)知識(shí)都是孤立的考試對(duì)象嗎?

  數(shù)學(xué)源于生活,高于生活,最終也將服務(wù)生活,運(yùn)用于生活。在一般人看來,數(shù)學(xué)是一門枯燥無味的學(xué)科,因而很多人視其為畏途,從某種程度上說,這也許是由于我們的數(shù)學(xué)所教的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來,這樣也許可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對(duì)數(shù)學(xué)認(rèn)識(shí)的深化,讓更多的學(xué)生懂得數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 篇18

  《數(shù)學(xué)史》一直是我最想讀的一本書教學(xué)中我越來越覺得作為一個(gè)數(shù)學(xué)教師,數(shù)學(xué)史對(duì)我們有多少重要!于是我拜讀了數(shù)學(xué)史。

  我知道了,數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類社會(huì)中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這便使數(shù)學(xué)成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。

  我知道了,第一次數(shù)學(xué)危機(jī)——你知道根號(hào)2嗎?你知道平時(shí)的一塊錢兩塊糖之中是怎么迸濺出無理數(shù)的火花的嗎?正是他——希帕蘇斯,是他首先發(fā)現(xiàn)了無理數(shù),是他開始質(zhì)疑藏在有理數(shù)的背后的神奇數(shù)字。從那時(shí)起無理數(shù)成為數(shù)字大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗(yàn),一片廣闊的天地出現(xiàn)在眼前。但是,希帕蘇斯卻被無情地拋進(jìn)了大海。不過,歷史卻絕對(duì)不會(huì)忘記他,縱然海浪早已淹沒了他的身軀,我們今天還保留著他的名字——希帕蘇斯!

  第二次數(shù)學(xué)危機(jī)——知道嗎?站在巨人的肩膀上的牛頓,曾經(jīng)站在英國(guó)大主教貝克萊的前面,用顫抖的嗓音述說者自己的觀點(diǎn),沒有人相信他,沒有人支持他,即便他的觀點(diǎn)著實(shí)是今天的正解!數(shù)學(xué)分析被建立在實(shí)數(shù)理論的嚴(yán)格基礎(chǔ)之上,數(shù)學(xué)分析才真正成為數(shù)學(xué)發(fā)展的主流。

  第三次數(shù)學(xué)危機(jī)——我們聽過這個(gè)名字——羅素,但是緊跟在他的'身后的兩個(gè)字卻是那么刺眼——“悖論”!傲_素悖論”的出現(xiàn)使數(shù)學(xué)的確定性第一次受到了挑戰(zhàn),徹底動(dòng)搖了整個(gè)數(shù)學(xué)的基礎(chǔ)。與此同時(shí),歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學(xué)形式化體系、解決數(shù)學(xué)基礎(chǔ)的工作完全破滅。數(shù)學(xué)似乎是再也站不起來了。是的,羅素的觀點(diǎn)似乎真的很有道理,危機(jī)產(chǎn)生后,數(shù)學(xué)家紛紛提出自己的解決方案,比如ZF公理系統(tǒng)。這一問題的解決到現(xiàn)在還在進(jìn)行中。羅素悖論的根源在于集合論里沒有對(duì)集合的限制,以至于讓羅素能構(gòu)造一切集合的集合這樣“過大”的集合,對(duì)集合的構(gòu)造的限制至今仍然是數(shù)學(xué)界里一個(gè)巨大的難題!不過,我們不能蔑視“羅素悖論”,換種說法,不正是這個(gè)“悖論”引起了我們的思考嗎?不正是這個(gè)“悖論”使我們更有創(chuàng)造精神嗎?

  我知道了,我們中國(guó)在數(shù)學(xué)上的成就也絕對(duì)不能忽視,從《九章算術(shù)》到《周髀算經(jīng)》,中國(guó)傳統(tǒng)數(shù)學(xué)源遠(yuǎn)流長(zhǎng),有其自身特有的思想體系與發(fā)展途徑。它持續(xù)不斷,長(zhǎng)期發(fā)達(dá),成就輝煌,呈現(xiàn)出鮮明的“東方數(shù)學(xué)”色彩,對(duì)于世界數(shù)學(xué)發(fā)展的歷史進(jìn)程有著深遠(yuǎn)的影響。

  《數(shù)學(xué)史》讀后感 篇19

  從小到大,在學(xué)習(xí)數(shù)學(xué)的過程中,接觸大量的數(shù)學(xué)題,對(duì)數(shù)學(xué)的歷史很少提及。《數(shù)學(xué)史》,一本專門研究數(shù)學(xué)的歷史,娓娓道來,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過程展示出來。

  本書于1958年出版,作者J.F.斯科特。書中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專門用一章講述印度和中國(guó)的數(shù)學(xué)發(fā)展。沿著時(shí)間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過程。

  上古時(shí)代的古埃及人和古巴比倫人在平時(shí)的生產(chǎn)勞作中運(yùn)用到了數(shù)學(xué)知識(shí)。

  古希臘人繼承這些數(shù)學(xué)知識(shí)并不斷拓展,成為數(shù)學(xué)史上一個(gè)“黃金時(shí)代”,涌現(xiàn)出畢達(dá)哥拉斯、柏拉圖、亞里士多德、歐幾里得、阿基米德,丟番圖等一系列耳熟能詳?shù)拿帧?/p>

  在黑暗的中世紀(jì),數(shù)學(xué)發(fā)展處于停滯狀態(tài),而斐波那契的出現(xiàn)把數(shù)學(xué)帶上復(fù)興。

  文藝復(fù)興,數(shù)學(xué)又進(jìn)入一個(gè)蓬勃發(fā)展的時(shí)期,對(duì)解三次方程和四次方程、三角學(xué)、數(shù)學(xué)符號(hào)、記數(shù)方法的研究沒有停步。“+”、“-”、“=”、“”、“>”的符號(hào)是在那個(gè)時(shí)候出現(xiàn)的,同時(shí)出了一名數(shù)學(xué)家韋達(dá)——韋達(dá)定理的發(fā)明者。

  7世紀(jì),解析幾何出現(xiàn)、力學(xué)興起、小數(shù)和對(duì)數(shù)發(fā)明。這些都為微積分的`發(fā)明奠定了基礎(chǔ)。牛頓和萊布尼茲兩位大師的研究,在數(shù)學(xué)領(lǐng)域開辟了一個(gè)新紀(jì)元。

  8世紀(jì),為完善微積分中的概念,各路數(shù)學(xué)家在數(shù)學(xué)分析方法上有所發(fā)展。歐拉、拉格朗日,柯西等大師采用極限、級(jí)數(shù)等方法讓微積分更加嚴(yán)謹(jǐn)。同時(shí),非歐幾何的理論開始萌芽。

  縱觀全書,數(shù)學(xué)的發(fā)展是由一群人搭建起來的。前人的工作為后人的研究奠定了基礎(chǔ)。后人在前人的工作上不斷突破和創(chuàng)新。另外,數(shù)學(xué)中也有哲理,天地有大美而不言。當(dāng)看到歐拉時(shí),想到歐拉公式;看到韋達(dá),想到韋達(dá)定理。公式很簡(jiǎn)潔,但把規(guī)律說清楚了。數(shù)學(xué)愛好者可以試著解里面的數(shù)學(xué)題,看看古人在當(dāng)時(shí)是如何研究的,有的方法很笨拙,有的方法很巧妙。讀完后,發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué),會(huì)解幾道數(shù)學(xué)題是不夠的,還要學(xué)會(huì)去培養(yǎng)自己的思維。畢竟數(shù)學(xué)家的思維也會(huì)受到歷史的局限。比如負(fù)數(shù)開根號(hào),當(dāng)時(shí)被人看來是無法接受,后來發(fā)明了虛數(shù)。

  歷史是在不斷地前進(jìn),數(shù)學(xué)的發(fā)展亦然。想知道數(shù)學(xué)和歷史的跨界,那就來看《數(shù)學(xué)史》。

  《數(shù)學(xué)史》讀后感 篇20

  在我閱讀數(shù)學(xué)史之前,數(shù)學(xué)在我的腦子里,就是一個(gè)很難很難的學(xué)科。數(shù)學(xué)漂浮在我的腦海里,像一只枯萎的蝴蝶,死板而又無味。

  但是在閱讀數(shù)學(xué)史之后我知道了,數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類社會(huì)中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這便使數(shù)學(xué)成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。

  就像書中所寫的一樣,或許在數(shù)學(xué)課上講一些有趣的小故事,可以提高學(xué)生的專注力和興趣,然后引入課堂。

  可能是由于我見識(shí)短淺,我一直認(rèn)為中國(guó)數(shù)學(xué)是非常高深,深不可測(cè)的那種,認(rèn)為中國(guó)數(shù)學(xué)在世界有最高的影響力和地位。但其實(shí)中數(shù)是非常具有影響力(九九乘法表,11的兩邊一拉中間相加)但希臘數(shù)學(xué)是獨(dú)一無二的,盡管在現(xiàn)在的數(shù)學(xué)之中,希臘數(shù)學(xué)家的邏輯推理和證明都是擺在數(shù)學(xué)中心的。數(shù)學(xué)家或許有許多不同,但他們絕對(duì)擁有財(cái)力·時(shí)間和數(shù)學(xué)天賦。他們的嚴(yán)謹(jǐn)性和專業(yè)精神恐怕是我畢生難以追求的吧。

  總的來說,數(shù)學(xué)是人類創(chuàng)造活動(dòng)的過程,而不單純是一種形式化的結(jié)果;運(yùn)用辨證唯物主義的觀點(diǎn)看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運(yùn)動(dòng)的`特點(diǎn),而且它們與社會(huì)、政治、經(jīng)濟(jì)以及一般人類的文化有著密切的聯(lián)系,而這些聯(lián)系就像龍須酥一樣香濃醇厚,萬般絲滑,密不可分,是不能夠輕易斬?cái)嗟年P(guān)系!

  數(shù)學(xué)史不僅僅是單純的數(shù)學(xué)成就的編年記錄。數(shù)學(xué)的發(fā)展決不是一帆風(fēng)順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至?xí)媾R困難和戰(zhàn)盛危機(jī)的斗爭(zhēng)記錄。無理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學(xué)創(chuàng)造的真實(shí)過程,而這種真實(shí)的過程是在教科書里以定理到定理的形式被包裝起來的。對(duì)這種創(chuàng)造過程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強(qiáng)信心。

  我相信在未來,數(shù)學(xué)史帶給我的影響,會(huì)影響到我的一生,我也希望中國(guó)數(shù)學(xué)能夠源遠(yuǎn)流長(zhǎng),從《九章算術(shù)》到《周髀算經(jīng)》呈現(xiàn)出更多的”東方數(shù)學(xué)“的色彩!

  《數(shù)學(xué)史》讀后感 篇21

  數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng),而通過這本書我對(duì)數(shù)學(xué)的歷史有了基礎(chǔ)的了解。讓我初步了解了數(shù)學(xué)這門科學(xué)產(chǎn)生與發(fā)展的歷史過程,同時(shí)也感受到了數(shù)學(xué)家們的嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度以及鍥而不舍的探索精神。

  總而言之《這才是好讀的數(shù)學(xué)史》從數(shù)學(xué)的源頭寫起,分別介紹了古希臘,古印度,古巴比倫,古代中國(guó),以及中世紀(jì)歐洲,這本書詳細(xì)的介紹了每個(gè)國(guó)家的數(shù)學(xué)發(fā)展,同時(shí)聯(lián)系了地理,將數(shù)學(xué)在世界版圖上鏈接起來。

  其中在阿拉伯?dāng)?shù)學(xué)中,提到了帕斯卡三角形,也就是我們非常熟悉的楊輝三角,讓我更加了解了楊輝三角,以及阿拉伯人在幾何學(xué)和三角學(xué)方面做出的重要貢獻(xiàn)。

  一說起π,就想到了3.1415926……這一個(gè)無限不循環(huán)的數(shù)?搔凶畛醪⒉皇潜硎疽粋(gè)數(shù),而是希臘字母對(duì)應(yīng)英文字母的'P?梢姦械臍v史悠久。書中也舉例了從約公元前1650年到2002年,人們從只能計(jì)算圓的周長(zhǎng)的近似值到可以用現(xiàn)代計(jì)算器計(jì)算沒有誤差。可見數(shù)學(xué)家們對(duì)數(shù)學(xué)的執(zhí)著。

  這本書結(jié)合歷史地理為我們講述了與眾不同且吸引人的數(shù)學(xué)史,同時(shí)也讓我感受到了數(shù)學(xué)獨(dú)一無二的魅力。

  《數(shù)學(xué)史》讀后感 篇22

  數(shù)學(xué)是一門枯燥的學(xué)科,我從小就這樣認(rèn)為。但是通過這個(gè)寒假,這本《這才是好讀的數(shù)學(xué)史》,打開了知識(shí)文化的一扇大門,讓我對(duì)數(shù)學(xué)有了更深入的了解與思考,并且領(lǐng)悟到了其中的魅力。

  數(shù)學(xué)的歷史非常悠久,從很久很久以前就已經(jīng)有了數(shù)學(xué)。那時(shí)候的人們剛剛接觸到了它,而隨著時(shí)代的變遷,數(shù)學(xué)的文化越來越博大精深。正是因?yàn)槟切﹤ゴ蟮臄?shù)學(xué)家們所做出的巨大貢獻(xiàn),才讓后代的人類將數(shù)學(xué)發(fā)展得越來越好。例如一位亞歷山大的希臘數(shù)學(xué)家歐幾里得,他從一小部分公理中總結(jié)了歐幾里德幾何的原理,還寫了另外五部關(guān)于球面幾何、透視、數(shù)論、圓錐截面和嚴(yán)謹(jǐn)性的作品。歐幾里得因此被人們稱為“幾何學(xué)之父”。

  數(shù)學(xué)文化奇幻無窮。最讓我印象深刻的便是阿拉伯?dāng)?shù)學(xué)文化。阿拉伯?dāng)?shù)學(xué)家不僅讓代數(shù)成為數(shù)學(xué)的重要組成部分,而且還在幾何學(xué)和三角學(xué)方面做出了重要的貢獻(xiàn)。同時(shí),“帕斯卡三角形”也就是“楊輝”三角也被他們所了解。阿拉伯?dāng)?shù)學(xué)文化的特點(diǎn)則是能夠從其他數(shù)學(xué)的知識(shí)中汲取到最有用的`精華,并且發(fā)展它。

  數(shù)學(xué)中有很多被數(shù)學(xué)家們所發(fā)現(xiàn)和證明的公式、定義,我們都認(rèn)為那是枯燥的、繁瑣的。但是數(shù)學(xué)有自己的靈魂與存在的意義,普羅魯克斯曾說過“數(shù)學(xué)賦予它所發(fā)現(xiàn)的真理以生命;它喚起心神,澄清智慧;它給我們的內(nèi)心思想增添光輝;它滌盡我們有生以來的蒙昧與無知!币?yàn)橛辛藬?shù)學(xué),人類的民族發(fā)展得越來越順利;因?yàn)橛辛藬?shù)學(xué),人類的生活變化得多姿多彩……

  數(shù)學(xué)的發(fā)展并不是我們想象中的那么順利,而是經(jīng)歷了無數(shù)的困難和挫折,才成為了我們現(xiàn)代的數(shù)學(xué)。它的成就則是數(shù)學(xué)家們?nèi)杖找挂沟难芯颗c思考所造就的,讓數(shù)學(xué)真正地顯露出了它的價(jià)值。中國(guó)的數(shù)學(xué)源遠(yuǎn)流長(zhǎng),擁有著它自己的特色與意義。重大的數(shù)學(xué)定義、理論總是在繼承與發(fā)展原有的理論的基礎(chǔ)所建立起來的,它們不但不會(huì)改變?cè)镜睦碚,而且?jīng)常將最初的理論思想包含進(jìn)去。正是因?yàn)槲覀儾粩嗟貫樗⑷腱`魂力量,它才能越來越強(qiáng)大,越來越輝煌!

  數(shù)學(xué)史的學(xué)習(xí)讓我們更加理解數(shù)學(xué)的意義,從而在知識(shí)的海洋中不斷發(fā)現(xiàn)、不斷進(jìn)取、不斷研究,逐漸形成對(duì)數(shù)學(xué)的熱愛!

  《數(shù)學(xué)史》讀后感 篇23

  首先,看到這本書后,第一個(gè)感覺是這本書太厚了,肯定無聊。而第二個(gè)印象是在每一個(gè)概念后的“見數(shù)學(xué)概念小史某某頁”,然后這最重要的事是這書講了這我不曾了解的事。

  從過去到現(xiàn)在,先是古埃及人,他們的方法對(duì)于現(xiàn)代太不實(shí)用了,但是他們還是聰明,知道用符號(hào),用兩個(gè)符號(hào)來表示1()和10(),這東西就是冪,在生活中肯定很少用,而且我還發(fā)現(xiàn)這數(shù)學(xué)呢我一直認(rèn)為是想從簡(jiǎn)單到復(fù)雜,但是并不是如此,可以說是相反的。

  比巴倫的數(shù)學(xué)家們特別有趣,造的題目也有趣,不實(shí)用,但是很好玩,在本書的15頁,有這原題,這大概就是用一根蘆葦去測(cè)量田有多大,其實(shí)就是二元一次方程,但是看完頭都大了,不知到底在講什么。

  繼續(xù)讀著,誒!看見了老熟人——?dú)W幾里得,從小學(xué)周圍的人都在談?wù)撝,給我講他的曠世巨作《幾何原本》,過去經(jīng)常說“好,好,好,《幾何原本》好!钡俏也⒉恢肋@書居然是公元前三千多年左右寫的,我一直認(rèn)為他是希臘人,但是他居然是埃及人,這好奇怪,據(jù)書中說有很多的希臘數(shù)學(xué)家都不是希臘人。

  繼續(xù)讀,數(shù)學(xué)也和天文學(xué)有關(guān),從天文學(xué)中又出現(xiàn)了三角學(xué),原來三角學(xué)是從天文學(xué)出來的,在讀阿拉伯?dāng)?shù)學(xué)時(shí),看見了“楊輝”三角形,但是這書中的是“帕斯卡三角形”,其實(shí)也是“楊輝”三角形,所以后者好記些。

  微積分里面看見了伽利略,但是似乎不是他的主場(chǎng),所以不管他,微積分這里知道了流數(shù)和微分基本上都是我們現(xiàn)在所稱的導(dǎo)數(shù)。他們的發(fā)明者分別是牛頓和萊布尼茨。牛頓這特別熟悉了,這萊布尼茨是個(gè)律師和數(shù)學(xué)家,他最可以的是他的公式幾乎都是在顛簸的馬車上寫下。在各個(gè)學(xué)科每每留下了著作。

  還有一個(gè)人讓我記住了,叫做歐拉,不光名字好記,他自己也是一個(gè)喜歡記的'人,據(jù)書上所說,他可以說是一個(gè)論文天才也是數(shù)學(xué)天才,因?yàn)橹灰幸粋(gè)好的方法,自己馬上就寫一篇論文,來記下自己的觀念。

  這便是這《這才是好讀的數(shù)學(xué)史》上篇的讀后感,不是特別無聊,反而還有一些有趣,整體的布局也不錯(cuò),讓讀者一步步深入,有特別強(qiáng)的吸引力,可能因人而異吧,下篇就是純數(shù)學(xué)了,所以這便是我的讀后感了。

【《數(shù)學(xué)史》讀后感】相關(guān)文章:

《數(shù)學(xué)史》讀后感05-28

讓數(shù)學(xué)史融入初中數(shù)學(xué)教學(xué)08-04

數(shù)學(xué)史讀后感07-22

《數(shù)學(xué)史》讀后感05-01

數(shù)學(xué)史與數(shù)學(xué)教育讀后感07-22

《這才是好讀的數(shù)學(xué)史》讀后感07-20

數(shù)學(xué)史在中職數(shù)學(xué)教學(xué)中的應(yīng)用研究08-18

《這才是好讀的數(shù)學(xué)史》讀后感-數(shù)學(xué)并非是僵硬的07-18

淺談數(shù)學(xué)史融入初中數(shù)學(xué)課堂的意義和教育價(jià)值08-18

讀《數(shù)學(xué)史走進(jìn)小學(xué)數(shù)學(xué)課堂案例與剖析》有感08-24