數(shù)學(xué)函數(shù)的教案(通用20篇)
作為一位優(yōu)秀的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么應(yīng)當(dāng)如何寫教案呢?以下是小編為大家整理的數(shù)學(xué)函數(shù)的教案 ,歡迎大家分享。
數(shù)學(xué)函數(shù)的教案 1
教學(xué)目標(biāo)
1.使學(xué)生了解反函數(shù)的概念;
2.使學(xué)生會(huì)求一些簡單函數(shù)的反函數(shù);
3.培養(yǎng)學(xué)生用辯證的觀點(diǎn)觀察、分析解決問題的能力。
教學(xué)重點(diǎn)
1.反函數(shù)的概念;
2.反函數(shù)的求法。
教學(xué)難點(diǎn)
反函數(shù)的概念。
教學(xué)方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);
第二張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。
教學(xué)過程
(I)講授新課
。z查預(yù)習(xí)情況)
師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2.4.1 反函數(shù)的概念。
同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對(duì)反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?
生:(略)
。▽W(xué)生回答之后,打出幻燈片A)。
師:反函數(shù)的定義著重強(qiáng)調(diào)兩點(diǎn):
。1)根據(jù)y= f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);
。2)對(duì)于y在c中的任一個(gè)值,通過x=φ(y),x在A中都有惟一的值和它對(duì)應(yīng)。
師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的。
師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?
生:一一映射確定的函數(shù)才有反函數(shù)。
。▽W(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。
師:在y= f(x)中與y= f -1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個(gè)集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)
在y= f(x)中與y= f –1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請(qǐng)同學(xué)們談一下,函數(shù)y= f(x)與它的反函數(shù)y= f –1(x)兩者之間,定義域、值域存在什么關(guān)系呢?
生:(學(xué)生作答,教師板書)函數(shù)的'定義域,值域分別是它的反函數(shù)的值域、定義域。
師:從反函數(shù)的概念可知:函數(shù)y= f (x)與y= f –1(x)互為反函數(shù)。
從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:
(1)由y= f (x)解出x= f –1(y),即把x用y表示出;
。2)將x= f –1(y)改寫成y= f –1(x),即對(duì)調(diào)x= f –1(y)中的x、y。
(3)指出反函數(shù)的定義域。
下面請(qǐng)同學(xué)自看例1
(II)課堂練習(xí) 課本P68練習(xí)1、2、3、4。
。↖II)課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。
。↖V)課后作業(yè)
一、課本P69習(xí)題2.4 1、2、
二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動(dòng)手作題中要求作的圖象。
板書設(shè)計(jì)
課題: 求反函數(shù)的方法步驟:
定義:(幻燈片)
注意: 小結(jié)
一一映射確定的
函數(shù)才有反函數(shù)
函數(shù)與它的反函
數(shù)定義域、值域的關(guān)系。
數(shù)學(xué)函數(shù)的教案 2
教學(xué)目標(biāo):
1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;
教學(xué)重點(diǎn):
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;
教學(xué)難點(diǎn):
指數(shù)函數(shù)圖象的平移變換。
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)
練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為。若a1,則當(dāng)x0時(shí),y 1;而當(dāng)x0時(shí),y 1.若00時(shí),y 1;而當(dāng)x0時(shí),y 1、
2.情境問題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對(duì)任意的a0且a1,函數(shù)y=ax的圖象恒過(0,1),那么對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過哪一個(gè)定點(diǎn)呢?
二、數(shù)學(xué)應(yīng)用與建構(gòu)
例1 解不等式:
(1) ; (2) ;
(3) ; (4)。
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的.運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2 說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移 y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移 y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).
練習(xí):
(1)將函數(shù)f (x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù) 的圖象.
(2)將函數(shù)f (x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù) 的圖象.
(3)將函數(shù) 圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是。
(4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是。函數(shù)y=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是。
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
例3 已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)=1-2x,試畫出此函數(shù)的圖象.
例4 求函數(shù) 的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
練習(xí):
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于 ;
(2)函數(shù)y=2x的值域?yàn)?;
(3)設(shè)a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;
(4)當(dāng)x0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
三、小結(jié)
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;
2.指數(shù)型函數(shù)的定點(diǎn)問題;
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
四、作業(yè):
課本P55-6,7。
五、課后探究
(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù) 的定義域?yàn)椤?/p>
(2)對(duì)于任意的x1,x2R ,若函數(shù)f(x)=2x ,試比較 的大小。
數(shù)學(xué)函數(shù)的教案 3
一、目標(biāo):
1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;
2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;
3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;
4.培養(yǎng)學(xué)生動(dòng)手操作的能力 。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):零點(diǎn)的概念及存在性的判定;
難點(diǎn):零點(diǎn)的確定。
三、復(fù)習(xí)引入
例1:判斷方程 x2-x-6=0 解的'存在。
分析:考察函數(shù)f(x)= x2-x-6, 其圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線
必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)
X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至
少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩
個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解
定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)
抽象概括
y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。
f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)
所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)
注意:
1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;
3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點(diǎn)。
四、知識(shí)應(yīng)用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實(shí)數(shù)解?為什么?
解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解
練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點(diǎn)?
例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2、
解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因?yàn)閒(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2、
練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。
五、課后作業(yè)
p133第2,3題
數(shù)學(xué)函數(shù)的教案 4
一、教學(xué)目的
1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。
2、使學(xué)生會(huì)用描點(diǎn)法畫出簡單函數(shù)的圖象。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):
1、理解與認(rèn)識(shí)函數(shù)圖象的意義。
2、培養(yǎng)學(xué)生的看圖、識(shí)圖能力。
難點(diǎn):
在畫圖的三個(gè)步驟的`列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問題。
三、教學(xué)過程
1、畫函數(shù)圖象的方法是描點(diǎn)法。其步驟:
。1)列表。要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值。什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn)。比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了。
一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來。
。2)描點(diǎn)。我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn)。
。3)用光滑曲線連線。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線。
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線)。
2、講解畫函數(shù)圖象的三個(gè)步驟和例。畫出函數(shù)y=x+0.5的圖象。
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖。
練習(xí):
、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象。
作業(yè):選用課本習(xí)題。
四、教學(xué)注意問題
1、注意滲透數(shù)形結(jié)合思想。通過研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí)。把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征。
2、注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性。
3、認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力。
數(shù)學(xué)函數(shù)的教案 5
教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):
1.對(duì)數(shù)函數(shù)的概念;
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:
1.理解對(duì)數(shù)函數(shù)的概念;
2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標(biāo):
1.用聯(lián)系的觀點(diǎn)分析問題;
2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系
教學(xué)方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學(xué)輔助:
多媒體
教學(xué)過程:
一、引入對(duì)數(shù)函數(shù)的概念
由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念”
由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類比,可否猜想有:
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。
二、講授新課
1.對(duì)數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì):
因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)。所以與圖象關(guān)于直線對(duì)稱。
因此,我們只要畫出和圖象關(guān)于直線對(duì)稱的曲線,就可以得到的.圖象。
研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形。
那么我們可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象。
還可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象。
請(qǐng)同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?
對(duì)數(shù)函數(shù)的圖象與性質(zhì):
圖象
性質(zhì)(1)定義域:
。2)值域:
(3)過定點(diǎn),即當(dāng)時(shí),
。4)上的增函數(shù)
。4)上的減函數(shù)
3.圖象的加深理解:
下面我們來研究這樣幾個(gè)函數(shù):
我們發(fā)現(xiàn):
與圖象關(guān)于X軸對(duì)稱;與圖象關(guān)于X軸對(duì)稱。
一般地,與圖象關(guān)于X軸對(duì)稱。
再通過圖象的變化(變化的值),我們發(fā)現(xiàn):
。1)時(shí),函數(shù)為增函數(shù),
。2)時(shí),函數(shù)為減函數(shù),
4.練習(xí):
(1)曲線分別為函數(shù),的圖像,試問的大小關(guān)系如何?
(2)比較下列各組數(shù)中兩個(gè)值的大。
(3)解關(guān)于x的不等式:
思考:(1)比較大小:
(2)解關(guān)于x的不等式:
三、小結(jié)
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
四、課后作業(yè)
課本P85,習(xí)題2、8,1、3
數(shù)學(xué)函數(shù)的教案 6
教學(xué)目標(biāo)
1、知識(shí)與技能
了解函數(shù)的概念,弄清自變量與函數(shù)之間的關(guān)系。
2、過程與方法
經(jīng)歷探索函數(shù)概念的過程,感受函數(shù)的模型思想。
3、情感、態(tài)度與價(jià)值觀
培養(yǎng)觀察、交流、分析的思想意識(shí),體會(huì)函數(shù)的實(shí)際應(yīng)用價(jià)值。
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):認(rèn)識(shí)函數(shù)的概念。
2、難點(diǎn):對(duì)函數(shù)中自變量取值范圍的確定。
3、關(guān)鍵:從實(shí)際出發(fā),由具體到抽象,建立函數(shù)的模型。
教學(xué)方法
采用“情境──探究”的方法,讓學(xué)生從具體的情境中提升函數(shù)的思想方法。
教學(xué)過程
一、回顧交流,聚焦問題
1、變量(P94)中5個(gè)思考題。
【教師提問】
同學(xué)們通過學(xué)習(xí)“變量”這一節(jié)內(nèi)容,對(duì)常量和變量有了一定的認(rèn)識(shí),請(qǐng)同學(xué)們舉出一些現(xiàn)實(shí)生活中變化的實(shí)例,指出其中的常量與變量。
【學(xué)生活動(dòng)】思考問題,踴躍發(fā)言。(先歸納出5個(gè)思考題的關(guān)系式,再舉例)
【教師活動(dòng)】激發(fā)興趣,鼓勵(lì)學(xué)生聯(lián)想,2、在地球某地,溫度T(℃)與高度d(m)的關(guān)系可以挖地用T=10-來表示,請(qǐng)你根據(jù)這個(gè)關(guān)系式回答下列問題:
。1)指出這個(gè)關(guān)系式中的變量和常量。
。2)填寫下表。
高度d/m 0,200,400,600,800,1000
溫度T/℃
(3)觀察兩個(gè)變量之間的聯(lián)系,當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就______。
3、課本P7“觀察”。
【學(xué)生活動(dòng)】四人小組互動(dòng)交流,踴躍發(fā)言
二、討論交流,形成概念
【函數(shù)定義】
一般地,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。
【教師活動(dòng)】歸納出函數(shù)的.定義。強(qiáng)調(diào)在上述活動(dòng)中的關(guān)系式是函數(shù)關(guān)系式。提問學(xué)生,兩個(gè)變量中哪個(gè)是自變量呢?哪個(gè)是這個(gè)自變量的函數(shù)?
【學(xué)生活動(dòng)】辨析理解,如:T=10-這個(gè)函數(shù)關(guān)系式中,d是自變量,T是d的函數(shù)等。弄清函數(shù)定義中的問題。
三、繼續(xù)探究,感知輕重
課本P8探究題。
【學(xué)生活動(dòng)】使用計(jì)算器進(jìn)行探索活動(dòng),回答問題,理解函數(shù)概念。
。1)y=2x+5,y是x的函數(shù);
(2)y=2x+1,y是x的函數(shù)。
四、范例點(diǎn)擊,提高認(rèn)知
【例1】一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為/km。
。1)寫出表示y與x的函數(shù)關(guān)系的式子。
。2)指出自變量x的取值范圍。
(3)汽車行駛200km時(shí),油箱中還有多少汽油?
【教師活動(dòng)】講例,啟發(fā)引導(dǎo)學(xué)生共同解決上述例1、
五、隨堂練習(xí),鞏固深化
課本P99練習(xí)。
六、課堂總結(jié),發(fā)展?jié)撃?/p>
1、用數(shù)學(xué)式子表示函數(shù)的方法叫做表達(dá)式法(解析式法),它只是函數(shù)表示法的一種。
2、求函數(shù)的自變量取值范圍的方法。
。1)要使函數(shù)的表達(dá)式有意義;
。2)對(duì)實(shí)際問題中的函數(shù)關(guān)系,要使實(shí)際問題有意義。
3、把所給自變量的值代入函數(shù)表達(dá)式中,就可以求出相應(yīng)的函數(shù)值。
七、布置作業(yè),專題突破
課本P106習(xí)題14。1第1,2,3,4題。
數(shù)學(xué)函數(shù)的教案 7
教學(xué)目標(biāo):
1、進(jìn)一步理解函數(shù)的概念,能從簡單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍。
3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系。
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法。
5、通過函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的。是有規(guī)律地運(yùn)動(dòng)變化著的。
教學(xué)重點(diǎn):
了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值。
教學(xué)難點(diǎn):
函數(shù)概念的抽象性。
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。
生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系。
2、為迎接新年,班委會(huì)計(jì)劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系。
解:1、y=30n
y是函數(shù),n是自變量
2、 ,n是函數(shù),a是自變量。
(二)講授新課
剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的。這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義。如第一題中的學(xué)生數(shù)n必須是正整數(shù)。
例1、求下列函數(shù)中自變量x的取值范圍。
。1) (2)
。3) (4)
。5) (6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義。
。3)小題的 是一個(gè)分式,分式成立的條件是分母不為0。這道題的分母是 ,因此要求 。
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 。
第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零。 的被開方數(shù)是 。
同理,第(6)小題 也是二次根式, 是被開方數(shù)。
小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零。
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可。教師可將解題步驟設(shè)計(jì)得細(xì)致一些。先提問本題的分母是什么?然后再要求分式的分母不為零。求出使函數(shù)成立的自變量的取值范圍。二次根式的問題也與次類似。
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成 或 。在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用。限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”。說明這里 與 是并且的關(guān)系。即2與—1這兩個(gè)值x都不能取。
例2、自行車保管站在某個(gè)星期日保管的自行車共有3500輛次,其中變速車保管費(fèi)是每輛一次0。5元,一般車保管費(fèi)是每次一輛0。3元。
。1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;
。2)若估計(jì)前來停放的3500輛次自行車中,變速車的'輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍。
解:(1)是正整數(shù)
。2)若變速車的輛次不小于25%,但不大于40%,
則收入在1225元至1330元之間
總結(jié):對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問題有意義。這樣,就要求聯(lián)系實(shí)際,具體問題具體分析。
對(duì)于函數(shù) ,當(dāng)自變量 時(shí),相應(yīng)的函數(shù)y的值是 。60叫做這個(gè)函數(shù)當(dāng) 時(shí)的函數(shù)值。
注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng)。以此加深對(duì)函數(shù)的理解。
。ǘ┬〗Y(jié):
這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念。在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍。因此,要求大家能掌握解析式含有一個(gè)自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值。另外,對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,要具體問題具體分析。
作業(yè):習(xí)題13、2A組2、3、5
數(shù)學(xué)函數(shù)的教案 8
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
知道一次函數(shù)的圖象是直線,了解直線方程的概念,掌握直線的傾斜角和斜率的概念以及直線的斜率公式。
(二)能力訓(xùn)練點(diǎn)
通過對(duì)研究直線方程的必要性的分析,培養(yǎng)學(xué)生分析、提出問題的能力;通過建立直線上的點(diǎn)與直線的方程的解的一一對(duì)應(yīng)關(guān)系、方程和直線的對(duì)應(yīng)關(guān)系,培養(yǎng)學(xué)生的知識(shí)轉(zhuǎn)化、遷移能力。
(三)學(xué)科滲透點(diǎn)
分析問題、提出問題的思維品質(zhì),事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證唯物主義思想。
二、教材分析
1、重點(diǎn):通過對(duì)一次函數(shù)的研究,學(xué)生對(duì)直線的方程已有所了解,要對(duì)進(jìn)一步研究直線方程的內(nèi)容進(jìn)行介紹,以激發(fā)學(xué)生學(xué)習(xí)這一部分知識(shí)的興趣;直線的傾斜角和斜率是反映直線相對(duì)于x軸正方向的傾斜程度的,是研究兩條直線位置關(guān)系的重要依據(jù),要正確理解概念;斜率公式要在熟練運(yùn)用上多下功夫。
2、難點(diǎn):一次函數(shù)與其圖象的對(duì)應(yīng)關(guān)系、直線方程與直線的對(duì)應(yīng)關(guān)系是難點(diǎn)。由于以后還要專門研究曲線與方程,對(duì)這一點(diǎn)只需一般介紹就可以了。
3、疑點(diǎn):是否有繼續(xù)研究直線方程的必要?
三、活動(dòng)設(shè)計(jì)
啟發(fā)、思考、問答、討論、練習(xí)。
四、教學(xué)過程
(一)復(fù)習(xí)一次函數(shù)及其圖象
已知一次函數(shù)y=2x+1,試判斷點(diǎn)A(1,2)和點(diǎn)B(2,1)是否在函數(shù)圖象上。初中我們是這樣解答的:∵A(1,2)的坐標(biāo)滿足函數(shù)式,
∴點(diǎn)A在函數(shù)圖象上。
∵B(2,1)的坐標(biāo)不滿足函數(shù)式,∴點(diǎn)B不在函數(shù)圖象上。
現(xiàn)在我們問:這樣解答的理論依據(jù)是什么?(這個(gè)問題是本課的難點(diǎn),要給足夠的時(shí)間讓學(xué)生思考、體會(huì)。)討論作答:判斷點(diǎn)A在函數(shù)圖象上的理論依據(jù)是:滿足函數(shù)關(guān)系式的點(diǎn)都在函數(shù)的圖象上;判斷點(diǎn)B不在函數(shù)圖象上的理論依據(jù)是:函數(shù)圖象上的點(diǎn)的坐標(biāo)應(yīng)滿足函數(shù)關(guān)系式。簡言之,就是函數(shù)圖象上的點(diǎn)與滿足函數(shù)式的有序數(shù)對(duì)具有一一對(duì)應(yīng)關(guān)系。
(二)直線的方程
引導(dǎo)學(xué)生思考:直角坐標(biāo)平面內(nèi),一次函數(shù)的圖象都是直線嗎?直線都是一次函數(shù)的圖象嗎?
一次函數(shù)的圖象是直線,直線不一定是一次函數(shù)的圖象,如直線x=a連函數(shù)都不是。一次函數(shù)y=kx+b,x=a都可以看作二元一次方程,這個(gè)方程的解和它所表示的直線上的點(diǎn)一一對(duì)應(yīng)。
以一個(gè)方程的解為坐標(biāo)的點(diǎn)都是某條直線上的點(diǎn);反之,這條直線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。這時(shí),這個(gè)方程就叫做這條直線的方程;這條直線就叫做這個(gè)方程的直線。
上面的定義可簡言之:(方程)有一個(gè)解(直線上)就有一個(gè)點(diǎn);(直線上)有一個(gè)點(diǎn)(方程)就有一個(gè)解,即方程的解與直線上的點(diǎn)是一一對(duì)應(yīng)的。
顯然,直線的方程是比一次函數(shù)包含對(duì)象更廣泛的一個(gè)概念。
(三)進(jìn)一步研究直線方程的必要性
通過研究一次函數(shù),我們對(duì)直線的方程已有了一些了解,但有些問題還沒有完全解決,如y=kx+b中k的幾何含意、已知直線上一點(diǎn)和直線的方向怎樣求直線的方程、怎樣通過直線的方程來研究兩條直線的位置關(guān)系等都有待于我們繼續(xù)研究。
(四)直線的傾斜角
一條直線l向上的方向與x軸的正方向所成的最小正角,叫做這條直線的傾斜角。特別地,當(dāng)直線l和x軸平行時(shí),我們規(guī)定它的傾斜角為0°,因此,傾斜角的取值范圍是0°≤α<180°。
直線傾斜角角的定義有下面三個(gè)要點(diǎn):
(1)以x軸正向作為參考方向(始邊);
(2)直線向上的'方向作為終邊;
(3)最小正角。
按照這個(gè)定義不難看出:直線與傾角是多對(duì)一的映射關(guān)系。
(五)直線的斜率
傾斜角不是90°的直線。它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即
直線與斜率之間的對(duì)應(yīng)不是映射,因?yàn)榇怪庇趚軸的直線沒有斜率。
(六)過兩點(diǎn)的直線的斜率公式
在坐標(biāo)平面上,已知兩點(diǎn)P1(x1,y1)、P2(x2,y2),由于兩點(diǎn)可以確定一條直線,直線P1P2就是確定的。當(dāng)x1≠x2時(shí),直線的傾角不等于90°時(shí),這條直線的斜率也是確定的。怎樣用P2和P1的坐標(biāo)來表示這條直線的斜率?
P2分別向x軸作垂線P1M1、P2M2,再作P1Q⊥P2M,垂足分別是M1、M2、Q。那么:
α=∠QP1P2(圖1-22甲)或α=π-∠P2P1Q(圖1-22乙)
綜上所述,我們得到經(jīng)過點(diǎn)P1(x1,y1)、P2(x2,y2)兩點(diǎn)的直線的斜率公式:
對(duì)于上面的斜率公式要注意下面四點(diǎn):
(1)當(dāng)x1=x2時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
(七)課后小結(jié)
(1)直線的方程的傾斜角的概念。
(2)直線的傾斜角和斜率的概念。
(3)直線的斜率公式。
數(shù)學(xué)函數(shù)的教案 9
一、教學(xué)類型
新知課
二、教學(xué)目標(biāo)
1、理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的定義域,值域及其奇偶性。
2、通過對(duì)指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):理解指數(shù)函數(shù)的定義,把握?qǐng)D象和性質(zhì)。
難點(diǎn):認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。
四、教學(xué)用具
投影儀
五、教學(xué)方法
啟發(fā)討論研究式
六、教學(xué)過程
1)引入新課
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)——指數(shù)函數(shù)。指數(shù)函數(shù)(板書)
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:
問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂次后,得到的細(xì)胞分裂的個(gè)數(shù)與之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出與之間的函數(shù)關(guān)系式嗎?
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的`長度為米,試寫出與之間的函數(shù)關(guān)系。
1、定義:形如的函數(shù)稱為指數(shù)函數(shù)。(板書)
教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。
2、幾點(diǎn)說明(板書)
。1)關(guān)于對(duì)的規(guī)定:
(2)關(guān)于指數(shù)函數(shù)的定義域(板書)
。3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)剛才分別認(rèn)識(shí)了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請(qǐng)看下面函數(shù)是否是指數(shù)函數(shù)。學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象。最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。
3、歸納性質(zhì)。
數(shù)學(xué)函數(shù)的教案 10
教學(xué)目標(biāo):
(1)理解兩圓相切長等有關(guān)概念,掌握兩圓外公切線長的求法;
。2)培養(yǎng)學(xué)生的歸納、總結(jié)能力;
。3)通過兩圓外公切線長的求法向?qū)W生滲透“轉(zhuǎn)化”思想。
教學(xué)重點(diǎn):
理解兩圓相切長等有關(guān)概念,兩圓外公切線的求法。
教學(xué)難點(diǎn):
兩圓外公切線和兩圓外公切線長學(xué)生理解的不透,容易混淆。
教學(xué)活動(dòng)設(shè)計(jì)
(一)實(shí)際問題(引入)
很多機(jī)器上的傳動(dòng)帶與主動(dòng)輪、從動(dòng)輪之間的位置關(guān)系,給我們以一條直線和兩個(gè)同時(shí)相切的形象。(這里是一種簡單的數(shù)學(xué)建模,了解數(shù)學(xué)產(chǎn)生與實(shí)踐)
兩圓的公切線概念
1、概念:
教師引導(dǎo)學(xué)生自學(xué)。給出兩圓的外公切線、內(nèi)公切線以及公切線長的定義:
和兩圓都相切的直線,叫做兩圓的公切線。
(1)外公切線:兩個(gè)圓在公切線的同旁時(shí),這樣的公切線叫做外公切線。
(2)內(nèi)公切線:兩個(gè)圓在公切線的兩旁時(shí),這樣的公切線叫做內(nèi)公切線。
(3)公切線的長:公切線上兩個(gè)切點(diǎn)的距離叫做公切線的長。
2、理解概念:
(1)公切線的長與切線的長有何區(qū)別與聯(lián)系?
(2)公切線的長與公切線又有何區(qū)別與聯(lián)系?
(1)公切線的長與切線的長的概念有類似的地方,即都是線段的`長。但公切線的長是對(duì)兩個(gè)圓來說的,且這條線段是以兩切點(diǎn)為端點(diǎn);切線長是對(duì)一個(gè)圓來說的,且這條線段的一個(gè)端點(diǎn)是切點(diǎn),另一個(gè)端點(diǎn)是圓外一點(diǎn)。
(2)公切線是直線,而公切線的長是兩切點(diǎn)問線段的長,前者不能度量,后者可以度量。
。ㄈ﹥蓤A的位置與公切線條數(shù)的關(guān)系
組織學(xué)生觀察、概念、概括,培養(yǎng)學(xué)生的學(xué)習(xí)能力。添寫教材P143練習(xí)第2題表。
數(shù)學(xué)函數(shù)的教案 11
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.從現(xiàn)實(shí)情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相似關(guān)系,加深對(duì)函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓(xùn)練要求
結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式。
(三)情感與價(jià)值觀要求
結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時(shí)體驗(yàn)數(shù)學(xué)活動(dòng)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用.
教學(xué)重點(diǎn)
經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學(xué)難點(diǎn)
領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學(xué)方法
教師引導(dǎo)學(xué)生進(jìn)行歸納.
教具準(zhǔn)備
投影片兩張
第一張:(記作5.1A)
第二張:(記作5.1B)
教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
[師]我們?cè)谇懊鎸W(xué)過一次函數(shù)和正比例函數(shù),知道一次函數(shù)的表達(dá)式為y=kx+b.其中k,b為常數(shù)且k≠0,正比例函數(shù)的表達(dá)式為y=kx,其中k為不為零的常數(shù)。但是在現(xiàn)實(shí)生活中,并不是只有這兩種類型的表達(dá)式。如從A地到B地的.路程為1200km,某人開車要從A地到B地,汽車的速度v(km/h)和時(shí)間t(h)之間的關(guān)系式為vt=1200,則t= 中t和v之間的關(guān)系式肯定不是正比例函數(shù)和一次函數(shù)的關(guān)系式,那么它們之間的關(guān)系式究竟是什么關(guān)系式呢?這就是本節(jié)課我們要揭開的奧秘。
、.新課講解
[師]我們今天要學(xué)習(xí)的是反比例函數(shù),它是函數(shù)中的一種,首先我們先來回憶一下什么叫函數(shù)?
1.復(fù)習(xí)函數(shù)的定義
[師]大家還記得函數(shù)的定義嗎?
[生]記得.
在某變化過程中有兩個(gè)變量x,y.若給定其中一個(gè)變量x的值,y都有唯一確定的值與它對(duì)應(yīng),則稱y是x的函數(shù)。
[師]大家能舉出實(shí)例嗎?
[生]可以.
例如購買單價(jià)是0.4元的鉛筆,總金額y(元)與鉛筆數(shù)n(個(gè))的關(guān)系是y=0.4n.這是一個(gè)正比例函數(shù)。
等腰三角形的頂角的度數(shù)y與底角的度數(shù)x的關(guān)系為y=180-2x,y是x的一次函數(shù)。
[師]很好,我們復(fù)習(xí)了函數(shù)的定義以及正比例函數(shù)和一次函數(shù)的表達(dá)式以后,再來看下面實(shí)際問題中的變量之間是否存在函數(shù)關(guān)系,若是函數(shù)關(guān)系,那么是否為正比例或一次函數(shù)關(guān)系式。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,并能類推歸納出反比例函數(shù)的表達(dá)式。
3.做一做
小結(jié)
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的定義,并歸納總結(jié)出反比例函數(shù)的表達(dá)式為y= (k為常數(shù),k≠0),自變量x不能為零.還能根據(jù)定義和表達(dá)式判斷某兩個(gè)變量之間的關(guān)系是否是函數(shù),是什么函數(shù)。
數(shù)學(xué)函數(shù)的教案 12
一、教學(xué)目標(biāo)
、龠\(yùn)用豐富的實(shí)例,使學(xué)生在具體情境中領(lǐng)悟函數(shù)概念的意義,了解常量與變量的含義、能分清實(shí)例中的常量與變量,了解自變量與函數(shù)的意義。
、谕ㄟ^動(dòng)手實(shí)踐與探索,讓學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,以提高分析問題和解決問題的能力。
③引導(dǎo)學(xué)生探索實(shí)際問題中的數(shù)量關(guān)系,培養(yǎng)對(duì)學(xué)習(xí)數(shù)學(xué)的興趣和積極參與數(shù)學(xué)活動(dòng)的熱情、在解決問題的過程中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值并感受成功的喜悅,建立自信心。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):函數(shù)概念的形成過程。
難點(diǎn):正確理解函數(shù)的概念。
三、教學(xué)準(zhǔn)備
每個(gè)小組一副彈簧秤和掛件,一根繩子。
四、教學(xué)設(shè)計(jì)
(一)提出問題:
1、汽車以60千米/時(shí)的速度勻速行駛、行駛里程為s千米,行駛時(shí)間為t小時(shí)、先填寫下面的表,再試著用含t的式子表示s:
t(小時(shí)) 1 2 3 4 5
s(千米)
2、已知每張電影票的售價(jià)為10元、如果早場售出150張,日?qǐng)鍪鄢?05張,晚場售出310張,那么三場電影的票房收入各為多少元?設(shè)一場電影售出x張票,票房收人為y元,怎樣用含x的式子表示y?
3、要畫一個(gè)面積為10cm2的圓,圓的半徑應(yīng)取多少?畫面積為20cm2的圓呢?怎樣用含圓面積S的式子表示圓半徑r?
注:(1)讓學(xué)生充分發(fā)表意見,然后教師進(jìn)行點(diǎn)評(píng)、
(2)挖掘和利用實(shí)際生活中與變量有關(guān)的問題情景,讓學(xué)生經(jīng)歷探索具體情景中兩個(gè)變量關(guān)系的過程,直接獲得探索變量關(guān)系的體驗(yàn)、
。ǘ﹦(dòng)手實(shí)驗(yàn)
1、在一根彈簧秤上懸掛重物,改變并記錄重物的質(zhì)量。
如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用重物質(zhì)量m(kg)的式子表示受力后的彈簧長度l(cm)?
2、用10dm長的繩子圍成矩形、試改變矩形的長,觀察矩形的面積怎樣變化,記錄不同的矩形的長的值,計(jì)算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律(用表格表示)、設(shè)矩形的長為xdm,面積為Sdm2,怎樣用含x的式子表示S?
注:分組進(jìn)行實(shí)驗(yàn)活動(dòng),然后各組選派代表匯報(bào)。
通過動(dòng)手實(shí)驗(yàn),學(xué)生的學(xué)習(xí)積極性被充分調(diào)動(dòng)起來,進(jìn)一步深刻體會(huì)了變量間的關(guān)系,學(xué)會(huì)了運(yùn)用表格形式來表示實(shí)驗(yàn)信息。
五、探究新知
(一)變量與常量的概念
1、在學(xué)生動(dòng)手實(shí)驗(yàn)并充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納:上面的問題和實(shí)驗(yàn)都反映了不同事物的變化過程、其中有些量(時(shí)間t、里程s、售出票數(shù)x、票房收入y等)的值是按照某種規(guī)律變化的在一個(gè)變化過程中,數(shù)值發(fā)生變化的量,我們稱之為變量、也有些量是始終不變的',如上面問題中的速度60(千米/時(shí))、票價(jià)10(元)等,我們稱之為常量。
2、請(qǐng)具體指出上面這些問題和實(shí)驗(yàn)中,哪些量是變量,哪些量是常量。
3、舉出一些變化的實(shí)例,指出其中的變量和常量。
注:分組活動(dòng)、先獨(dú)立思考,然后組內(nèi)交流并作記錄,最后各組選派代表匯報(bào)。
培養(yǎng)學(xué)生主動(dòng)參與、合作交流并能用數(shù)學(xué)的眼光看待世界的意識(shí),提高觀察、分析、概括和抽象等的能力。
(二)函數(shù)的概念
1、在前面的每個(gè)問題和實(shí)驗(yàn)中,是否各有兩個(gè)變量?同一個(gè)問題中的變量之間有什么聯(lián)系?
師生分析得出:上面的每個(gè)問題和實(shí)驗(yàn)中的兩個(gè)變量互相聯(lián)系、當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就有惟一確定的值。
2、分組討論教科書P、7 “觀察”中的兩個(gè)問題。
注:使學(xué)生加深對(duì)各種表示函數(shù)關(guān)系的表達(dá)方式的印象。
3、一般來說,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么,我們就說x是自變量,y是x的函數(shù)、如果當(dāng)x=a時(shí),y=b,那么,b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值、例如在問題1中,時(shí)間t是自變量,里程s是t的函數(shù)、t=1時(shí),其函數(shù)值s為60,t=2時(shí),其函數(shù)值s為120、
同樣,在心電圖中,時(shí)間x是自變量,心臟電流y是x的函數(shù);
在人口統(tǒng)計(jì)表中,年份x是自變量,人口數(shù)y是x的函數(shù)、當(dāng)x=1999時(shí),函數(shù)值y=12.52。
六、鞏固新知
下列各題中分別有幾個(gè)變量?你能將其中的某個(gè)變量看成是另一變量的函數(shù)嗎?
1、右圖是北京某日溫度變化圖
2、國內(nèi)平信郵資(外埠,100克內(nèi))簡表:
信件質(zhì)量m/克O
郵資y/元O、80 1、60 2、40
注:鞏固變量與函數(shù)的概念,讓學(xué)生充分體會(huì)到許多問題中的變量關(guān)系都存在著函數(shù)關(guān)系,初步了解函數(shù)的三種表示方法
七、總結(jié)歸納
1、常量與變量的概念;
2、函數(shù)的定義;
3、函數(shù)的三種表示方式。
注:通過總結(jié)歸納,完善學(xué)生已有的知識(shí)結(jié)構(gòu)。
數(shù)學(xué)函數(shù)的教案 13
教學(xué)目標(biāo)
1. 經(jīng)歷從實(shí)際問題抽象出反比例函數(shù)的探索過程,發(fā)展學(xué)生的抽象思維能力。
2. 理解反比例函數(shù)的概念,會(huì)列出實(shí)際問題的反比例函數(shù)關(guān)系式。
3. 使學(xué)生會(huì)畫出反比例函數(shù)的圖象。
4. 經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì)。
教學(xué)重點(diǎn)
1、 使學(xué)生了解反比例函數(shù)的表達(dá)式,會(huì)畫反比例函數(shù)圖象
2、 使學(xué)生掌握反比例函數(shù)的圖象性質(zhì)
3、 利用反比例函數(shù)解題
教學(xué)難點(diǎn)
1、 列函數(shù)表達(dá)式
2、 反比例函數(shù)圖象解題
教學(xué)過程
教師活動(dòng)
一、作業(yè)檢查與講評(píng)
二、復(fù)習(xí)導(dǎo)入
1.什么是正比例函數(shù)?
我們知道當(dāng)
(1) 當(dāng)路程s一定,時(shí)間t與速度v成反比例,即vt=s(s是常數(shù))
(2) 當(dāng)矩形面積一定時(shí),長a和寬b成反比例,即ab=s(s是常數(shù))
創(chuàng)設(shè)問題情境
問題1:小華的爸爸早晨騎自行車帶小華到15千米外的鎮(zhèn)上去趕集,回來時(shí)讓小華乘坐公共汽車,用的時(shí)間少了。假設(shè)自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮(zhèn)上的時(shí)間和乘坐不同交通工具的速度之間的關(guān)系。
分析 和其他實(shí)際問題一樣,要探求兩個(gè)變量之間的關(guān)系,就應(yīng)先選用適當(dāng)?shù)姆?hào)表示變量,再根據(jù)題意列出相應(yīng)的函數(shù)關(guān)系式。
設(shè)小華乘坐交通工具的速度是v千米/時(shí),從家里到鎮(zhèn)上的時(shí)間是t小時(shí).因?yàn)樵趧蛩龠\(yùn)動(dòng)中,時(shí)間=路程÷速度,所以
從這個(gè)關(guān)系式中發(fā)現(xiàn):
1.路程一定時(shí),時(shí)間t就是速度v的反比例函數(shù)。即速度增大了,時(shí)間變;速度減小了,時(shí)間增大.
2.自變量v的取值是v>0.
問題2:學(xué)校課外生物小組的同學(xué)準(zhǔn)備自己動(dòng)手,用舊圍欄建一個(gè)面積為24平方米的矩形飼養(yǎng)場.設(shè)它的一邊長為x(米),求另一邊的長y(米)與x的函數(shù)關(guān)系式。
分析 根據(jù)矩形面積可知
xy=24,即
從這個(gè)關(guān)系中發(fā)現(xiàn):
1.當(dāng)矩形的面積一定時(shí),矩形的一邊是另一邊的反比例函數(shù)。即矩形的一邊長增大了,則另一邊減小;若一邊減小了,則另一邊增大;
2.自變量的取值是x>0
三、新課講解
上述兩個(gè)函數(shù)都具有的形式,一般地,形如(k是常數(shù),k≠0)的函數(shù)叫做反比例函數(shù)(proportional function).
說明
1.反比例函數(shù)與正比例函數(shù)定義相比較,本質(zhì)上,正比例y=kx,即,k是常數(shù),且k≠0;反比例函數(shù),則xy=k,k是常數(shù),且k≠0。可利用定義判斷兩個(gè)量x和y滿足哪一種比例關(guān)系
2.反比例函數(shù)的解析式又可以寫成:( k是常數(shù),k≠0)。
3.要求出反比例函數(shù)的解析式,只要求出k即可
實(shí)踐應(yīng)用
例1 下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)已知平行四邊形的面積是12cm2,它的.一邊是acm,這邊上的高是hcm,則a與h的函數(shù)關(guān)系;
(2)壓強(qiáng)p一定時(shí),壓力F與受力面積s的關(guān)系;
(3)功是常數(shù)W時(shí),力F與物體在力的方向上通過的距離s的函數(shù)關(guān)系.
(4)某鄉(xiāng)糧食總產(chǎn)量為m噸,那么該鄉(xiāng)每人平均擁有糧食y(噸)與該鄉(xiāng)人口數(shù)x的函數(shù)關(guān)系式。
例2 當(dāng)m為何值時(shí),函數(shù)是反比例函數(shù),并求出其函數(shù)解析式。
例3 將下列各題中y與x的函數(shù)關(guān)系與出來.
(1),z與x成正比例;
(2)y與z成反比例,z與3x成反比例;
(3)y與2z成反比例,z與成正比例;
例4 已知y與x2成反比例,并且當(dāng)x=3時(shí),y=2.求x=1.5時(shí)y的值
分析 因?yàn)閥與 x2成反比例,所以設(shè),再用待定系數(shù)法就可以求出k,進(jìn)而再求出y的值。
例5 已知y=y1+y2, y1與x成正比例,y2與x2成反比例,且x=2與x=3時(shí),y的值都等于19。求y與x間的函數(shù)關(guān)系式。
小結(jié)
一般地,形如(k是常數(shù),k≠0)的函數(shù)叫做反比例函數(shù)(proportional function)。
要求反比例函數(shù)的解析式,可通過待定系數(shù)法求出k值,即可確定。
練習(xí)2
1.分別寫出下列問題中兩個(gè)變量間的函數(shù)關(guān)系式,指出哪些是正比例函數(shù),哪些是反比例函數(shù),哪些既不是正比例函數(shù)也不是反比例函數(shù)?
(1)小紅一分鐘可以制作2朵花,x分鐘可以制作y朵花;
(2)體積為100cm3的長方體,高為hcm時(shí),底面積為Scm2;
(3)用一根長50cm的鐵絲彎成一個(gè)矩形,一邊長為xcm時(shí),面積為ycm2;
(4)小李接到對(duì)長為100米的管道進(jìn)行檢修的任務(wù),設(shè)每天能完成10米,x天后剩下的未檢修的管道長為y米
2.已知y與x-2成反比例,當(dāng)x=4時(shí),y=3,求當(dāng)x=5時(shí),y的值.
3.已知y=y1+y2, y1與成正比例,y2與x2成反比例.當(dāng)x=1時(shí),y=-12;當(dāng)x=4時(shí),y=7.(1)求y與x的函數(shù)關(guān)系式和x的取范圍;(2)當(dāng)x=時(shí),求y的值。
4.已知一個(gè)長方體的體積是100立方厘米,它的長是ycm,寬是5cm,高是xcm
(1)寫出用高表示長的函數(shù)式;
(2)寫出自變量x的取值范圍;
(3)當(dāng)x=3cm時(shí),求y的值
5.試用描點(diǎn)作圖法畫出問題1中函數(shù)的圖象。
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1.畫出函數(shù)的圖象。
解 1.列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2.描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支.這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問 這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
畫出反比例函數(shù)的圖象
1.這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3.聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
注 1.雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);
2.雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實(shí)踐應(yīng)用
例1 若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析 由反比例函數(shù)的定義可知: ,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。
解 由題意,得 解得.
例2 已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。
例3 已知反比例函數(shù)的圖象過點(diǎn)(1,-2)。
(1)求這個(gè)函數(shù)的解析式,并畫出圖象;
(2)若點(diǎn)A(-5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?
例4 已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3≤x≤時(shí),求此函數(shù)的最大值和最小值。
例5 一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
說明 由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
小結(jié)
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
2.反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
數(shù)學(xué)函數(shù)的教案 14
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn):
1、使學(xué)生了解一元二次方程及整式方程的意義;
2、掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
。ǘ┠芰τ(xùn)練點(diǎn):
1、通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性。
。ㄈ┑掠凉B透點(diǎn):由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):一元二次方程的意義及一般形式。
2、教學(xué)難點(diǎn):正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”。
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
1、用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形,然后把四邊折起來,就成為一個(gè)無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程。學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時(shí)培養(yǎng)學(xué)生手、腦、眼并用的能力。
2、現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個(gè)角上截去四個(gè)相同的小正方形,然后做成底面積為1500cm 2 的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x 2 -70x+825=0,此方程不會(huì)解,說明所學(xué)知識(shí)不夠用,需要學(xué)習(xí)新的知識(shí),學(xué)了本章的知識(shí),就可以解這個(gè)方程,從而解決上述問題。
板書:“第十二章一元二次方程”。教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣。
(二)整體感知
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識(shí)到知識(shí)來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識(shí),可以解決許多實(shí)際問題,真正體會(huì)學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識(shí),調(diào)動(dòng)學(xué)生積極主動(dòng)參與數(shù)學(xué)活動(dòng)中。同時(shí)讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位。
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過程
1、復(fù)習(xí)提問
。1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊。
2、引例:剪一塊面積為150cm 2 的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x 2 +5x-150=0,此方程和章前引例所得到的方程x 2 +70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念。
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程。
一元二次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程。
一元二次方程的概念是在整式方程的前提下定義的。一元二次方程中的“一元”指的是“只含有一個(gè)未知數(shù)”,“二次”指的是“未知數(shù)的最高次數(shù)是2”!霸焙汀按巍钡母拍罡闱宄⻊t給定義一元三次方程等打下基礎(chǔ)。一元二次方程的定義是指方程進(jìn)行合并同類項(xiàng)整理后而言的。這實(shí)際上是給出要判定方程是一元二次方程的步驟:首先要進(jìn)行合并同類項(xiàng)整理,再按定義進(jìn)行判斷。
3、練習(xí):指出下列方程,哪些是一元二次方程?
。1)x(5x-2)=x(x+1)+4x 2 ;
。2)7x 2 +6=2x(3x+1);
。3)
。4)6x 2 =x;
。5)2x 2 =5y;
。6)-x 2 =0
4、任何一個(gè)一元二次方程都可以化為一個(gè)固定的形式,這個(gè)形式就是一元二次方程的一般形式。
一元二次方程的一般形式:ax 2 +bx+c=0(a≠0)。ax 2 稱二次項(xiàng),bx稱一次項(xiàng),c稱常數(shù)項(xiàng),a稱二次項(xiàng)系數(shù),b稱一次項(xiàng)系數(shù)。
一般式中的`“a≠0”為什么?如果a=0,則ax 2 +bx+c=0就不是一元二次方程,由此加深對(duì)一元二次方程的概念的理解。
5、例1? 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)?
教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式。
6、練習(xí)1:教材P。5中1,2、要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評(píng)價(jià)。題目答案不唯一,最好二次項(xiàng)系數(shù)化為正數(shù)。
練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請(qǐng)分別指出其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。
8mx-2m-1=0;(4)(b 2 +1)x 2 -bx+b=2;(5)2tx(x-5)=7-4tx。
教師提問及恰當(dāng)?shù)囊龑?dǎo),對(duì)學(xué)生回答給出評(píng)價(jià),通過此組練習(xí),加強(qiáng)對(duì)概念的理解和深化。
。ㄋ模┛偨Y(jié)、擴(kuò)展
引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié)。從方法上學(xué)到了什么方法?從知識(shí)內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?
1、將實(shí)際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會(huì)知識(shí)來源于實(shí)際以及轉(zhuǎn)化為方程的思想方法。
2、整式方程概念、一元二次方程的概念以及它的一般形式,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。歸納所學(xué)過的整式方程。
3、一元二次方程的意義與一般形式ax 2 +bx+c=0(a≠0)的區(qū)別和聯(lián)系。強(qiáng)調(diào)“a≠0”這個(gè)條件有長遠(yuǎn)的重要意義。
四、布置作業(yè)
1、教材P。6 練習(xí)2、
2、思考題:
1)能不能說“關(guān)于x的整式方程中,含有x 2 項(xiàng)的方程叫做一元二次方程?”
2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考)。
數(shù)學(xué)函數(shù)的教案 15
教學(xué)目標(biāo)
。1)理解四種命題的概念;
。2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;
。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;
。4)初步掌握反證法的概念及反證法證題的基本步驟;
(5)通過對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;
(6)通過對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;
。7)培養(yǎng)學(xué)生用反證法簡單推理的技能,從而發(fā)展學(xué)生的思維能力。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運(yùn)用。
教學(xué)過程設(shè)計(jì)
第一課時(shí):四種命題
一、導(dǎo)入新課
【練習(xí)】1、把下列命題改寫成“若則”的形式:
。1)同位角相等,兩直線平行;
。2)正方形的四條邊相等。
2、什么叫互逆命題?上述命題的逆命題是什么?
將命題寫成“若則”的形式,關(guān)鍵是找到命題的條件與結(jié)論。
如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題。
上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”。
值得指出的.是原命題和逆命題是相對(duì)的。我們也可以把逆命題當(dāng)成原命題,去求它的逆命題。
3、原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。
學(xué)生活動(dòng):
口答:
。1)若同位角相等,則兩直線平行;
(2)若一個(gè)四邊形是正方形,則它的四條邊相等。
設(shè)計(jì)意圖:
通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)。
二、新課
【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?
【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個(gè)命題叫原命題的否命題。
【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?
學(xué)生活動(dòng):
口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等。
教師活動(dòng):
【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題。
若用和分別表示原命題的條件和結(jié)論,用┐和┐分別表示和的否定。
【板書】原命題:若則;
否命題:若┐則┐。
【提問】原命題真,否命題一定真嗎?舉例說明?
學(xué)生活動(dòng):
講論后回答:
原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真。
原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真。
由此可以得原命題真,它的否命題不一定真。
設(shè)計(jì)意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
教師活動(dòng):
【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?
學(xué)生活動(dòng):
討論后回答
【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題。
教師活動(dòng):
【提問】原命題“正方形的四條邊相等”的逆否命題是什么?
學(xué)生活動(dòng):
口答:若一個(gè)四邊形的四條邊不相等,則不是正方形。
教師活動(dòng):
【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題。
原命題是“若則”,則逆否命題為“若則。
【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真。
原命題真,逆否命題也真。
教師活動(dòng):
【提問】原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明?
【總結(jié)】
1、原命題為真,它的逆命題不一定為真。
2、原命題為真,它的否命題不一定為真。
3、原命題為真,它的逆否命題一定為真。
設(shè)計(jì)意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性。
數(shù)學(xué)函數(shù)的教案 16
教學(xué)目標(biāo):
1、使學(xué)生能進(jìn)一步理解函數(shù)的定義,根據(jù)實(shí)際情況求函數(shù)的定義域,并能利用函數(shù)解決實(shí)際問題中的最值問題。
2、滲透函數(shù)的數(shù)學(xué)思想,培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,以及解決實(shí)際問題的.能力。
3、能初步建立應(yīng)用數(shù)學(xué)的意識(shí),體會(huì)到數(shù)學(xué)的抽象性和廣泛應(yīng)用性。
教學(xué)重點(diǎn):
1、從實(shí)際問題中抽象概括出運(yùn)動(dòng)變化的規(guī)律,建立函數(shù)關(guān)系式。
2、通過函數(shù)的性質(zhì)及定義域范圍求函數(shù)的最值。
教學(xué)難點(diǎn):
從實(shí)際問題中抽象概括出運(yùn)動(dòng)變化的規(guī)律,建立函數(shù)關(guān)系式
教學(xué)方法:
討論式教學(xué)法
教學(xué)過程:
例1、A校和B校各有舊電腦12臺(tái)和6臺(tái),現(xiàn)決定送給C校10臺(tái)、D學(xué)校8臺(tái),已知從A校調(diào)一臺(tái)電腦到C校、D學(xué)校的費(fèi)用分別是40元和80元,從B校調(diào)運(yùn)一臺(tái)電腦到C校、D學(xué)校的運(yùn)費(fèi)分別是30元和50元,試求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?
(1)幾分鐘讓學(xué)生認(rèn)真讀題,理解題意
(2)由題意可知,一種調(diào)配方案,對(duì)應(yīng)一個(gè)費(fèi)用。不同的調(diào)配方案對(duì)應(yīng)不同的費(fèi)用,在這個(gè)變化過程中,調(diào)配方案決定了總費(fèi)用。它們之間存在著一定的關(guān)系。究竟是什么樣的關(guān)系呢?需要我們建立數(shù)學(xué)模型,將之形式化、數(shù)學(xué)化。
解法(一)列表分析:
設(shè)從A校調(diào)到C校x臺(tái),則調(diào)到D學(xué)校(12―x)臺(tái),B校調(diào)到C校是(10―x)臺(tái)。B校調(diào)到D學(xué)校是[6-(10-x)]即(x-4)臺(tái),總運(yùn)費(fèi)為y。
根據(jù)題意:
y=40x+80(12-x)+30(10-x)+50(x-4)
y=40x+960-80x+300-30x+50x-200
=-20x+1060(4≤x≤10,且x是正整數(shù))
y=-20x+1060是減函數(shù)。
∴當(dāng)x=10時(shí),y有最小值ymin=860
∴調(diào)配方案為A校調(diào)到C校10臺(tái),調(diào)到D學(xué)校2臺(tái),B校調(diào)到D學(xué)校2臺(tái)。
解法(二)列表分析
設(shè)從A校調(diào)到D學(xué)校有x臺(tái),則調(diào)到C校(12―x)臺(tái)。B校調(diào)到C校是[10-(12-x)]即(x-2)臺(tái)。B校調(diào)到D學(xué)校是(8―x)臺(tái),總運(yùn)費(fèi)為y。
y=40(12–x)+80x+30(x–2)+50(8-x)
=480–40x+80x+30x–60+400–50x
=20x+820(2≤x≤8,且x是正整數(shù))
y=20x+820是增函數(shù)
∴x=2時(shí),y有最小值ymin=860
數(shù)學(xué)函數(shù)的教案 17
一、教材分析
本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對(duì)二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進(jìn)行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會(huì)知識(shí)之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質(zhì)。
二、學(xué)情分析
本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對(duì)一般式向頂點(diǎn)式的轉(zhuǎn)化,讓學(xué)上體會(huì)化歸思想,分析這兩個(gè)式子的區(qū)別。
三、教學(xué)目標(biāo)
(一)知識(shí)與能力目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程;
2. 能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸。
(二)過程與方法目標(biāo)
通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會(huì)探索新知的方式和方法。
(三)情感態(tài)度與價(jià)值觀目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程,滲透配方和化歸的思想方法;
2. 在運(yùn)用二次函數(shù)的知識(shí)解決問題的過程中,親自體會(huì)到學(xué)習(xí)數(shù)學(xué)知識(shí)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣并獲得成功的體驗(yàn)。
四、教學(xué)重難點(diǎn)
1.重點(diǎn)
通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)。
2.難點(diǎn)
二次函數(shù)y=ax2+bx+c(a≠0)的圖像的性質(zhì)。
五、教學(xué)策略與 設(shè)計(jì)說明
本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對(duì)比一般式和頂點(diǎn)式的區(qū)別和聯(lián)系;體會(huì)式子的恒等變形的重要意義。
六、教學(xué)過程
教學(xué)環(huán)節(jié)(注明每個(gè)環(huán)節(jié)預(yù)設(shè)的時(shí)間)
(一)提出問題(約1分鐘)
教師活動(dòng):形如y=a(x-h)2+k(a≠0)的拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)分別是什么?那么對(duì)于一般式y(tǒng)=ax2+bx+c(a≠0)頂點(diǎn)坐標(biāo)和對(duì)稱軸又怎樣呢?圖像又如何?
學(xué)生活動(dòng):學(xué)生快速回答出第一個(gè)問題,第二個(gè)問題引起學(xué)生的思考。
目的:由舊有的知識(shí)引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)
教師活動(dòng):教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點(diǎn)式?然后結(jié)合頂點(diǎn)式確定其頂點(diǎn)和對(duì)稱軸。
學(xué)生活動(dòng):討論解決
目的:激發(fā)興趣
2.配方求解頂點(diǎn)坐標(biāo)和對(duì)稱軸(約5分鐘)
教師活動(dòng):教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教師還應(yīng)強(qiáng)調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。
學(xué)生活動(dòng):學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯(cuò)的地方。
目的:即加深對(duì)本課知識(shí)的`認(rèn)知有增強(qiáng)了配方法的應(yīng)用意識(shí)。
3.畫出該二次函數(shù)圖像(約5分鐘)
教師活動(dòng):提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的平移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時(shí)是否用平滑的曲線,對(duì)稱性如何。
學(xué)生活動(dòng):學(xué)生通過列表、描點(diǎn)、連線結(jié)合二次函數(shù)圖像的對(duì)稱性完成作圖。
目的:強(qiáng)化二次函數(shù)圖像的畫法。即確定開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸結(jié)合圖像的對(duì)稱性完成圖像。
4.探究y=-2x2-4x+1的函數(shù)圖像特點(diǎn)(約3分鐘)
教師活動(dòng):教師提出問題。找學(xué)生板演拋物線的開口方向、頂點(diǎn)和對(duì)稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。
學(xué)生活動(dòng):學(xué)生獨(dú)立完成。
目的:研究a<0時(shí)一個(gè)具體函數(shù)的圖像和性質(zhì),體會(huì)研究二次函數(shù)圖像的一般方法。
5.結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)
教師活動(dòng):教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點(diǎn)、對(duì)稱軸和開口方向并著重討論分析a>0和a<0時(shí),y隨x的變化情況、拋物線與y的交點(diǎn)以及函數(shù)的最值如何。
學(xué)生活動(dòng):仔細(xì)理解記憶一般式中的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開口方向;理解y隨x的變化情況。
目的:體會(huì)由特殊到一般的過程。體驗(yàn)、觀察、分析二次函數(shù)圖像和性質(zhì)。
6.簡單應(yīng)用(約11分鐘)
教師活動(dòng):教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸圖像和y軸的交點(diǎn)坐標(biāo)并確定y隨x的變化情況和最值。
教師巡視,個(gè)別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對(duì)稱軸,然后將對(duì)稱軸代入到原函數(shù)解析式求其函數(shù)值,此時(shí)對(duì)稱軸數(shù)值和所求出的函數(shù)值即為頂點(diǎn)的橫、縱坐標(biāo)。
學(xué)生活動(dòng):學(xué)生先獨(dú)立完成,約3分鐘后討論交流,最后形成結(jié)論。
目的:鞏固新知
課堂小結(jié)(2分鐘)
1. 本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識(shí)上的問題?
2. 你對(duì)本節(jié)課有什么感想或疑惑?
布置作業(yè)(1分鐘)
1. 教科書習(xí)題22.1第6,7兩題;
2. 《課時(shí)練》本節(jié)內(nèi)容。
教學(xué)反思
在教學(xué)中我采用了合作、體驗(yàn)、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗(yàn)知識(shí)的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個(gè)教學(xué)過程主要分為三部分:第一部分是知識(shí)回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識(shí),達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
我認(rèn)為優(yōu)點(diǎn)主要包括:
1.教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2.教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。
3.板書字體端正,格式清晰明了,突出重點(diǎn)、難點(diǎn)。
4.我覺的精彩之處是求一般式的頂點(diǎn)坐標(biāo)時(shí)的第二種方法,給學(xué)生減輕了一些負(fù)擔(dān),不一定非得配方或運(yùn)用公式求頂點(diǎn)坐標(biāo)。
所以我對(duì)于本節(jié)課基本上是滿意的。但也有很多需要改進(jìn)的地方主要表現(xiàn)在:
1.知識(shí)的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動(dòng)中自己引導(dǎo)的較少,時(shí)間較短,討論的不夠積極;
2.一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識(shí)完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會(huì)更深刻;
3.學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個(gè)問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時(shí)候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
4.合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光!敝挥姓嬲炎灾、探究、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會(huì)發(fā)展的公民。
重新去解讀這節(jié)課的話我會(huì)注意以上一些問題,再多一些時(shí)間給學(xué)生,讓他們?nèi)ンw驗(yàn),探究而后形成自己的知識(shí)。
數(shù)學(xué)函數(shù)的教案 18
教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):
1.對(duì)數(shù)函數(shù)的概念;
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:
1.理解對(duì)數(shù)函數(shù)的概念;
2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標(biāo):
1.用聯(lián)系的觀點(diǎn)分析問題;
2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系
教學(xué)方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學(xué)輔助:
多媒體
教學(xué)過程:
一、引入對(duì)數(shù)函數(shù)的概念
由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念”
由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類比,可否猜想有:
問題:
1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù).
3.結(jié)論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).
二、講授新課
1.對(duì)數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì):
因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對(duì)稱.
因此,我們只要畫出和圖象關(guān)于直線對(duì)稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
還可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
請(qǐng)同學(xué)們作出與的.草圖,并觀察它們具有一些什么特征?
對(duì)數(shù)函數(shù)的圖象與性質(zhì):
。1)定義域:
。2)值域:
(3)過定點(diǎn),即當(dāng)時(shí),
。4)上的增函數(shù)
。4)上的減函數(shù)
3.練習(xí):
(1)比較下列各組數(shù)中兩個(gè)值的大。
(2)解關(guān)于x的不等式:
思考:
(1)比較大。
(2)解關(guān)于x的不等式:
三、小結(jié)
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習(xí)題2.8,1、3
數(shù)學(xué)函數(shù)的教案 19
目標(biāo):
學(xué)生將了解什么是函數(shù)以及如何在數(shù)學(xué)中表示和應(yīng)用函數(shù)。
教學(xué)步驟:
1、引入
教師可以用圖表、示例和互動(dòng)活動(dòng)來引入本節(jié)課的主題。例如,教師可以用一個(gè)圓的圖形來展示什么是函數(shù),然后向?qū)W生解釋圓上的每個(gè)點(diǎn)代表著函數(shù)的輸入值,而圓上的每個(gè)點(diǎn)代表著函數(shù)的輸出值。
2、函數(shù)的定義
教師可以用一些示例來解釋函數(shù)的'定義。例如,如果有一個(gè)函數(shù)y = f(x),那么這個(gè)函數(shù)告訴我們當(dāng)x等于1時(shí),y的值為2。在這個(gè)例子中,x是輸入值,y是輸出值。教師可以使用圖表來幫助學(xué)生理解這個(gè)概念。
3、函數(shù)的表示方法
教師可以向?qū)W生介紹不同的函數(shù)表示方法,包括等式、不等式和圖表。學(xué)生應(yīng)該學(xué)會(huì)如何在數(shù)學(xué)中表示和應(yīng)用函數(shù)。
4、函數(shù)的應(yīng)用
教師可以提供一些實(shí)際應(yīng)用的例子,如地圖投影、比例尺和三角函數(shù)。通過這些實(shí)際應(yīng)用的例子,學(xué)生可以更好地理解函數(shù)在現(xiàn)實(shí)世界中的作用。
5、總結(jié)
教師可以通過問題回答、練習(xí)和互動(dòng)活動(dòng)來幫助學(xué)生總結(jié)本節(jié)課的內(nèi)容。教師可以向?qū)W生提供一些練習(xí)題,讓他們?cè)谡n后繼續(xù)學(xué)習(xí)和練習(xí)。
6、教學(xué)資源:
圖表、示例和實(shí)際應(yīng)用的例子
練習(xí)題和互動(dòng)活動(dòng)
課件和視頻資源
評(píng)估:
練習(xí)題和互動(dòng)活動(dòng)
問題回答
課堂表現(xiàn)
反饋:
向?qū)W生提供及時(shí)的反饋和指導(dǎo)
與學(xué)生交流,了解他們的學(xué)習(xí)情況和進(jìn)度
根據(jù)學(xué)生的反饋和表現(xiàn),及時(shí)調(diào)整教學(xué)方法和策略。
數(shù)學(xué)函數(shù)的教案 20
教學(xué)目標(biāo):
理解函數(shù)的概念和性質(zhì);
能夠根據(jù)給定的條件求出函數(shù)的解析式;
能夠繪制函數(shù)的圖像;
能夠利用函數(shù)的性質(zhì)進(jìn)行簡單的運(yùn)算。
教學(xué)內(nèi)容:
函數(shù)的概念和性質(zhì);
函數(shù)的解析式和圖像;
函數(shù)的性質(zhì)。
教學(xué)步驟:
一、引入
通過問題的形式引入函數(shù)的概念和性質(zhì)。
例如:假設(shè)你去買水果,有三種水果,分別是蘋果、橙子和香蕉,每種水果有三個(gè)單位的數(shù)量,現(xiàn)在你需要購買的數(shù)量分別是10個(gè)蘋果、8個(gè)橙子和5個(gè)香蕉,那么你需要支付多少錢?
通過這個(gè)問題,學(xué)生可以感受到函數(shù)的實(shí)際應(yīng)用,同時(shí)也能夠理解函數(shù)的概念和性質(zhì)。
二、函數(shù)的概念和性質(zhì)
函數(shù)的定義
定義:一個(gè)函數(shù)是由一個(gè)集合中的每個(gè)元素與另一個(gè)集合中的唯一元素對(duì)應(yīng)而成的一種映射。
例如:對(duì)于集合{1,2,3}和集合{x,y,z},它們之間的映射關(guān)系為:
{1,2,3}中的每個(gè)元素1、2、3分別對(duì)應(yīng){x,y,z}中的唯一元素x、y、z,即:
{1,2,3} -> {x,y,z}
函數(shù)的性質(zhì)
1 唯一性
對(duì)于一個(gè)函數(shù),它的定義域中的每個(gè)元素只能對(duì)應(yīng)函數(shù)中的一個(gè)唯一的值,即每個(gè)元素只有一個(gè)解析式。
例如:函數(shù)f(x) = 2x + 1,定義域?yàn)閷?shí)數(shù)集合,因此它的'解析式中只有一個(gè)解析式:f(x) = 2x + 1。
2 對(duì)稱性
函數(shù)的對(duì)稱性指的是函數(shù)在某個(gè)點(diǎn)處的取值相等,則該函數(shù)是對(duì)稱的。
例如:函數(shù)f(x) = x - 2,它在點(diǎn)x=1處的取值為f(1) = 1 - 2 = -1,因此它是對(duì)稱的。
3 奇偶性
函數(shù)的奇偶性指的是函數(shù)的圖像是否在某個(gè)象限內(nèi)對(duì)稱。
例如:函數(shù)f(x) = x,它的圖像不在任何象限內(nèi)對(duì)稱,因此它是奇函數(shù)。
4 可導(dǎo)性
函數(shù)的可導(dǎo)性指的是函數(shù)在某個(gè)點(diǎn)處的導(dǎo)數(shù)是否存在。
例如:函數(shù)f(x) = x - 4,它在點(diǎn)x=2處的導(dǎo)數(shù)存在,即f(2) = 4,因此它是可導(dǎo)函數(shù)。
三、函數(shù)的解析式和圖像
函數(shù)的解析式
定義:函數(shù)的解析式是函數(shù)在某個(gè)點(diǎn)處的具體取值。
例如:函數(shù)f(x) = x - 2,它在點(diǎn)x=1處的具體取值為f(1) = 1 - 2 = -1。
函數(shù)的圖像
定義:函數(shù)的圖像是函數(shù)的數(shù)軸對(duì)應(yīng)圖形。
四、函數(shù)的性質(zhì)
性質(zhì)1:平移性
函數(shù)的平移性指的是對(duì)函數(shù)進(jìn)行平移后,函數(shù)的值不變。
例如:函數(shù)f(x) = 2x,它對(duì)x平移2,得到的新函數(shù)為f(x+2) = 2(x+2),兩個(gè)函數(shù)的值相等。
性質(zhì)2:縮放性
函數(shù)的縮放性指的是對(duì)函數(shù)進(jìn)行縮放后,函數(shù)的值也不變。
例如:函數(shù)f(x) = x,它對(duì)x縮放1/2,得到的新函數(shù)為f(x/2) = x/2,兩個(gè)函數(shù)的值相等。
性質(zhì)3:對(duì)稱性
函數(shù)的對(duì)稱性指的是函數(shù)在某個(gè)點(diǎn)處的取值相等,則該函數(shù)是對(duì)稱的。
例如:函數(shù)f(x) = x - 2,它在點(diǎn)x=1處的取值為f(1) = 1 - 2 = -1,因此它是對(duì)稱的。
性質(zhì)4:奇偶性
函數(shù)的奇偶性指的是函數(shù)的圖像是否在某個(gè)象限內(nèi)對(duì)稱。
例如:函數(shù)f(x) = x,它的圖像不在任何象限內(nèi)對(duì)稱,因此它是奇函數(shù)。
性質(zhì)5:可導(dǎo)性
函數(shù)的可導(dǎo)性指的是函數(shù)在某個(gè)點(diǎn)處的導(dǎo)數(shù)是否存在。
例如:函數(shù)f(x) = x - 4,它在點(diǎn)x=2處的導(dǎo)數(shù)存在,即f(2) = 4,因此它是可導(dǎo)函數(shù)。
五、總結(jié)
通過本節(jié)課的學(xué)習(xí),學(xué)生們掌握了函數(shù)的概念、性質(zhì)、解析式和圖像,以及函數(shù)的性質(zhì)。這些知識(shí)對(duì)于初中學(xué)生學(xué)習(xí)函數(shù)是非常重要的。
【數(shù)學(xué)函數(shù)的教案】相關(guān)文章:
數(shù)學(xué)教案- 函數(shù)(二)08-17