天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計

七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計

時間:2024-08-27 08:30:44 賽賽 七年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計(精選12篇)

  作為一名教師,往往需要進(jìn)行教案編寫工作,教案有利于教學(xué)水平的提高,有助于教研活動的開展。優(yōu)秀的教案都具備一些什么特點呢?以下是小編整理的七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計,歡迎閱讀,希望大家能夠喜歡。

七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計(精選12篇)

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 1

  學(xué)習(xí)目標(biāo):

  1、知識目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進(jìn)行準(zhǔn)確運算。

  2、能力目標(biāo):通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。

  3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。

  學(xué)習(xí)重點、難點

  重點:有理數(shù)乘法運算法則的推導(dǎo)及熟練運用。

  難點:有理數(shù)乘法運算中積的符號的確定。

  學(xué)習(xí)過程

  一、預(yù)習(xí)導(dǎo)航

  1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?

  求幾個的運算,叫乘法。

  一個數(shù)同0相乘,得0。

  2、請你列舉幾道小學(xué)學(xué)過的乘法算式。

  二、合作探究、展示交流

  1、問題1:森林里住著一只蝸牛,每天都要離開家去尋找食物,如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘后蝸牛在什么位置?

  規(guī)定:向右為正,現(xiàn)在之后為正。

  3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

  可以列式為:(+2)(+3)=

  問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?

  規(guī)定:向右為正,現(xiàn)在之后為正。

  3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

  可以列式為:

  問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?

  規(guī)定:向右為正,現(xiàn)在之后為正。

  3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

  可以表示為:

  問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?

  規(guī)定:向右為正,現(xiàn)在之后為正。

  3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

  可以表示為:

  2、觀察這四個式子:

  (+2)(+ 3)=+6(—2)(—3)=+6

 。ā2)(+3)=—6(+2)(—3)=—6

  根據(jù)你對有理數(shù)乘法的思考,總結(jié)填空:

  正數(shù)乘正數(shù)積為__數(shù):負(fù)數(shù)乘負(fù)數(shù)積為__數(shù):

  負(fù)數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負(fù)數(shù)積為__數(shù):

  乘積的絕對值等于各乘數(shù)絕對值的_____。

  思考:當(dāng)一個因數(shù)為0時,積是多少?

  3、試著總結(jié)一下有理數(shù)乘法法則吧:

  兩數(shù)相乘,同號得,異號得,并把絕對值。

  任何數(shù)同0相乘,都得。

  三、小試牛刀。

  1、你能確定下列乘積的'符號嗎?

  3 7積的符號為;(—3)7積的符號為;

  3(—7)積的符號為;(—3)(—7)積的符號為。

  2先閱讀,再填空:

 。ā5)x(—3)。同號兩數(shù)相乘

 。ā5)x(—3)=+()得正

  5 x 3= 15把絕對值相乘

  所以(—5)x(—3)= 15

  填空:(—7)x 4____________________

  (—7)x 4 = —()___________

  7x 4 = 28_____________

  所以(—7)x 4 = ____________

  [例1]計算:

 。1)(—5)(2)(—5)

 。3)(—6)(—0.45)(4)(—7)0=

  解:(1)(—5)(—6)=+(56)=+30=30

  請同學(xué)們仿照上述步驟計算(2)(3)(4)。

 。2)(—5)6 = =

  (3)(—6)(—0.45)= =

 。4)(—7)0=

  讓我們來總結(jié)求解步驟:

  兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。

  四、鞏固練習(xí)

  1、小組口算比賽,看誰更棒

 。1)3(—4)(2)2(—6)(3)(—6)2

 。4)6(—2)(5)(—6)0(6)0(—6)

  2、仔細(xì)計算。注意積的符號和絕對值。

  (1)(—4)0.25(2)(—0.5)(—2)(3)(—)

 。4)(—2)(—)(5)(—)(—)(6)(—)5

  3、用正負(fù)數(shù)表示氣溫的變化量,上升為正,下降為負(fù)。登山隊攀登一座山峰,每登高1千米,氣溫的變化量為—6℃,攀登3千米后,氣溫有什么變化?

  五、一分鐘過關(guān)檢測

  1、下列說法錯誤的是()

  A、一個數(shù)同0相乘,仍得0

  B、一個數(shù)同1相乘,仍得原數(shù)

  C、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)

  D、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)

  2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()

  A、10 B、12 C、—20 D、不是以上的答案

  3、計算下列各題:

  (1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9 =;

 。5)(—6)(—5)=;(6)(—5)(—6)=

  六、體會聯(lián)想:

  1、有理數(shù)的乘法的計算步驟分哪兩步?

  2、有理數(shù)的乘法法則是什么?

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 2

  教學(xué)目標(biāo)

  1.使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

  2.通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;

  3.通過教材給出的行程問題,認(rèn)識數(shù)學(xué)于實踐并反作用于實踐。

  教學(xué)重點和難點

  重點:依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運算;

  難點:有理數(shù)乘法法則的理解.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

  1.計算(-2)+(-2)+(-2).

  2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))

  3.有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)[

  4.根據(jù)有理數(shù)加減運算中引出的新問題 主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有 理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)

  二、師生共同研究有理數(shù)乘法法則

  問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引導(dǎo)學(xué)生 比較①,②得出:

  把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

  這是一條很重要的'結(jié)論,應(yīng)用此結(jié) 論 ,3×(-2)=?(-3)×(-2)=?(學(xué)生答)

  把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;

  任何數(shù)同0相乘,都得0.

  繼而教師強調(diào)指出:

  “同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”.

  用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.

  因此,在進(jìn)行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.

  三、運用舉例,變式練習(xí)

  例 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.

  (1)t小時后溫度是多少?

  (2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:

 、賏=3,t=2;②a =-3,t=2;

 、赼=3,t=-2;④a=-3,t=-2;

  教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際.

  課堂練習(xí)

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;

  (4)(-6)×1; (5)(-6)×(-1); (6) 6×(-1);

  (7)(-6)×0; (8)0×(-6);

  2. 口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù) 數(shù),也可以是正數(shù)或0.

  3.填空:

  (1)1×(-6)=______;(2)1+(-6)=____ ___;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

  4.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  四、小結(jié)

  今天主要學(xué)習(xí)了有理數(shù)乘法 法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”.

  五、作業(yè)

  1.計算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0.001); (5) -4.8×(-1.25); (6)-4.5×(-0.32).

  2.填空(用“>”或“<”號連接):

  (1)如果 a<0,b<0,那么 ab _______ _0;

  (2)如果 a<0,b<0,那么ab _______0;

  (3)如果a>0時,那么a ____________2a;

  ( 4)如果a<0時,那么a __________2a.

  探究活動

  問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?

  答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1 ?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.

  道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 3

  學(xué)習(xí)目標(biāo):

  1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進(jìn)行有理的簡單運算

  2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力。

  3、培養(yǎng)語言表達(dá)能力。調(diào)動學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。

  學(xué)習(xí)重點:

  有理數(shù)乘法

  學(xué)習(xí)難點:

  法則推導(dǎo)

  教學(xué)方法:

  引導(dǎo)、探究、歸納與練習(xí)相結(jié)合

  教學(xué)過程

  一、學(xué)前準(zhǔn)備

  計算:

  (1)(一2)十(一2)

 。2)(一2)十(一2)十(一2)

  (3)(一2)十(一2)十(一2)十(一2)

 。4)(一2)十(一2)十(一2)十(一2)十(一2)

  猜想下列各式的值:

 。ㄒ2)×2(一2)×3

  (一2)×4(一2)×5

  二、探究新知

  1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空。

  2、觀察以上各式,結(jié)合對問題的研究,請同學(xué)們回答:

 。1)正數(shù)乘以正數(shù)積為__________數(shù),(2)正數(shù)乘以負(fù)數(shù)積為__________數(shù),

 。3)負(fù)數(shù)乘以正數(shù)積為__________數(shù),(4)負(fù)數(shù)乘以負(fù)數(shù)積為__________數(shù)。

  提出問題:一個數(shù)和零相乘如何解釋呢?

  《1.4.1有理數(shù)的乘法》同步練習(xí)含解析

  1、若有理數(shù)a,b滿足a+b<0,ab<0,則()

  A、a,b都是正數(shù)

  B、a,b都是負(fù)數(shù)

  C、a,b中一個正數(shù),一個負(fù)數(shù),且正數(shù)的絕對值大于負(fù)數(shù)的絕對值

  D、a,b中一個正數(shù),一個負(fù)數(shù),且負(fù)數(shù)的絕對值大于正數(shù)的絕對值

  5、若a+b<0,ab<0,則()

  A、a>0,b>0

  B、a<0,b<0

  C、a,b兩數(shù)一正一負(fù),且正數(shù)的絕對值大于負(fù)數(shù)的絕對值

  D、a,b兩數(shù)一正一負(fù),且負(fù)數(shù)的絕對值大于正數(shù)的絕對值于0

  《1.4.1.2有理數(shù)的乘法運算律》課時練習(xí)含答案

  2、大于—3且小于4的所有整數(shù)的`積為()

  A、—12 B、12 C、0 D、—144

  2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,這個運算運用了()

  A、加法結(jié)合律

  B、乘法結(jié)合律

  C、分配律

  D、分配律的逆用

  3、下列運算過程有錯誤的個數(shù)是()

  ①×2=3—4×2

 、凇4×(—7)×(—125)=—(4×125×7)

  ③9×15=×15=150—

 、躘3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

  A、1 B、2 C、3 D、4

  4、絕對值不大于2 015的所有整數(shù)的積是。

  5、在—6,—5,—1,3,4,7中任取三個數(shù)相乘,所得的積最小是,最大是。

  6、計算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的結(jié)果為。

  7、計算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的結(jié)果是。

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 4

  學(xué)習(xí)目標(biāo):

  1、要熟記有理數(shù)除法的法則,會進(jìn)行有理數(shù)除法的運算。

  2、掌握求有理數(shù)倒數(shù)的方法,并能熟練地求出一個給定的有理數(shù)的倒數(shù)。

  3、能熟練地進(jìn)行簡單的有理數(shù)的加減乘除混合運算。

  4、體會比較、轉(zhuǎn)化、分類的思想方法,在探索有理數(shù)除法法則時的應(yīng)有

  學(xué)習(xí)重點

  有理數(shù)除法的法則及應(yīng)用;求一個有理數(shù)的倒數(shù)。

  學(xué)習(xí)難點:

  在進(jìn)行有理數(shù)除法運算時,能根據(jù)題目特點,恰當(dāng)?shù)剡x擇有理數(shù)的除法法則。

  學(xué)習(xí)過程:

  一、前置復(fù)習(xí) :

  1、有理數(shù)的乘法法則是:

  舉例說明。

  2、多個有理數(shù)乘法:(1)幾個不等于0的有理數(shù)相乘,積的符號由 決定,當(dāng) 時積為正;當(dāng) 時積為負(fù)。

  二、探究新知:(教師寄語: 現(xiàn)實世界中的事物都是既相互聯(lián)系又可以相互轉(zhuǎn)化的,在數(shù)學(xué)上加與減,乘與除也是可以相互轉(zhuǎn)化的.)

  自學(xué)課本58頁至59頁例4之前的內(nèi)容,并且認(rèn)真體會在探索除法與乘法的關(guān)系時,用到的比較、轉(zhuǎn)化、分類的思想方法,一定要熟記:

  (1) 有理數(shù)除法運算轉(zhuǎn)化為乘法運算的法則:除以一個數(shù),________________________。____________________。

  (2) 有理數(shù)的除法法則:兩數(shù)相除,_____________,_____________,_____________。

  0除以任何_______________________________。

  (3) 與以前學(xué)過的倒數(shù)的概念一樣,___________兩個有理數(shù)互為倒數(shù)。

  如,3與____互為倒數(shù),-6與_____互為倒數(shù),2.25是____的倒數(shù),___是 的倒數(shù)。

  三、新知應(yīng)用:

  例1、獨立完成課本58頁例4,然后對比課本上的'解答,思考交流:在兩個________數(shù)相除時,可選擇法則(1),在兩個_______數(shù)相除時,可選擇法則(2)

  學(xué)以致用 計算:

  (1) (42)7 (2) ( )( )

  例2、計算(1) ( )( )( ) (2) ( )( )

  四、課堂練習(xí):獨立完成課本P59練習(xí)2,3題。(將完整的計算過程寫在下面空白處)

  五、達(dá)標(biāo)測試:

  1 填空:(1)2 的倒數(shù)與 的相反數(shù)的積是_______。

  (2)(1)(3)( )=______。

  (3)兩個數(shù)的商為正數(shù),那么這兩個數(shù)一定是_________。

  (4)一個數(shù)的倒數(shù)是它本身,則這個數(shù)是____________。

  2、計算:(1) (2)

  (3)、 (4) ( + )

  六、總結(jié)反思:

  1、說一說:

  本節(jié)課我學(xué)會了 ;

  使我感觸最深的是 ;

  我感到最困難的是 ;

  我想進(jìn)一步探究的問題是 。

  2、評一評

  自我評價 小組評價 教師評價

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 5

  一、學(xué)情分析:

  在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。

  二、課前準(zhǔn)備

  把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習(xí)、組間競爭學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。

  三、教學(xué)目標(biāo)

  1、知識與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運算。

  2、能力與過程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

  3、情感與態(tài)度目標(biāo)

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  四、教學(xué)重點、難點

  重點:運用有理數(shù)乘法法則正確進(jìn)行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  五、教學(xué)過程

  1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?

  學(xué)生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、小組探索、歸納法則

  (1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。

  a.2×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2×3=

  b.-2×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2×3=

  c.2×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2×(-3)=

  d.(-2)×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  (-2)×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。

  (2)學(xué)生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=同號得

  (-)×(+)=異號得

  (+)×(-)=異號得

  (-)×(-)=同號得

  b.積的絕對值等于 。

  c.任何數(shù)與零相乘,積仍為 。

  (3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、運用法則計算,鞏固法則。

  (1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。

  (2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

  (3)學(xué)生做P76練習(xí)1(1)(3),教師評析。

  (4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當(dāng)負(fù)因數(shù)個數(shù)有 ,積為 ;當(dāng)負(fù)因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。

  4、討論對比,使學(xué)生知識系統(tǒng)化。

  有理數(shù)乘法有理數(shù)加法

  同號得正取相同的符號

  把絕對值相乘

  (-2)×(-3)=6把絕對值相加

  (-2)+(-3)=-5

  異號得負(fù)取絕對值大的加數(shù)的'符號

  把絕對值相乘

  (-2)×3=-6(-2)+3=1

  用較大的絕對值減小的絕對值

  任何數(shù)與零得零得任何數(shù)

  5、分層作業(yè),鞏固提高。

  六、教學(xué)反思:

  本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運用時,編制一些訓(xùn)練符號法則的口算題,把例2放在下一課時處理,效果可能更好。

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 6

  一、學(xué)情分析:

  1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過非負(fù)有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學(xué)會了由運算解決簡單的實際問題,具備了學(xué)習(xí)有理數(shù)乘法的知識技能基礎(chǔ)。

  2、學(xué)生的活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過程,具有了合作和探索的意識。

  二、 教材分析:

  教科書基于學(xué)生已掌握了有理數(shù)加法、減法運算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進(jìn)行有理數(shù)的運算。

  本節(jié)課的數(shù)學(xué)目標(biāo)是:

  1、經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;

  2、學(xué)會進(jìn)行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:

  三、教學(xué)過程設(shè)計:

  本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):問題情境,引入新課

  問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。

 。2)如果用正號表示水位上升,用負(fù)號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。

  設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。

  第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論

  問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式

 。ǎ3×4)=-12,那么下列一組算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

 。ǎ3)×0=_____。

 。2)當(dāng)同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:

 。ǎ3)×(-1)=_____;

 。ǎ3)×(-2)=_____;

 。ǎ3)×(-3)=_____;

 。ǎ3)×(-4)=_____。

  教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。

  教后反思事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對于這些問題,不能求全責(zé)備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準(zhǔn)確的表述,也不要擔(dān)心時間不足而代替學(xué)生直接表述法則。

 。2)展示兩組算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。

  第三環(huán)節(jié):驗證明確結(jié)論

  問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘,任何數(shù)與零相乘,積仍為零。進(jìn)行驗證活動,出示一組算式由學(xué)生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

 。ā4)×0=_____;

 。ā4)×1=_____;

  (—4)×2=_____;

 。ā4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合

  一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習(xí)和熟悉過程。

  教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。

 。2)本環(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。

 。3)在用乘法法則計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進(jìn)行絕對值的運算。另外還應(yīng)注意:法則中的“同號得正,異號得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。

  第四環(huán)節(jié):運用鞏固,練習(xí)提高

  活動內(nèi)容:

  (1)1。計算:

  ⑴(-4)×5; ⑵(5-)×(-7);

 、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。計算:

 、牛ǎ4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“議一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?

 。4)計算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

 、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

 、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運用,練習(xí)和提高.

  教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應(yīng)注明理由,運算熟練后,可不要求書寫每一步的理由;

  (2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運算結(jié)果觀察分析,用自己的語言表達(dá)所發(fā)現(xiàn)的'規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。

 。ǎ1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當(dāng)然這段語言,不需要讓學(xué)習(xí)背誦,只要理解會用即可。

  第五環(huán)節(jié):感悟反思課堂

  問題

  1.本節(jié)課大家學(xué)會了什么?

  2.有理數(shù)乘法法則如何敘述?”

  3.有理數(shù)乘法法則的探索采用了什么方法?

  4.你的困惑是什么

  教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。

  教后反思事項:學(xué)生時,可能會有語言表達(dá)障礙或表達(dá)不流暢,但只要不影響運算的正確性,則不必強調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準(zhǔn)確的語言適時的加以點撥。

  第六環(huán)節(jié):布置作業(yè)

  鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1

  預(yù)習(xí)作業(yè);略

  四、教學(xué)反思:

  1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成

  2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。

  3、合理使用多媒體教學(xué)手段可以彌補課堂時間的不足,但絕不能代替必要的板書。

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 7

  教學(xué)目標(biāo)

  1.知識與技能

 、俳(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證的能力.

 、跁M(jìn)行有理數(shù)的乘法運算.

  2.過程與方法

  通過對問題的變式探索,培養(yǎng)觀察、分析、抽象的能力.

  3.情感、態(tài)度與價值觀

  通過觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動中的探索性和創(chuàng)造性.

  教學(xué)重點難點

  重點:能按有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運算.

  難點:含有負(fù)因數(shù)的乘法.

  教與學(xué)互動設(shè)計

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  做一做 出示一組算式,請同學(xué)們用計算器計算并找出它們的規(guī)律.

  例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

  (3)(-5)(+3)=________;(4)(-5)(-3)=________

  例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

  (3)(-6)(+4)=________;(4)(-6)(-4)=________

  (二)合作交流,解讀探究

  想一想 你們發(fā)現(xiàn)積的符號與因數(shù)的符號之間的關(guān)系如何?

  學(xué)生活動:計算、討論

  總結(jié) 一正一負(fù)的兩個數(shù)的乘積為負(fù);兩正或兩負(fù)的乘積是正數(shù).

  兩數(shù)相乘,同號得正,異號得負(fù).

  想一想 兩數(shù)相乘,積的`絕對值是怎么得到的呢?

  學(xué)生:是兩因數(shù)的絕對值的積.

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 8

  一、知識與技能

  (1)能確定多個因數(shù)相乘時,積的符號,并能用法則進(jìn)行多個因數(shù)的乘積運算。

  (2)能利用計算器進(jìn)行有理數(shù)的乘法運算。

  二、過程與方法

  經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習(xí)興趣。

  四、 教學(xué)過程

  1.請敘述有理數(shù)的乘法法則。

  2.計算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

  五、新授

  1.多個有理數(shù)相乘,可以把它們按順序依次相乘。

  例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;

  又如:(+2)[(-78)]=(+2)(-26)=-52.

  我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的符號。

  觀察:下列各式的積是正的還是負(fù)的?

  (1)234 (2)234(-4)

  (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

  易得出:(1)、(3)式積為負(fù),(2)、(4)式積為正,積的符號與負(fù)因數(shù)的個數(shù)有關(guān)。

  教師問:幾個不是0的數(shù)相乘,積的符號與負(fù)因數(shù)的.個數(shù)之間有什么關(guān)系?

  學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當(dāng)負(fù)因數(shù)的個數(shù)為負(fù)數(shù)時,積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。

  2.多個不是0的有理數(shù)相乘,先由負(fù)因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 9

  一、學(xué)習(xí)目標(biāo):

  1. 熟練掌握有理數(shù)的乘法法 則

  2. 會運用乘法運算率簡化乘法運算.

  3. 了解互為倒數(shù)的意義,并會求一個非零有理數(shù)的倒數(shù)

  二、學(xué)習(xí)重點

  探索有 理數(shù)乘法運算律

  學(xué)習(xí)難點:運用乘法運算律簡化計算

  三、學(xué)習(xí)過程:

  (一)、情境引入:

  1、復(fù)習(xí)有理數(shù)的乘法法則(兩個因數(shù)、兩個以上的因數(shù)),并舉例說明。

  2、在含有負(fù)數(shù)的乘法運算中,乘法交換律,結(jié)合律和分配律還成立嗎?

  觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?

  (1)(-6)(-7)= (-7)(-6)=

  (2)[( -3)(-5)]2 = (-3)[(-5)2]=

  (3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=

  3、請再舉幾組數(shù)試一試,看上面所得的結(jié)論是否成立?

  (二)、新課講解:

  有理數(shù)乘法運算律

  交換律 ab =ba

  結(jié)合律 ( ab)c=a(bc)

  分配律 a(b+c)=ab+ac

  例1.計算:

  (1)8(- )(-0.125) (2)

  (3)( )(-36) (4)

  例2.計算

  (1)8 (2)(4)( ) (3)( )( )

  觀察例2中的`三個運算, 兩個因數(shù)有什么 特點?它們的乘積呢?你能夠得到什么結(jié)論?

  (三)、鞏固練習(xí):

  1.運用運算律填空.

  (1)-2-3=-3(_____).

  (2)[-32](-4)=-3[(______)(______)].

  (3)-5[-2 +-3]=-5(_____)+(_____)-3

  2.選擇題

  (1)若a0 ,必有 ( )

  A a0 B a0 C a,b同號 D a,b異號

  (2)利用分配律計算 時,正確的方案可以是 ( )

  A B

  C D

  3.運用運算律計算:

  (1)(-25)(-85)(-4) (2) 14-12-1816

  (3)6037-6017+6057 (4)18-23+1323-423

  (5)(-4)(-18.36) (6)(- )0.125(-2 )

  (7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)

  四、課堂小結(jié):

  通過本節(jié)課你學(xué)到了哪些知識?你 達(dá)成學(xué)習(xí)目標(biāo)了嗎?

  五、作業(yè)布置:

  課本第42頁習(xí)題2.5 第3題

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 10

  知識與能力

  掌握有理數(shù)乘法以及乘法運算律,熟練進(jìn)行有理數(shù)乘除運算,發(fā)展觀察,歸納等方面的能力,用相關(guān)知識解決實際問題的能力

  過程與方法

  經(jīng)歷歸納,總結(jié)有理數(shù)乘法,除法法則及乘法運算律的過程,會觀察,選擇適當(dāng)?shù)摹⑤^簡便的方法進(jìn)行有理數(shù)乘除運算

  情感、態(tài)度、價值觀

  培養(yǎng)學(xué)生學(xué)習(xí)的自信心,上進(jìn)心,通過用乘除運算解決簡單的實際問題,讓學(xué)生明確學(xué)習(xí)教學(xué)的目的是學(xué)以致用,從而培養(yǎng)學(xué)生的主動性、積極性

  教學(xué)重難點

  一、重點:熟練進(jìn)行有理數(shù)的乘除運算

  二、難點:正確進(jìn)行有理數(shù)的乘除運算

  預(yù)習(xí)導(dǎo)學(xué)

  通過看課本§1.4的內(nèi)容,歸納有理數(shù)的`乘法法則以及乘法運算律

  教學(xué)過程

  一、創(chuàng)設(shè)情景,談話導(dǎo)入

  我們已經(jīng)學(xué)習(xí)了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運算律

  二、精講點撥質(zhì)疑問難

  根據(jù)預(yù)習(xí)內(nèi)容,同學(xué)們回答以下問題:

  1.有理數(shù)的乘法法則:

  (1)同號兩數(shù)相乘___________________________________

  (2)異號兩數(shù)相乘_____________________________________

  (3)0與任何自然數(shù)相乘,得____

  2.有理數(shù)的乘法運算律:

  (1)乘法交換律:ab=_________

  (2)乘法結(jié)合律:(ab)c=_______

  (3)乘法分配律:(a+b)c=________

  3.有理數(shù)的除法法則:

  除以一個不等于0的數(shù),等于乘這個數(shù)的__________

  比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________

  三、課堂活動強化訓(xùn)練

  某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個公司去年總的盈虧情況如何?

  注:學(xué)生分組討論練習(xí),教師在巡視過程中,引導(dǎo)、輔導(dǎo)部分基礎(chǔ)較差的學(xué)生后,各小組進(jìn)行交流,總結(jié)

  四、延伸拓展,鞏固內(nèi)化

  例2.(1)若ab=1,則a、b的關(guān)系為()

  (2)下列說法中正確的個數(shù)為( )

  0除以任何數(shù)都得0

 、谌绻=-

  1,那么a是非負(fù)數(shù)若若⑤(c≠0)⑥()⑦1的倒數(shù)等于本身

  A 1個B 2個C 3個D 4個

  (3)兩個不為零的有理數(shù)相除,如果交換被除數(shù)與除數(shù)的關(guān)系,它們的商不變( )

  A兩數(shù)相等B兩數(shù)互為相反數(shù)

  C兩數(shù)互為倒數(shù)D兩數(shù)相等或互為相反數(shù)

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 11

  目標(biāo):

  1、知識與技能

  使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進(jìn)行有理數(shù)的乘法運算。

  2、過程與方法

  經(jīng)歷探索有理數(shù)乘法法則的過程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會進(jìn)行有理數(shù)和乘法運算。

  重點、難點:

  1、重點:有理數(shù)乘法法則。

  2、難點:有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號。

  過程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新

  1、由前面的學(xué)習(xí)我們知道,正數(shù)的加減法可以擴充到有理數(shù)的加減法,那么乘法是可也可以擴充呢?

  乘法是加法的特殊運算,例如5+5+5=5×3,那么請思考:

 。ǎ5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個問題。

  3、在一條由西向東的筆直的馬路上,取一點O,以向東的路程為正,則向西的路程為負(fù),如果小玫從點O出發(fā),以5千米的向西行走,那么經(jīng)過3小時,她走了多遠(yuǎn)?

  二、合作交流,解讀探究

  1、小學(xué)學(xué)過的乘法的意義是什么?

  乘法的分配律:a×(b+c)=a×b+a×c

  如果兩個數(shù)的和為0,那么這兩個數(shù) 互為相反數(shù) 。

  2、由前面的問題3,根據(jù)小學(xué)學(xué)過的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

  3、學(xué)生活動:計算3×(-5)+3×5,注意運用簡便運算

  通過計算表明3×(-5)與3×5互為相反數(shù),從而有

  3×(-5)=-(3×5),由此看出,3×(-5)得負(fù)數(shù),并且把絕對值3與5相乘。

  類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

  由此看出(-5)×(-3)得正數(shù),并且把絕對值5與3相乘。

  4、提出:從以上的`運算中,你能總結(jié)出有理數(shù)的乘法法則嗎?

  鼓勵學(xué)生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。

  在學(xué)生猜測、歸納、交流的過程中及時引導(dǎo)、肯定

  兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

  任何數(shù)與0相乘,積仍為0

  (板書)有理數(shù)乘法法則:

  三、應(yīng)用遷移,鞏固提高

  1、計算

 。ǎ5)×(-4) 2×(-3.5) × (-0.75)×0

 。1)學(xué)生根據(jù)乘法法則,在練習(xí)本上完成。指定四位同學(xué)到黑板演習(xí)。

 。2)教師:要求學(xué)生明確算理,學(xué)生做練習(xí)時,教師巡視,及時引導(dǎo)。

  2、計算下列各題

 、 (-4)×5×(-0.25) ② ×( )×(-2)

 、 ×( )×0×( )

  指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時,要先確定積的符號,再求出積的絕對值。

  教師提出問題:幾個有理數(shù)相乘時,因數(shù)都不為0時,積是多少?

  學(xué)生小結(jié)后,教師歸納:

  幾個不為0的有理數(shù)相乘,積的符號由負(fù)因數(shù)的符號決定,負(fù)因數(shù)有奇數(shù)個時,積為負(fù);負(fù)因數(shù)有偶數(shù)個時,積為正;只要有一個因數(shù)為0,則積為0

  練習(xí):本P31練習(xí)

  四、總結(jié)反思(學(xué)生先小結(jié))

  1、有理數(shù)乘法法則

  2、有理數(shù)乘法的一般步驟是:

  (1)確定積的符號; (2)把絕對值相乘。

  五、作業(yè):P39習(xí)題1.5 A組 1、2

  七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計 12

  教學(xué)目的:

  (一)知識點目標(biāo):有理數(shù)的乘法運算律。

  (二)能力訓(xùn)練目標(biāo):

  1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。

  2、能運用乘法運算律簡化計算。

 。ㄈ┣楦信c價值觀要求:

  1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。

  2、在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團(tuán)隊意識。

  教學(xué)重點:

  乘法運算律的運用。

  教學(xué)難點:

  乘法運算律的運用。

  教學(xué)方法:

  探究交流相結(jié)合。

  創(chuàng)設(shè)問題情境,引入新課

  [活動1]

  問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運算律成立嗎?

  問題2:計算下列各題:

  (1)(—7)×8;

 。2)8×(—7);

 。5)[3×(—4)]×(—5);

 。6)3×[(—4)×(—5)];

  [師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。

  像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)

  [師]同學(xué)們自己采用上面的.方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?

  [生]例如:5×[3十(—7)]和5×3十5×(—7);(略)

  [師](—5)×(3—7)和(—5)×3—5×7的結(jié)果相等嗎?

  (注意:(—5)×(3—7)中的3—7應(yīng)看作3與(—7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)

  講授新課:

  [活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來。

  應(yīng)得出:

  1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。

  2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

  3、一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  [活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。

  用簡便方法計算。

  [活動4]

  練習(xí)(教科書第42頁)

  課時小結(jié):

  這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準(zhǔn)。

【七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計】相關(guān)文章:

數(shù)學(xué)有理數(shù)的乘法教案設(shè)計10-13

有理數(shù)的乘法數(shù)學(xué)教案07-07

有理數(shù)的乘法數(shù)學(xué)教案優(yōu)秀03-26

《有理數(shù)的乘法》教學(xué)反思05-24

有理數(shù)的乘法數(shù)學(xué)教案(通用8篇)07-11

有理數(shù)的乘法數(shù)學(xué)教案通用(6篇)07-07

初一數(shù)學(xué)教案:《有理數(shù)的乘法》(精選10篇)04-20

初一數(shù)學(xué)教案:《有理數(shù)的乘法》3篇11-03

有理數(shù)乘法說課稿11-21