- 相關(guān)推薦
最新初中八年級(jí)數(shù)學(xué)教案
作為一名人民教師,就有可能用到教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編整理的最新初中八年級(jí)數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
最新初中八年級(jí)數(shù)學(xué)教案1
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>
2。當(dāng)x
>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的`條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
最新初中八年級(jí)數(shù)學(xué)教案2
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡(jiǎn)單的問題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書,A+B=C,接著提出圖1—1中的A.B,C的'關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關(guān)系?
2、圖1—4中,A,B,C之間有什么關(guān)系?
3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長度(學(xué)生測(cè)量后回答斜邊長為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:
(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無法求得。
2、練習(xí)P7§1.11
六、作業(yè)
課本P7§1.12、3、4
最新初中八年級(jí)數(shù)學(xué)教案3
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系。
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。
(三)德育滲透點(diǎn)
培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神。
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會(huì)應(yīng)用。
2.難點(diǎn):一個(gè)銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用。
三、教學(xué)步驟
(一)明確目標(biāo)
1.復(fù)習(xí)提問
(1)什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請(qǐng)學(xué)生回答.因?yàn)檎、余弦的概念是研究本課內(nèi)容的知識(shí)基礎(chǔ),請(qǐng)中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.
(2)請(qǐng)同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書).
(3)請(qǐng)同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會(huì)回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個(gè)角的正弦值等于它們余角的余弦值”。
2.導(dǎo)入新課
根據(jù)這一特征,學(xué)生們可能會(huì)猜想“一個(gè)銳角的正弦(余弦)值等于它的余角的.余弦(正弦)值.”這是否是真命題呢?引出課題。
(二)整體感知
關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明。引入這兩個(gè)關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個(gè)關(guān)系式去推證其他三角恒等式.在本章,這兩個(gè)關(guān)系式的用處僅僅限于查表和計(jì)算,而不是證明。
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過程
1.通過復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍。
2.這時(shí)少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對(duì)部分學(xué)生來說仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時(shí),學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問題的時(shí)間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神。
3.教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A)。
4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對(duì)學(xué)生來說是難點(diǎn)、在給出定理后,需加以鞏固。
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫成∠A的正弦。
(2)把sin(90°-A)寫成∠A的余弦。
這一練習(xí)只能起到鞏固定理的作用.為了運(yùn)用定理,教材安排了例3。
學(xué)生獨(dú)立完成練習(xí)2,就說明定理的教學(xué)較成功,學(xué)生基本會(huì)運(yùn)用。
教材中3的設(shè)置,實(shí)際上是對(duì)前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時(shí)又對(duì)本課知識(shí)加以鞏固練習(xí),因此例3的安排恰到好處.同時(shí),做例3也為下一節(jié)查正余弦表做了準(zhǔn)備。
(四)小結(jié)與擴(kuò)展
1.請(qǐng)學(xué)生做知識(shí)小結(jié),使學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識(shí)的組成部分。
2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個(gè)銳角的正弦值等于它的余角的余弦值,任意一個(gè)銳角的余弦值等于它的余角的正弦值。
最新初中八年級(jí)數(shù)學(xué)教案4
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:Power Point演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
(一)導(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的`方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
(三)質(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
最新初中八年級(jí)數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.
三、例、習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變.
2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解.
3.P11習(xí)題16.1的.第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5.
四、課堂引入
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
最新初中八年級(jí)數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡(jiǎn)單的問題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的`面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以
5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長度(學(xué)生測(cè)量后回答斜邊長為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題
△ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無法求得。
2、練習(xí)P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
【最新初中八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
最新數(shù)學(xué)教案02-14
初中八年級(jí)數(shù)學(xué)教案4篇11-04
初中數(shù)學(xué)教案08-12
最新數(shù)學(xué)教案15篇02-14
最新大班數(shù)學(xué)教案02-16
初中數(shù)學(xué)教案【精】01-26
【推薦】初中數(shù)學(xué)教案01-26