有理數(shù)的乘法
教學(xué)目標(biāo)
1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;
2.能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
3.三個(gè)或三個(gè)以上不等于0的有理數(shù)相乘時(shí),能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡(jiǎn)化運(yùn)算過(guò)程;
4.通過(guò)有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5.本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)是能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對(duì)值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對(duì)值是各個(gè)因數(shù)的絕對(duì)值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡(jiǎn)化運(yùn)算過(guò)程。
本節(jié)的難點(diǎn)是對(duì)有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號(hào)得正,異號(hào)得負(fù)”只是針對(duì)兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對(duì)值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對(duì)值是這兩個(gè)因數(shù)的絕對(duì)值的積。
。ǘ┲R(shí)結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問(wèn)題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時(shí),確定符號(hào)的依據(jù)是“同號(hào)得正,異號(hào)得負(fù)”.絕對(duì)值相乘也就是小學(xué)學(xué)過(guò)的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
4.幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個(gè)因數(shù)為0.
5.小學(xué)學(xué)過(guò)的乘法交換律、結(jié)合律、分配律對(duì)有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計(jì)示例
有理數(shù)的乘法(第一課時(shí))
教學(xué)目標(biāo)
1.使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2.通過(guò)有理數(shù)的乘法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力;
3.通過(guò)教材給出的行程問(wèn)題,認(rèn)識(shí)數(shù)學(xué)來(lái)源于實(shí)踐并反作用于實(shí)踐。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法法則的理解.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.計(jì)算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運(yùn)算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))
3.有理數(shù)加減運(yùn)算中,關(guān)鍵問(wèn)題是什么?和小學(xué)運(yùn)算中最主要的不同點(diǎn)是什么?(符號(hào)問(wèn)題)
4.根據(jù)有理數(shù)加減運(yùn)算中引出的新問(wèn)題主要是負(fù)數(shù)加減,運(yùn)算的關(guān)鍵是確定符號(hào)問(wèn)題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問(wèn)題是什么?(負(fù)數(shù)問(wèn)題,符號(hào)的確定)
二、師生共同研究有理數(shù)乘法法則
問(wèn)題1 水庫(kù)的水位每小時(shí)上升3厘米,2小時(shí)上升了多少厘米?
解:3×2=6(厘米) 、
答:上升了6厘米.
問(wèn)題2 水庫(kù)的水位平均每小時(shí)下降3厘米,2小時(shí)上升多少厘米?
解:-3×2=-6(厘米) 、
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)
把3×(-2)和①式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來(lái)的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來(lái)的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強(qiáng)調(diào)指出:
“同號(hào)得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號(hào)得負(fù)”.
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號(hào)法則:“同號(hào)得正,異號(hào)得負(fù)”,符號(hào)一旦確定,就歸結(jié)為小學(xué)的乘法了.
因此,在進(jìn)行有理數(shù)乘法時(shí),需要時(shí)時(shí)強(qiáng)調(diào):先定符號(hào)后定值.
三、運(yùn)用舉例,變式練習(xí)
例1 計(jì)算:
例2 某一物體溫度每小時(shí)上升a度,現(xiàn)在溫度是0度.
(1)t小時(shí)后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時(shí)的結(jié)果:
①a=3,t=2;②a=-3,t=2;
、赼=3,t=-2;④a=-3,t=-2;
教師引導(dǎo)學(xué)生檢驗(yàn)一下(2)中各結(jié)果是否合乎實(shí)際.
課堂練習(xí)
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學(xué)生自己總結(jié):一個(gè)數(shù)乘以1都等于它本身;一個(gè)數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時(shí)教師強(qiáng)調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù)數(shù),也可以是正數(shù)或0.
3.當(dāng)a,b是下列各數(shù)值時(shí),填寫(xiě)空格中計(jì)算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個(gè)負(fù)數(shù)相乘得正數(shù),簡(jiǎn)單地說(shuō):“負(fù)負(fù)得正”.
五、作業(yè)
1.計(jì)算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.計(jì)算:
3.填空(用“>”或“<”號(hào)連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時(shí),那么a ____________2a;
(4)如果a<0時(shí),那么a __________2a.
探究活動(dòng)
問(wèn)題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過(guò)若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無(wú)法使這7只杯口全部朝下.道理很簡(jiǎn)單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問(wèn)題就變成:“把7個(gè)+1每次改變其中4個(gè)的符號(hào),若干次后能否都變成-1?”考慮這7個(gè)數(shù)的乘積,由于每次都改變4個(gè)數(shù)的符號(hào),所以它們的乘積永遠(yuǎn)不變(為+1).而7個(gè)杯口全部朝下時(shí),7個(gè)數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡(jiǎn)單,證明竟是如此巧妙,這要?dú)w功于“±1”語(yǔ)言.
【有理數(shù)的乘法】相關(guān)文章:
有理數(shù)乘法說(shuō)課稿11-21
有理數(shù)的乘法教學(xué)反思08-25
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(jì)10-13
初一數(shù)學(xué)教案:《有理數(shù)的乘法》11-02
有理數(shù)的乘法數(shù)學(xué)教案(通用8篇)04-15
初一數(shù)學(xué)教案:《有理數(shù)的乘法》3篇11-03
七年級(jí)數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計(jì)09-23
有理數(shù)教學(xué)反思04-01
《有理數(shù)》教學(xué)反思04-15